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Abstract

Capturing financial network linkages and contagion in stress test models are important

goals for banking supervisors and central banks responsible for micro- and macropruden-

tial policy. However, granular data on financial networks is often lacking, and instead

the networks must be reconstructed from partial data. In this paper, we conduct a horse

race of network reconstruction methods using network data obtained from 25 different

markets spanning 13 jurisdictions. Our contribution is two-fold: first, we collate and

analyze data on a wide range of financial networks. And second, we rank the methods

in terms of their ability to reconstruct the structures of links and exposures in networks.
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1 Introduction

In the era prior to the global financial crisis, banking supervisors followed a microprudential

approach to assessing the resilience of banks. As such, the first generation of bank stress-

test models tended to focus on individual banks’ solvency risks, while remaining silent on

the issue of liquidity risk, and ignored interlinkages within banking systems. However, as

the crisis attests, the failure to capture these features led to an underestimation of the risks

to financial systems in many advanced economies.

The crisis spurred much reflection over the reasons behind the explosive growth of

interlinkages in the financial system in years prior to the crisis (e.g., Billio et al., 2012;

Merton et al., 2013). At the same time, bank supervision authorities and central banks

have been busy developing new stress-testing models and tools that more rigorously account

for the interconnections between banks and the interactions between banks’ liquidity and

solvency risks.1 In particular, models of financial network contagion have become popular

as they can shed light on the risk transmission mechanisms within financial systems. For

example, banks that have suffered solvency shocks may cut lending to their counterparties.

These counterparties, in turn, anticipating the cut in funding, will also cut lending to their

counterparties, and so on. Depending on the structure of the network and distribution of

initial shocks, such hoarding may lead to a freeze in interbank markets.2

Employing network contagion models in stress tests requires granular data on both

the credit exposures and funding structures of financial institutions. Yet the collection of

granular micro-level bank data is patchy across countries. Indeed, a crisis is often needed

to spur data-reporting efforts. For example, after the 1994 Mexican peso currency crisis,

the Banco de México started collecting detailed information on daily exposures both among
1Examples include the European Central Bank’s “Stress-Test Analytics for Macroprudential Purposes

in the Euro area” (STAMP¤) and Bank of Canada’s “Macro-Financial Risk Assessment Framework”
(MFRAF).

2See, for example, Gai et al. (2011) and Lee (2013). As an alternate mechanism, Zawadowski (2011)
consider how information asymmetries make it costly for a bank’s creditors to monitor the quality of the
bank’s assets following a solvency shock, which can lead to an endogenous withdrawal of liquidity.
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domestic banks and from domestic to foreign banks. Similarly, in response to the global

financial crisis, the G-20 set up the Data Gaps Initiative in 2009 to strengthen the report-

ing and collection of financial data by member countries. However, while data-gathering

capabilities have improved markedly, frequent data on bilateral linkages, which are needed

to operationalize network contagion models, is often lacking.

To overcome the data limitations, several methods have been developed to reconstruct

financial networks from available aggregate data. The methods vary in terms of the emphasis

placed on the network features to reproduce. Some methods, for example, seek to minimize

the exposures of individual links, while others seek to minimize the number of links required.

The methods also vary in their outputs: some produce unique reconstructed networks, while

others generate a distribution of possible networks. To date, the different methods have been

tested and validated using partial data from very different periods and financial markets,

which renders any comparison between them difficult.

In this paper, we present the results of a joint exercise, spanning 13 jurisdictions

and 25 different financial markets, to comprehensively analyze the performance of different

network reconstruction methods.3 The reconstruction process is as follows. For the markets

analyzed, we have access to actual data and thus known the true bilateral links in the

financial networks. However, for each market, we postulate that the only information

available is the aggregate asset and liability positions for all banks. This information is fed

into the different methods, which reconstruct the network of bilateral exposures. Summary

statistics for the properties of the reconstructions are recorded, as well as estimates for

how similar they are to the true financial networks. In the end, a ranking of the different

methods is produced by comparing their performance across the different financial markets.

A key challenge in running the horse race stems from the confidentiality of the data,

which prevents their sharing, especially across jurisdictions. To overcome this issue, we

devise a de-centralized approach to running the horse race, wherein a suite of code is run on
3We thus do not describe the use of these results as in van Lelyveld and Liedorp (2006), for example, or

survey them as in Upper (2011) and Hüser (2015).
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data provided by a participating jurisdiction, and only a summary of the results is commu-

nicated publicly. This mechanism ensures that there is no violation of data confidentiality

while facilitating a meaningful comparison of results across jurisdictions.

We find that the winner of the horse race depends on the feature of the network that

we seek to preserve during the reconstruction. This, in turn, is captured by our choice of

similarity measure. In particular, those measures that emphasize reproducing the structure

of links between financial institutions favor methods that produce more sparse networks.

In contrast, similarity measures that emphasize reproducing bilateral exposure sizes favor

methods that allocate exposures as evenly as possible.

To the best of our knowledge, this is the first paper that documents a cross-country

and cross-market comparison of financial network data, together with a comparison of

network reconstruction methods. In two related and recent papers, Mistrulli (2011) and

Anand et al. (2015), the authors compare stress-test outcomes on Italian and German

interbank markets, respectively, where the networks are reconstructed using two different

methods. We consider the methods and markets analyzed by these authors, as well.

Our paper is organized as follows. Section 2 provides an overview of the different

financial markets we consider (detailed market summaries are provided in Appendix A).

Section 3 provides brief summaries of the different network reconstruction methods and

similarity measures we consider (further details in Appendices B and C). The results of our

horse race are provided in Section 4, and a final section concludes.
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2 Summary of the financial network data

Our horse race stems from the liquidity stress testing work stream of the Basel Committee on

Banking Supervision’s (BCBS’s) Research Task Force (RTF) which has published a series of

reports BCBS (2013a,b, 2015). A new area of focus for the work stream is macro prudential

stress testing, with particular emphasis on integrating liquidity, solvency and systemic risks

into stress-test models. With particular reference to network analysis, the work stream

has written that (emphasis ours) “network analysis and agent based models [prove] useful

for broadening stress tests, as these models consider contagion through common exposure,

interbank funding relationships and the endogenous behavior of banks” (BCBS, 2015).

Operationalizing these models requires granular data, which is inferred using network

reconstruction methods. To evaluate the performance of these methods, the RTF authorized

a collaborative effort across several jurisdictions with two key objectives.4 The first, to

collect and analyze data on financial networks across the jurisdictions, and the second, to

test the performance of network reconstruction methods using the collected data.

Table 1 provides an overview of the financial networks we covered. The majority of

these are interbank networks.5 This is followed by payments networks and several other

networks for different financial contracts: repurchase agreements, i.e., repos, foreign ex-

change derivatives (FX), credit default swaps (CDS) and equities. For many networks, we

also analyze several consecutive time-shots. Further details on the time frames and other

institutional information are provided in Appendix A.

Table 2 summarizes the properties of the interbank networks.6 As can be seen, the

networks vary greatly in their size and other properties. The German interbank network

(DE01), for example, has on average 592 banks (with over 11 thousand links), while the
4See BCBS (2015) for further details.
5For Mexico, we disaggregated the interbank network into three different networks, each for a different

financial instrument. A similar disaggregation is carried out for the Mexican payments networks.
6See Appendix C for a description of the different network properties we compute. We group the metrics

in the tables into those that are binary-based and those that are weight-based.
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Table 1: Overview of data set

Type of
Network

Number of
Networks

Countries

Interbank 13 Brazil, BIS, Canada, Denmark, Eurozone, Germany, Hungary, Italy,
Mexico (x3), Netherlands

Payments 5 Brazil, Mexico (x3), US
Repo 2 Denmark, Mexico
FX 1 Hungary
CDS 2 UK, US
Equity 1 Mexico
Derivatives 1 Mexico

Canadian network (CA01) only includes the 6 major banks (with a link count below 30).

The density of the networks ranges from almost fully connected, with 96.7% (CA01) to very

sparse, with only 1% of the links for the Italian network (IT01). Another interesting feature

is the core size, which is a proxy for tiering in the market. The fewer the banks in the core,

the more tiered is the interbank market. Across our sample of interbank markets, the core

size varies from 3.5% of banks (IT01) to 77.8% for the Korean network (KR01). Table 3

summarizes the properties for the remaining networks.

Table 2: Description of interbank network data

BIS1 BR01 CA01 DE01 DK01 EU01 HU01 IT01 KR01 MX01 MX03 MX06 NL01

Number of nodes 31 111.9 6 592.4 14 26 35.8 535.4 18 43 43 43 159
Number of links 742.7 512.7 29.5 11623.5 77 197.7 274.8 3158.9 263 408.3 127.3 53.3 546.1
Density 79.9 4.1 98.3 3.3 42.3 29.2 22.2 1.1 85.9 22.6 7.1 3 2.2
Average degree 24 4.6 4.9 19.6 5.5 7.6 7.7 5.9 14.6 9.5 3 1.2 3.4
Median degree 25.3 2.2 5 14.7 5 8.4 7.8 3.2 15 9.3 2 1 1
Assortativity -.19 -.37 -.6 -.3 -.33 -.31 -.43 -.17 -.22 -.23 -.39 -.49
Clustering 28.5 4.4 67.3 40.3 21.5 15.5 22.2 19.1 21.2 12.9 5.9 4.3 6.6

Lender dependency 28.7 65.2 35.8 43.6 37.5 71.2 32.4 71.6 31.6 54.6 71.7 84.6 78.6
Borrower dependency 30.6 59.8 40.2 69.4 39.6 71.1 39.4 87.8 24.9 51.8 61.6 74.8 76.2
Mean HHI assets .16 .5 .26 .3 .27 .46 .24 .64 .19 .39 .47 .54 .54
Median HHI assets .15 .44 .25 .22 .25 .35 .14 .61 .17 .33 .42 .6 .57
Mean HHI liabilities .16 .38 .29 .59 .25 .56 .25 .84 .15 .36 .33 .24 .48
Median HHI liabilities .13 .31 .26 .59 .23 .6 .11 1 .14 .26 .25 0 .45
Core size (% banks) 73.1 9.8 76.7 6.6 42.9 36.3 31.5 3.5 77.8 31 16.3 7 6.5
Error score (% links) 3.5 41.3 1.4 12.5 14.3 12.2 22.1 22.8 3.4 24.7 39.4 55.2 25.2

Number of slices 3 12 10 12 1 9 12 10 1 3 3 3 10

Note: The table shows the average over all network slices available (bottom row). The definitions of the metrics are given in Appendix C .
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Table 3: Network statistics for remaining networks

Payments CDS Repo Other

BR02 MX07 MX08 MX09 US01 MX05 UK01 US02 DK02 MX02 HU02 MX04

Number of nodes 100.9 43.3 43 43.3 5733 43 336.3 985 12 43 148.6 43
Number of links 1604 734.3 229.7 476.7 180917.5 135 1856.8 4298.3 18 62.3 533.5 84.7
Density 15.8 40.3 12.7 26.3 .6 7.5 1.6 .4 13.6 3.5 2.4 4.7
Average degree 15.9 17.1 5.3 11.1 31.6 3.1 5.5 4.4 1.5 1.4 3.6 2
Median degree 10.2 15.7 3.3 8.3 10.5 1.3 1 2 .5 .7 1 .7
Assortativity -.5 -.44 -.3 -.42 -.27 -.18 -.71 -.81 -.73 -.21 -.61 -.17
Clustering 18.7 17.3 6.8 11.9 14.3 6.1 7.4 17.6 3.5 4 3.7 4.6

Lender dependency 59.9 50.8 61.2 47 59.6 71.1 64.2 72.1 71.4 75.6 76.4 67.1
Borrower dependency 65.8 53.5 61 58.5 59.9 71.8 66.4 74.5 95.1 68.9 72.9 66.7
Mean HHI assets .48 .36 .35 .22 .44 .39 .37 .52 .32 .37 .56 .28
Median HHI assets .4 .29 .23 .16 .37 .35 .21 .5 .11 .28 .7 .07
Mean HHI liabilities .53 .4 .37 .38 .47 .39 .48 .36 .84 .26 .57 .24
Median HHI liabilities .46 .28 .23 .26 .41 .24 .41 .18 1 0 .6 0
Core size (% banks) 22.2 42.6 22.5 34.9 2.7 15.5 5.3 1.6 16.7 9.3 7.5 10.9
Error score (% links) 11.8 4 22 2.9 27.5 34 1 4.2 22.2 48.8 13.4 52.9

Number of slices 10 3 3 3 2 3 4 3 1 3 10 3

Note: The table shows the average over all network slices available (bottom row). The definitions of the metrics are given in Appendix C.

Figure 1 provides scatter plots showing the relationships between the size of interbank

networks and their density, market diversity, and core-size. We measure a network’s size as

the logarithm of the number of nodes it has. We measure market diversity as the inverse

of the Herfindahl-Hirschman Index (HHI) for interbank assets and liabilities (Baumgärtner,

2004). We readily note the following: large interbank networks tend to have a low density,

a low diversity, and only a small number of financial institutions in the core. One inter-

pretation for these results is that interbank networks are tiered networks. Additionally, we

observe that in general, the larger the network, the more pronounced is the tiering: only a

few – core – financial institutions are tightly interlinked, and intermediate on behalf of all

other financial institutions.7

7Formally exploring the tiering structure of interbank and, indeed, other types of networks is beyond the
scope of this paper, and we leave it as possible future work.
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Figure 1: Relationships between network size and selected network characteristics
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3 Network reconstruction methods

The number of new financial network reconstruction methods is growing rapidly. We con-

centrate on seven, which we selected early on in the process after a comprehensive search

of published methods. The most important selection criteria are, first, that the method

should be able to reconstruct the network based only on aggregate positions and, second,

that the code can be fitted in our modular suite of Matlab codes.8

The methods can be broadly classified into two categories. The first one, labeled

‘Iterative,’ starts with an initial guess for the network. The entries in the network are

then repeatedly re-scaled until the aggregate positions satisfy their targets (henceforth,

referred to as the ‘marginal constraints’). The methods in this category differ in their initial

assumptions regarding the structure of the network. The three methods in this category have

the following mnemonics: Bara, Dreh and Maxe. The second category, labeled ‘Sampling,’

consists of methods that use Monte Carlo sampling and other heuristics to generate financial

networks. There are four methods in this category: Anan, Cimi, Hala and Musm. Table

4 provides an overview of the seven methods included followed by short descriptions. Full

technical details are provided in Appendix B. Note that in our implementation Anan, Bara,

Hala and Maxe generate only single reconstructed networks while Cimi, Dreh and Musm

produce a series of reconstructed financial networks (i.e., ensembles).

Anan reconstructs networks with the smallest number of links, while still satisfying the

marginal constraints. Additionally, the method shapes the network to be disassortative, i.e.,

banks with large aggregate positions will be linked to banks with small aggregate positions.

Bara consists of three steps. First, the aggregate positions for the financial institutions

are fitted to a multivariate copula distribution. Second, financial networks are sampled from

the copula. Finally, the rows and columns of the sampled networks are re-scaled until the

marginal constraints are satisfied. The re-scaling is achieved using the Maxe method.
8The full set of codes, our results, and the networks descriptives are available at https://github.com/

imanvl/RTF_NTW_Horse.git.
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Table 4: Overview of network reconstruction methods

Authors Code Category Description

Anand et al. (2015) Anan Sampling Minimises the number of links
necessary for distributing a given
volume of loans

Baral and Fique (2012) Bara Iterative Exposure sizes drawn from a copula
fitted to the aggregate exposures of
all banks

Cimini et al. (2015) Cimi Sampling A fitness model determines the
likelihood of directed linkages and
exposures

Drehmann and Tarashev (2013) Dreh Iterative Postulates that the network should
have a core of banks with large
exposures between themselves, and a
periphery of other banks with smaller
exposures

Halaj and Kok (2013) Hala Sampling Links are drawn at random, where all
links have an equal probability, and
exposures are assigned according to
an iterative procedure

Upper and Worms (2004) Maxe Iterative The standard maximum-entropy
method

Musmeci et al. (2013) Musm Sampling A fitness model determines the
likelihood of undirected linkages, and
exposures are allocated via Maxe

In Cimi, the probability for a link between any two banks increases in their pre-

specified ‘fitness scores’. The method proceeds in two steps. First, a directed (binary)

network of links between institutions is generated based on their fitness scores. The weights

are then assigned to the links, also according to the fitness scores. Importantly, the marginal

constraints are only binding on average. Thus, while marginal constraints may be violated

for individual network realizations, the constraints will be binding when we average over a

large number of network realizations.

Dreh generates networks with ‘core-periphery’ structures.9 As an initial guess for the

network, the method assumes there are a few institutions (the core) with large exposures

between themselves. Other institutions (the periphery) have smaller exposures, and tend

to link to core institutions. These initial networks are re-scaled using the Maxe method.

Hala samples links between institutions, where all links are ex-ante assumed to be

equally likely. The exposure that is allocated to the link between institutions i and j is
9The core-periphery model was first proposed by Craig and von Peter (2014). See in ’t Veld and van

Lelyveld (2014) for a cross-country comparison.
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equal to institution j’s aggregate position scaled by a term drawn at random from the unit

interval. The method iterates until all aggregate position constraints are satisfied.

Maxe is the basis for all other iterative methods. In the initial guess network, institu-

tion i’s exposure to institution j is the product of i’s aggregate interbank asset position and

institution j’s aggregate interbank liability position. This network is subsequently re-scaled

by the aggregate positions, first along the rows and then the columns, until the aggregate

position constraints are satisfied. Bacharach (1965) proves that, as long as the initial net-

work is ‘connected,’ the re-scaling always yields a unique network that satisfies the marginal

constraints. A connected network is one where each financial institution has at least one

link with another institution.

Finally, the Musm method is similar to Cimi in that the probabilities of observing links

are based on fitness scores in both methods. However, in Cimi, the underlying adjacency

matrix is directed, while for Musm it is undirected. Further, the assignment of exposures

under Musm follows the Maxe method, while for Cimi it does not.

4 The horse race

The financial network data we consider are confidential, and their sharing is restricted.

To overcome these restriction, we devise a de-centralized approach to run the horse race

of network reconstruction methods. In particular, a suite of codes is applied within a

jurisdiction by participating researchers, who report the results to the wider group. The

suite consists of two parts: network reconstruction and similarity estimation. We treat each

one in turn.
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4.1 Procedure

We focus on reconstructing networks when the only information available is on the aggregate

positions. These reconstructed networks are then compared with the true networks, also

available to us. While restrictive, using only the aggregate positions ensures that we treat

all the methods equally. For each jurisdiction, we first select the market and a particular

date, and subsequently perform the following:

• Compute aggregate positions for financial institutions

• Reconstruct the network based on the aggregate positions using the seven methods

• Compare the reconstructed networks with the true one and compute similarity scores

Members shared the similarity scores and the descriptives for the true networks across

jurisdictions. As described below, the similarity measures are aggregate statistics from

which the true financial networks cannot be inferred.

4.2 Similarity measures

We consider six similarity measures, where the first five can be classified into two groups:

link-based and exposure-based. Link-based measures capture whether the presence or ab-

sence of a link in the true network is reproduced in the reconstructed network. We consider

three measures in this category: (i) Hamming distance, (ii) Jaccard score, and (iii) Accu-

racy score. Exposure-based measures, on the other hand, take into account the size of links

and check whether these have been faithfully reproduced. We consider two measures in this

category: (i) Cosine measure and (ii) Jensen score.

Our sixth measure is based on DebtRank, which is a model for interbank contagion

(Battiston et al., 2012). The DebtRank for a particular financial institution is a measure

of the aggregate interbank assets of all institutions that are at risk from the failure of the
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single institution. We order all financial institutions based on their DebtRank scores and

compute the rank correlation between the ordering of institutions in the true network versus

the reconstructed networks.

Table 5 provides an overview of the measures, along with a brief description. Note

that for consistency, we have re-based the Hamming and Jensen measures so that, for all

metrics, higher values correspond to greater similarity. In what follows, we report on the

average values for the similarity measures over the time horizon of true network observations

for each jurisdiction.

Table 5: Similarity measures

Metric Category Description Range

Hamming Link Sum over all links of the difference between the
original and reconstructed networks

[0, ∞)

Jaccard Link Inverse of the number of links belonging to the
original and reconstructed networks divided by the
number of links that belong to at least one network

[0,1]

Accuracy Link Percentage of true-positive and true-negatives
links in the reconstructed network relative to the
original network

[0, 1]

Cosine Exposure Cosine of the angle between the original and re-
constructed networks

[0, 1]

Jensen Exposure Jensen-Shannon divergence between original and
reconstructed networks, normalizing all entires in
the networks to sum up to one

[0, ∞)

4.3 Summary of results

We begin by comparing the outputs of the different network reconstruction methods using

standard network-based measures (a full summary of these measures is provided in Appendix

C). Figure 2 provides a heat-map that compares the density of the true networks with the

reconstructed networks for all jurisdictions and markets. The performance of each method

is measured by how close its color matches that of the actual network (first row). Not

surprisingly, there is a large variation among jurisdictions from dense to sparse networks.
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From the estimated matrices, we observe that Anan, Cimi, Hala and Musm tend to estimate

sparse networks for most jurisdictions, while Bara, Dreh and Maxe estimate denser networks.

Figure 2: Density

Note: Density is defined as the number of realized links over the total number of possible links (excluding
self loops). The cells are shaded according to the relative density ranging from green to red.

A similar broad classification of results can be seen for borrower dependency (Figure

3), which measures the reliance of individual banks on their largest creditor. The larger the

borrower dependency, the more concentrated the network is. Once again, the Anan, Cimi,

13



Hala and Musm methods produce more concentrated networks than the Bara, Dreh and

Maxe methods.

Figure 3: Borrower dependency

Note: Borrower dependency is defined as the average of the market share of the largest borrower over total
borrowing and lending. The cells are shaded according to the relative borrower dependency ranging from
green to red.

Further insights into the performance of the different methods can be gained from

the estimates for the true links, i.e., links that are present in the true and reconstructed

14



networks, and true non-links, i.e., links that are absent in both the true and reconstructed

networks. As Figure 4 demonstrates, the Bara, Dreh and Maxe methods are successful in

identifying links among banks that are present in the original networks. This is a conse-

quence of the methods estimating complete networks.

Figure 4: Percentage of true-links

Note: true-links are defined as the percentage of realized links also found in the reconstructed network. The
cells are shaded according to the relative true-links ranging from green to red.
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On the other hand, the Anan, Cimi, Hala and Musm methods correctly identify which

links are absent in the original networks (high values in Figure 5). This stems from the fact

that these three methods tend to produce sparse networks. However, in sum, the accuracy

of the various partial network methods is ambiguous, as it weighs both true links and true

non-links equally.

Figure 5: Percentage of true non-links

Note: true-non links are defined as the percentage of absent links also not present in the reconstructed
network. The cells are shaded according to the relative true-links ranging from green to red.
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4.4 Horse race league table

In presenting our results we face the challenge that some algorithms produce an ensemble

of networks while others produce a single matrix. This makes a straightforward comparison

difficult. Fortunately the Cimi method is the clear winner between the ensemble methods.10

The horse race results for methods that produce unique networks are summarized in

Table 6.11 Each row corresponds to a different network. The last six columns indicate the

‘winning’ methods for each of the different similarity measures. If, however, there was no

clear winner, i.e several methods performed equally well, then the cell has been left blank.

The winner in Table 6 crucially depends on the feature of the network that we are

most keen to preserve. This, in turn, is reflected by the choice of the similarity measure.

If, for example, we are focused on reproducing the structure of links, then from the link-

based similarity measures – Hamming distance and Accuracy score – we note that Anan

is the clear winner across all financial networks with Hala as the runner up. The Anan

method seeks to minimise the number of links required to allocate the aggregate positions

of all financial institutions. The method, thus, focuses on reducing the incidence of false-

positives, i.e., reconstructing a link that is not present in the true network. This, however,

may be countered by a higher incidence of false-negatives, i.e., not reconstructing a link

when it is present in the true network. However, as the results suggest, the Anan method’s

ability to reduce the number of false-positives gives it a clear advantage over the other

methods under link-based similarity measures.

If we focus on reproducing the structure of bilateral exposures, then from the exposure-

based similarity measures – Cosine and Jensen – an altogether different picture emerges.

These metrics compare the allocated exposure sizes in the reconstructed networks with the
10It is worth noting that both the Anan and Hala methods can also be extended to produce ensembles of

networks. However, for our analysis, we focus on the cases of single realizations.
11For each network, we first compute the average over all available time slices and then we run the horse

race. We also tabulate the results if we first run the race for each available slice and then find the mode
across slices. The latter results are not materially different.
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Table 6: Horse race results for deterministic methods

Country Type Code Hamming Accuracy Jaccard Cosine Jensen DebtRank

BIS IB BIS1 maxe maxe bara
Brazil IB BR01 anan anan hala maxe hala maxe

PAY BR02 anan anan bara bara bara
Canada IB CA01 maxe maxe maxe
Germany IB DE01 anan anan anan maxe hala maxe
Denmark IB DK01 hala hala maxe maxe

REP DK02 anan anan anan hala anan
Eurozone IB EU01 anan anan maxe bara hala
Hungary IB HU01 anan anan maxe maxe bara

OTH HU02 anan anan anan maxe maxe anan
Italy IB IT01 anan anan anan maxe hala bara
Korea IB KR01 maxe bara maxe
Mexico IB MX01 anan anan bara bara bara

REP MX02 anan anan hala bara anan bara
IB MX03 anan anan maxe anan maxe
OTH MX04 anan anan bara bara bara
CDS MX05 anan anan maxe maxe maxe
IB MX06 anan anan hala bara anan maxe
PAY MX07 hala hala maxe bara bara
PAY MX08 anan anan maxe maxe bara
PAY MX09 hala hala maxe maxe bara

Nethlerlands IB NL01 anan anan anan maxe anan bara
UK CDS UK01 anan anan anan maxe maxe *
US PAY US01 hala hala anan bara hala bara

CDS US02 hala hala anan maxe hala *

Note: for each network we first compute the average over all available time slices and then we run the horse
race. If two or more methods win jointly then we leave the cell blank. For the CDS networks we have no
results for the DebtRank metric (marked with an *) because capital buffer data is not available. We do not
include a similar table for the probabilistic methods, since Cimi is the clear winner.
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true networks. For the Cosine measure, we find that the Bara and Maxe methods perform

best across all networks. There are two possible explanations for this result. First, for many

of the financial institutions in each data market, a large fraction of the links are of an equal

size. Second, the average link size is roughly similar to the aggregate exposure divided by

the number of financial institutions. For the Jensen score, we find that the Maxe method

is the clear winner.

Finally, for the DebtRank correlation measure, we find that the Bara method is the

winner, with Maxe coming in as a close second. Insofar as both these methods are also the

top performers for the exposure-based similarity measures, this suggests that the DebtRank

contagion mechanism does not depend so much on the pattern of linkages, but rather on

exposure sizes.

5 Conclusions

Capturing financial network linkages and interbank contagion in stress-test models are

important goals for central banks tasked with oversight of macro-prudential policy. The

operationalization of these models, however, requires granular financial network data, which

is often unavailable. In this paper, we conduct a horse race of methods to reconstruct

financial networks from partial data. The winner of the horse race depends on the network

feature we are most keen on reproducing.

As such, we derive the following rules of thumb: focusing – first – on deterministic

methods, if we seek to preserve the structure of links and expect the network to be sparse,

then Anan is the best performing method. If, however, we are more interested in reproducing

the structure of exposures, then Bara or Maxe tend to be the best performers. Finally, if

our emphasis is more on financial stability, in that we seek to maximize the rank correlation

of DebtRank scores, we find that Bara is the winner. Second, if our focus is on probabilistic

methods, we find that Cimi is the clear winner across all measures of interest.
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A byproduct of our horse race is the collation of summary statistics – both point

estimates and distributions – for a wide range of financial networks.12 Consistent definitions

for the network statistics are used and computed for the different networks. This, in turn,

facilitates a meaningful comparison of the different networks, which was previously not

possible. For many networks, we also collect up to 12 consecutive snapshots. Such data may

be of use to the wider financial network research community, who could use our statistics

to generate realistic networks for their own research.

12As mentioned, the full set of codes, our results, and the networks descriptives are available at https:
//github.com/imanvl/RTF_NTW_Horse.git
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A Summary of the data

In this appendix we provide a summary of all the financial markets analyzed. The data are

categorized according to their jurisdiction.

Bank for International Settlements The network constitutes the exposures between

different national financial systems in 2013Q4. We derive the network from the Interna-

tional Banking Statistics (IBS, locational by residency), which the Bank for International

Settlements (BIS) has been collecting since the late seventies (see the BIS website for further

details). The data has also been studied in a network context (e.g. Fender and McGuire,

2010; Minoiu and Reyes, 2013; Garratt et al., 2011).

Both domestically owned and foreign-owned banking offices with significant external

claims in the reporting countries report their on-balance sheet positions on other countries

split out by sector (residency concept). A wide range of claims is included (e.g., standard

loans and deposits, repurchase agreements, i.e., repos, and reverse repos, certificate of

deposits, financial leases, promissory notes, subordinated loans, debt securities, and equity

holdings and participations). Out of the possible reporters, data availability leads us to

include 21 countries.13

Brazil Two types of networks are analyzed: the interbank exposures and the national

payments system network.

Interbank exposures: This network is formed by exposures between banking or non-

banking financial institutions in the Brazilian interbank market and is analyzed by Cont

et al. (2010). These institutions are either financial conglomerates or isolated institutions

that do not belong to a conglomerate. Data are monthly, from January to December 2012.

These networks are formed by aggregating, without netting, the end-of-month interbank
13 Austria, Australia, Belgium, Canada, the Cayman Islands, Switzerland, Germany, Greece, Denmark

(excl. Faeroe Islands and Greenland), Spain, Finland, France (incl. Monaco), United Kingdom (excl.
Guernsey, Isle of Man and Jersey), Ireland, Italy, Japan, Luxembourg, Netherlands, Portugal, Sweden, and
the United States.
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market exposures for pairs of financial institutions, regardless of instrument and time to

maturity. The instruments included in these exposures are unsecured interbank deposit

operations (59% in volume), debentures (23%) and repos collateralized with securities issued

by the borrower (18%). The average number of market participants is 112 (maximum, 115).

They are sparse (maximum density is 4.3%)

Payments system: The Brazilian Payments System (BPS) provides services for the

settlement of obligations involving transfers of funds, securities and foreign currencies and

has previously been analyzed by Miranda et al. (2014). The system is segmented according

to the target market and the type of assets traded. The system component selected for this

study is the network of the Reserves Transfer System, which is an real-time gross settlement

system (RTGS) that provides the backbone of the BPS. The network participants are banks

that hold bank reserves accounts at the Central Bank of Brazil and non-banking institutions,

that hold, when authorized, settlement accounts. Daily snapshots are considered from

January 16th to 27th in 2012. These networks have, on average, 101 participants (maximum,

102). The payments networks are denser than the interbank ones (minimum density of the

period is 12.5%) and present more disassortative behavior.

Canada The networks considered are monthly observations of interbank exposures be-

tween the six Canadian domestic systemically important banks, from June 2014 to March

2015.14 The bilateral exposures are constructed by aggregating over six different interbank

instruments as reported by the banks: (1) bankers’ acceptances, (2) debt securities hold-

ings,(3) lending (drawn and undrawn), (4) over-the-counter derivatives (potential future

credit exposure), (5) repos (before collateral), and (6) deposits.

The total interbank exposures as a fraction of their Common Equity Tier 1 capital

ranged between 10% and 60% across bank-month pairs. The ratios of total interbank assets

to total (liquid) assets ranged between 0.7% (7%) and 4% (59%).15

14A description of the reporting standards can be found at http://www.osfi-bsif.gc.ca/eng/fi-if/
rtn-rlv/fr-rf/dti-id/Pages/imer.aspx.

15Liquid assets are defined as: cash, cash equivalents, t-bills and other short-term paper issued or guaran-
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Denmark Two types of networks are analyzed: overnight interbank loans and repo trans-

actions. Snapshots for both markets come from December 2011.

Overnight interbank loans: The network is constructed using data from the Danish

large-value payment system (Kronos) whose members include all Danish banks. This market

has previously been analyzed by Amundsen and Arnt (2012). An algorithm similar to

Furfine (1999) is used to in order to isolate transactions connected to the deliveries and

returns of overnight money market loans.

Repo transactions: Major firms, including financial institutions, are required to report

their end-of-month outstanding repo agreements vis-à-vis every other domestic institution.

Repos with foreign institutions are reported on an aggregate basis. The network considered

is thus the net bilateral repo exposure (excluding collateral) between Danish banks.

Eurozone The network constitutes bilateral exposures between the 26 largest banking

groups that are domicile in the Eurozone. A banking group’s size is measured in terms

of its aggregate trading securities position, which includes long- and short-term debt and

equity. The data are derived from the Securities Holding Statistics Group (SHS-G) database.

The SHS-G data specifies the portfolio for each banking group at the level of individual

securities. The quarterly slices span from September 2013 through December 2015.

Netherlands The network is constructed using data on bilateral transactions gleaned from

the TARGET 2 large-value payment system on April 6th 2010. This was a typical day

without any stress or extraordinary operational event. For this exercise we focus on the

overnight market and thus leave out all longer maturity loans. Building on Furfine (1999),

Arciero et al. (2016) have developed a methodology to identify loans with price and maturity

information. The transaction-level data set thus has the time, volume and price of all

transactions involving at least one Dutch bank. This data has been analyzed further in

Blasques et al. (2015).

teed by Canadian governments. Note that, even though the full network is complete at the aggregate level,
there is some variation in the strength of the interlinkages between banks at an instrument level.
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Germany Quarterly data from March 2013 to December 2015 is used on interbank loans in

the German banking system. The network consists of German banks with total assets above

1 billion euros on a consolidated basis at the respective reporting date. Those banks capture

approximately 95% of the total assets of the German banking system. The data is derived

from the national credit register, which includes bilateral exposures covering loans, bonds,

derivatives and guarantees. Until the end of 2014, only exposures above 1.5 million euros

based on the group of borrowers were reported, while the respective reporting threshold

was lowered to 1 million euros at the beginning of 2015. The data previously been analyzed

by Anand et al. (2015).

Hungary Two types of networks are considered: interbank deposits and currency swaps.

Interbank deposits: The Hungarian interbank deposit market is the main market for

Hungarian banks to manage their liquidity and the only market where they have direct

credit risk against each other. The Central Bank of Hungary has been collecting data on

this market since 2003. The dataset contains detailed information on every transaction

(e.g., the name of both counterparties, the start and end dates of the transaction, the size

and the interest rate of the transaction). Twelve consecutive monthly networks from July

2007 to June 2008 are considered.

Currency swaps: Ten monthly snapshots of FX swap transactions from June 2007 to

April 2008 are considered. This market is one of the most important Hungarian financial

markets. The Central Bank of Hungary obliges Hungarian credit institutions to report all of

their foreign currency related transactions including FX swaps. The majority of the foreign

currency contracts are US dollar denominated (roughly 82%) and a minor proportion in

euros (roughly 15%) and Swiss Francs (less than 3%).

Korea The interbank exposures are constructed using banks’ counterparty information

collected from the flow of funds and surveys on interbank transactions in 2012Q4. These

cover all the on-balance sheet items such as deposits, lending, repo transactions and debt
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issuance of all 18 domestic banks. However, only exposures with a remaining maturity

of less than three months are included. Thus these bilateral interbank exposures can be

suitable for analyzing the structure of short-term interbank transactions.

Italy Monthly data from December 2013 to September 2014 is used to gather data on

outstanding bilateral, unsecured, short-term interbank loans between banks domiciled in

Italy. Short-term interbank loans include overnight deposits, certificates of deposit, other

deposits and other borrowings.

Mexico Several networks are considered in the analysis: interbank exposures (unsecured

loans, FX transactions, derivatives transactions), repo transactions, cross holding of secu-

rities and payment systems flows. The networks were drawn for three different dates: 31st

October 2008, 28th June 2013 and the 30th June 2014. These networks have previously

been studied by Martínez-Jaramillo et al. (2014) and Poledna et al. (2015).

Interbank exposures networks: These networks are generated by aggregating unsecured

interbank loans, net positions from outstanding derivatives transactions and cross holding

of securities between pairs of banks.

Payment systems networks: The payment system flow networks are divided in three

different networks: the total flow, the large-value payments and the low-value payments

networks. In Mexico, the large-value payment system accepts both low-value and large-

value payments. The individual payment records include information on the purpose of the

payment. This means that the payment may be done between two banks for transferring

an unsecured interbank loan, this payment is classified as a large-value payment. On the

other hand, the payment may be the result of a money transfer between two clients in two

different banks, and this is classified as a small-value payment.

Outstanding derivatives exposures, outstanding interbank deposits, loans and credit

lines, outstanding call money transactions and cross holding of securities: These networks

can be seen as layers of the total exposures network.
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Outstanding repo loans: This network only considers the total amount of an outstand-

ing repo position between two banks. The collateral is not taken into account; this means

that the weight of the links is the total amount lent by one bank to another, considering all

the outstanding derivative transactions between them. This implies that many repo trans-

actions are consolidated in one link regardless of the type of security used as collateral, the

residual maturity or the premium.

United Kingdom The networks are created using Trade Information Warehouse data from

the Depository Trust and Clearing Corporation (DTCC). The data used pertain to trans-

actions among reporting counterparties on single-name CDS contracts where the reference

entity is a UK firm. A detailed description of the UK CDS market is provided in Benos

et al. (2013).

Two different types of networks are constructed from these data. First, for a selected

date at the end of June 2010, two networks of gross notional exposures are generated by

aggregating all outstanding trades across 1) 30% and 2) all reference entities, respectively.

Second, following Ali et al. (2016), four monthly snapshots of networks of notional exposures,

denominated in euro, from June 2010 to September 2010 are generated for CDS contracts

referring to the largest 66 reference entities.

Over time the number of counterparties varies between 331 and 345, and properties

such as network density, average degree, clustering coefficient and assortativity appear to

be stable. All networks considered have low density, small average degree and negative

assortativity.

United States Two networks are analyzed: the payments network and CDS network.

Payments network: Fedwire Funds is the RTGS system operated by the Federal

Reserve System. In Fedwire, payments are identified by the ABA number (routing transit

number) of the sender and receiver. Banks may maintain multiple ABA numbers for use

when sending and receiving payments. However, each bank must designate one of its ABAs
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as its “master” account. For this analysis, payments sent and received by sub-accounts are

attributed to the master account.

The data used to measure the importance of and size of each participant is the net

debit cap (i.e., maximum allowable uncollateralized daylight overdraft), which is only avail-

able at the master account level. The Federal Reserve calculates the net debit cap by

multiplying a bank’s qualifying capital by its appropriate cap multiple.16

Fedwire participants without net debit caps are excluded from the analysis. Partici-

pants with a net debit cap of 0 are included; this cap indicates that a bank should not incur

any daylight overdrafts. During the week of the sample period, at least one payment was

sent or received by 5722 unique master accounts.

CDS network: Positions on CDS exposures over three weekly snapshots covering

September 5, 12, and 19, 2014 are used in this exercise. Our sample includes both centrally

cleared and bilateral contracts. The data are obtained from DTCC, which makes its Trade

Information Warehouse available to the Office of Financial Research under a written agree-

ment. Positions used in this study include all exposures on single-name and index CDS

contracts where the reference entity is US-domiciled (in the case of single names) or North

American domiciled (in the case of indices), or where at least one of two counterparties is

US-domiciled. On any given date, approximately 900-1000 counterparties trade positions on

3,500 to 4,000 underlying reference entities. From this data we have constructed a complete

network of counterparty exposures.

B Network reconstruction methods

The standard approach in the literature is to estimate the matrix of bilateral links (denoted

by X) by the so-called maximum entropy method (Upper, 2011, Elsinger et al., 2013).
16There are several levels of cap multiples, detailed at www.clevelandfed.org/banking/ credit_risk_

management/payment_system_risk/net_debit_cap.cfm.
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This entails maximizing the entropy function −
∑

i,j Xij log (Xij/Qij) subject to constraints

(typically a firm’s total assets, Ai, and liabilities, Li, to all other participants), relative to

prior information (Qij) on bilateral exposures, if available. As entropy is a measure of

probabilistic uncertainty, this approach is optimal when selecting a probability distribution

in the sense of using least information (MacKay, 2003). Entropy optimization is widely

used across disciplines (Fang et al., 1997), and can be implemented by efficient iterative

algorithms, which can be generalized to handle additional constraints (Blien and Graef,

1997, Elsinger et al., 2013).

B.1 Anan

In Anand et al. (2015), the authors propose an approach which combines information-

theoretic arguments with economic incentives to produce networks preserving the realistic

characteristic of interbank networks. The authors argue that interbank networks are sparse

given that interbank activity is based on relationships. The Minimum Density (MD) ap-

proach is formulated as a constrained optimization problem. Let c represent the fixed cost

of establishing a link, N be the number of banks, X the matrix of bilateral gross expo-

sures, Xij represents the exposure of bank i to bank j, the aggregated interbank assets of

bank i are
∑N

j=1 Xij and its aggregated liabilities are
∑N

i=1 Xij . Then the MD approach is

formulated as:

min
x

c
N∑

i=1

N∑
j=1

1{Xij>0}, s.t.

N∑
j=1

Xij = Ai ∀i = 1, 2, . . . , N

N∑
i=1

Xij = Aj ∀j = 1, 2, . . . , N

Xij > 0 ∀i, j where integer function 1 equals one only if bank i lends to bank j, and

zero otherwise. This problem, however, is computationally expensive to solve. The authors

propose a heuristic to solve this problem, which involves the smooth value function, V (X),
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which is high whenever the network X has a few links and satisfies the asset and liability

constraints. The second input is the set of prior beliefs, Qij , which assumes that each small

bank prefers to match its lending and funding needs for a large bank (dissasortative mixing).

B.2 Bara

In Baral and Fique (2012), the authors use a bivariate copula to estimate adjacency matrices.

A copula is a multivariate distribution where the complex interdependencies between banks

can be easily summarized using marginal distributions.

The copula is constructed as follows. First, the authors assume the copula to be of

the Gumbel type, which is often used in extreme value theory. The authors construct the

empirical distribution for the aggregate lending and borrowing of banks using the available

data. This distribution is transformed into a copula using a maximum-likelihood method.

The copula density function is

cΘ(Ai, Aj) = exp
(
−

[
(− ln Ai)Θ + (− ln Aj)Θ

])Θ

where Θ is the estimated dependency parameter. The copula matrix is the prior fed into the

maximum entropy method. The exposures are then re-scaled to ensure that the aggregate

lending and borrowing constraints for each bank are satisfied.

B.3 Dreh

Drehmann and Tarashev (2013) generate a series of high-concentration networks by per-

turbing the network produced by the maximum entropy method. The authors begin with

the standard prior assumption that the exposure between banks i and j is equal to AiLj .

They subsequently treat each element of the prior matrix Qij as a uniformly distributed

random variable over the interval [0, 2AiLj ]. After generating a series of prior matrices, the
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authors use the standard maximum entropy to rescale and determine the exposures.

B.4 Hala

Halaj and Kok (2013) introduce an iterative algorithm to generate a series of networks. At

the initial step 0, the matrix X0 has all entries equal to 0 and the unmatched interbank

assets and liabilities are initiated as A0 : = A and L0 : L. At a step k + 1 a pair of banks

(i, j) is drawn at random, where all pairs have an equal probability of being selected. Next,

a random number f is drawn from the unit interval and indicates the percentage of bank

i’s liabilities that are serviced by bank j. The exposure Xk+1
ij is updated as follows:

Xk+1
ij = Xk

ij + fk+1 min{Li
k, Ak

j }

and the unmatched assets and liabilities is:

Lk+1
i = Lk

i −
N∑

j=1
Xk+1

ij and Ak+1
j = Ak

j −
N∑

i=1
Xk+1

ij

The stock of interbank liabilities and assets reduces as the volume of the assigned (matched)

placements increases. The procedure is repeated until no more interbank liabilities are left

to be assigned as placements from one bank to another.

B.5 Cimi

Cimini et al. (2015) present a model that is similar to the Musm method of Musmeci

et al. (2013), but with some important differences. First, both methods generate adjacency

matrices from so-called fitness models. However, in Musm the matrices are undirected, while

for Cimi, they are directed. Second, for assigning the exposures, Musm utilizes the Maxe

methods. While in Cimi, the exposure assignment also follows a fitness model. Importantly,

the aggregate exposure constraints are not always satisfied for individual reconstructed
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networks under Cimi. Instead, the constraints are binding only when we take an average

over a large number of reconstructed networks.

B.6 Musm

Musmeci et al. (2013) develop a bootstrap method to reconstruct financial networks. At

the core of their method is a ‘fitness’ model, which postulates that the probability of a bank

acquiring links is proportional to its fitness. Formally, if banks i and j have fitness fi and

fj , then the probability for a link between the two banks is

Qij = zfifj

1 + zfifj
,

where the endogenous parameter z captures how binding the aggregate exposure constraints

will be.

The method proceeds as follows. First, from the aggregate lending and borrowing

constraints of banks, the parameter z is estimated. Second, using the probabilities pij , a

series of adjacency matrices are sampled. Finally, the exposures are determined using the

standard maximum entropy method.
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C Description of metrics

Table 7 reports the network statistics we compute for the original networks.

Table 7: Summary of network statistics

Metric Short Description

Number of links Number of undirected links in the network

Density Number of undirected links as a percentage of the total number of
links (excluding self-loops)

Average degree Average of undirected links of the nodes in the network

Median degree Median of undirected links of the nodes in the network

Assortativity Preference for a network’s nodes to attach to others that are similar.
Here, similarity is expressed in terms of a node’s degree. A high
assortativity implies that highly connected nodes tend to be
connected with other high degree nodes

Clustering The degree to which nodes in a graph tend to cluster together. In a
undirected setting, this is defined as the number of closed triplets
(any three nodes with links between all three) over the total number
of triplets (also including triplets with one link missing)

Lender /
borrower
dependency

Average of the market share of the largest borrower or lender,
respectively, over total borrowing and lending.

HHI Herfindahl-Hirschman concentration index (mean and median) of
both assets and liabilities. It is defined as the sum of the squared
“market shares”.

Core size Percentage of banks classified as belonging to the core

Error score The percentage of the actual links in violation of the perfect
core-periphery structure
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