Working Paper Series
No 38 / March 2017

Flight to liquidity and
systemic bank runs

by
Roberto Robatto

*
*

* K

**x | ESRB
* | European Systemic Risk Board

European System of Financial Supervision



Abstract
This paper presents a general equilibrium, monetary model of bank runs to study monetary injections during
financial crises. When the probability of runs is positive, depositors increase money demand and reduce
deposits; at the economy-wide level, the velocity of money drops and deflation arises. Two quantitative
examples show that the model accounts for a large fraction of (i) the drop in deposits in the Great
Depression, and (ii) the $400 billion run on money market mutual funds in September 2008. In some
circumstances, monetary injections have no effects on prices but reduce money velocity and deposits.
Counterfactual policy analyses show that, if the Federal Reserve had not intervened in September 2008, the

run on money market mutual funds would have been much smaller.
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1 Introduction

The bankruptcy of Lehman Brothers in September 2008 was followed by a flight to safe and lig-
uid assets and runs on several financial institutions. For instance, Duygan-Bump et al. (2013) and
Schmidt, Timmermann, and Wermers (2016) document a $400 billion run on money market
mutual funds. In response to these events, the Federal Reserve implemented massive monetary
interventions. Flight to liquidity, runs, and monetary interventions characterized the Great Depres-
sion as well, although the response of the Federal Reserve was more muted at the time and the US
economy experienced a large deflation (Friedman and Schwartz, 1963).

Despite the interactions between bank runs, flight to liquidity, and monetary policy interven-
tions, very few models analyze the interconnections among these phenomena. Most of the
literature on banking crises assumes that banks operate in environments with only one real good,
without fiat money. While this approach is useful for many purposes, in practice banks take and
repay deposits using money, giving rise to non-negligible interactions with monetary policy

choices.!

'Few other papers deal with this observation. I review this literature in the next section.



To fill this gap, I present a general equilibrium model of fundamental-based bank runs with
money. If the fundamentals of the economy are strong, runs do not arise in equilibrium and the
outcomes in the banking sector look very similar to the good equilibrium in Diamond and Dybvig
(1983). If instead the fundamentals of the economy are weak, the equilibrium is characterized by
runs on many banks (i.e., systemic runs). Runs are associated with a flight to liquidity (i.e., an
increase in money demand and a drop in deposits), deflation, and a drop in money velocity.

My objective is to use this model to study the effects of monetary injections on prices and
allocations during systemic crises. To highlight the mechanics and transmission mechanisms of
monetary injections, I make some stark assumptions to keep the model simple and tractable. In
particular, output is exogenous, prices are fully flexible, and, in the baseline model, depositors’
preferences are locally linear. In this way, my results can be easily be compared with classical
monetary models such as Lucas and Stokey (1987).

The main result of the paper is related to the analysis of temporary monetary injections, that
is, injections that are reverted when the crisis is over. I argue that these findings are important for
the analysis of actual financial crises because several monetary policy interventions implemented
during both the Great Depression and the Great Recession episodes are best characterized as tem-
porary. In the model, temporary monetary injections produce unintended consequences during a
crisis: a reduction in money velocity and an amplification of the flight to liquidity. In the baseline
model, the drop in velocity exactly offsets the direct effect of the monetary injections, and thus
nominal prices are constant.

The unintended consequences of temporary monetary injections are related to the role of money
in the microfoundation of the model. To understand this role, recall first the structure of typical
three-period, bank-run models (t = 0, 1, 2) without money, such as Diamond and Dybvig (1983),
Allen and Gale (1998), and Goldstein and Pauzner (2005). In these models, households deposit all
their wealth into banks at ¢ = 0. This is the case no matter whether depositors assign, at t = 0,
zero probability to runs at t = 1 (as in Diamond and Dybvig, 1983) or a positive probability (as in
Allen and Gale, 1998, and Goldstein and Pauzner, 2005). In contrast, there is an explicit role for
fiat money in my model, and households deposit all their money at ¢ = 0 only if the probability
of a run is zero. If the probability of runs is instead positive, households keep some money in
their wallets. In this case, households’ money demand depends on its opportunity cost, which is
represented by the return paid by productive assets.

To understand the effects of a temporary monetary injection, it is useful to deconstruct it into
two separate interventions. A temporary monetary injection is the “sum” of (1) a permanent mon-
etary injection implemented during a crisis, and (ii) a permanent reduction of money supply, of
the same size, implemented when the crisis is over. The second intervention is fully anticipated

because the central bank announces a temporary monetary injection.



A permanent monetary injection implemented during a crisis has standard effects: it does not
affect velocity, and thus, current and future prices increase one-for-one with the injection. A
permanent reduction of money after the crisis would have similar effects if it were completely
unanticipated; that is, it would permanently reduce prices after the crisis. However, the reduction
of money after the crisis is anticipated, and thus, it also produces effects while the crisis is still
unfolding, before its implementation: a reduction of prices, a reduction of money velocity, and an
amplification of the flight to liquidity.

To understand the effects that arise from the anticipation of the future contraction of money,
recall that such contraction reduces future prices thereby creating expectations of a future defla-
tionary pressure. A standard effect of a future, anticipated deflationary pressure is the reduction
of the opportunity cost of holding money today.> Therefore, households increase money holdings
during the crisis by reducing deposits; that is, they amplify the flight to liquidity. In addition,
velocity and prices drop during the crisis, due to the negative relationship between the flight to
liquidity, on the one hand, and velocity and prices, on the other hand.’

The force that amplifies the flight to liquidity is absent in non-crisis times. In particular, the
effects of a permanent reduction of money after a crisis differ from the effects of the same interven-
tion implemented in an economy with zero probability of runs. Without runs, households deposit
all their money at banks, and thus, hold no money in their wallets to economize on the opportu-
nity cost of holding money. In this context, a deflationary pressure does not change households’
incentives to hold no money in their wallets, as long as this pressure is small enough so that the
opportunity cost of holding money remains positive.

A key element that governs the magnitude of the response to a temporary monetary injection
is households’ elasticity of money demand with respect to its price (i.e., with respect to the op-
portunity cost of holding money), which is in turn affected by households’ preferences. In the
baseline model, I use simple preferences that imply no change in prices in response to a temporary
monetary injection. As a result, the only effects of such intervention are an amplification of the
flight to liquidity and a reduction of velocity. I then analyze the robustness of the results to a model
with standard preferences, although I have to rely on numerical analysis. Temporary monetary
injections still reduce velocity and, depending on the size of the monetary injection, amplify the
flight to liquidity. In addition, temporary monetary injections increase nominal prices but do so
less than one for one, due to the endogenous reduction in velocity. Therefore, the model with

standard preferences is characterized by a lower degree of monetary non-neutrality in response to

?In classical monetary models, an adequate, fully anticipated, constant deflation rate entirely eliminates the oppor-
tunity cost of holding money thereby achieving the Friedman rule.

3The negative relationship between flight to liquidity on the one hand and velocity and prices on the other hand is
exemplified by the fact that velocity and prices are low when fundamentals are weak and depositors fly to liquidity,
whereas velocity and prices are high when fundamentals are strong and depositors do not fly to liquidity.



temporary injections.

In the final step, I provide some results about the magnitude of the unintended consequences
of temporary injections during actual crises, specifically the Great Depression and the 2008 crisis.
Since the model is very simple, I refer to these analyses as quantitative examples. First, I com-
pare the model with the Great Depression and show that it accounts for about three-quarters of the
drop in deposits between 1929 and 1933. Second, I demonstrate the relevance of the model (with
standard preferences) to the Great Recession by showing that some monetary injections produce
an equilibrium with runs and flight to liquidity but no deflation, consistent with stylized facts of
the 2008 crisis.* The model accounts for almost half of the $400 billion run on money market
mutual funds documented by Duygan-Bump et al. (2013) and Schmidt, Timmermann, and Werm-
ers (2016). In the most conservative calibration, counterfactual policy analysis shows that, if the
Federal Reserve had not set up facilities to provide liquidity to mutual funds, the run would have
been $141 billion smaller but deflation would have occurred. According to the model, the Federal
Reserve avoided deflation in 2008 at the expense of an amplification of runs and of the flight to

liquidity.

1.1 Additional comparisons with the literature

There are a few other papers that analyze monetary injections in the context of bank runs. However,
these papers differ from mine in important ways.

A first set of papers analyze monetary injections in the context of bank runs driven by funda-
mentals. Allen and Gale (1998), Allen, Carletti, and Gale (2013), and Diamond and Rajan (2006)
study how monetary policy should respond to aggregate shocks when deposit contracts are nom-
inal and thus not contingent on the price level. However, crises in these models do not produce
flight to liquidity in anticipation of runs or deflation, and small monetary injections may actually
generate inflation.” As a result, the main focus of these papers is not on deflation or flight to
liquidity, but on other aspects of banking crises. Allen and Gale (1998) and Allen, Carletti, and
Gale (2013) emphasize that nominal deposit contracts allow the economy to achieve the first best
in response to aggregate shocks under an appropriate monetary intervention, even if the contracts
are not contingent on the realization of the shocks. In contrast, there are only idiosyncratic shocks
in my model, and thus, the denomination of deposits does not play any role. Diamond and Rajan

(2006) emphasize the comparison between deposits denominated in foreign vs. domestic currency.

“Between September and December 2008, core inflation was approximately constant at around 2%. To simplify
the analysis, I look at the scenario in which monetary injections in the model produce price stability, rather than 2%
inflation. All results can be extended to a richer model in which anticipated inflation equals 2%.

SDiamond and Rajan (2006) sketch an extension of their model in which runs are associated with deflation. How-
ever, this extension is not central in their analysis and they do not analyze monetary injections in the extended model
with deflation.



In Antinolfi, Huybens, and Keister (2001), agents deposit all their initial wealth into banks, and as
a result, the model does not produce any flight to liquidity, too. Their focus is on determining the
optimal interest rate on central bank lending in response to aggregate shocks.

A second set of papers (Carapella, 2012; Cooper and Corbae, 2002; Martin, 2006; Robatto,
2015) present models in which monetary injections can eliminate bank runs driven by panics, in
the sense of multiple equilibria. Carapella (2012), Cooper and Corbae (2002), and Robatto (2015)
derive their results using general equilibrium models, whereas Martin (2006) analyzes a Diamond-
Dybvig, partial-equilibrium economy with money. I comment further on the two closest papers,
Cooper and Corbae (2002), and Robatto (2015).

In Cooper and Corbae (2002), depositors choose to hold some money in their wallets during
crises, as in my model. However, there are two important differences. First, their model is richer
than mine, and as a result, they focus solely on steady-states in which banks are either perpetually
well-functioning or malfunctioning. Second, their policy analysis does not consider temporary
monetary injections as I do, but only permanent ones. In contrast, my simpler model allows me to
study a scenario in which crises eventually end. Therefore, I can distinguish between temporary
and permanent injections, which is a crucial to obtain my results.

In Robatto (2015), I build an infinite-horizon, monetary model of bank runs driven by panics,
in the sense of multiple equilibria. In some circumstances, temporary monetary injections produce
unintended consequences as well;® however, the richness of that model — required to study multiple
equilibria in an infinite-horizon economy — hides the logic behind the effect of monetary injections.
Moreover, the main focus of that paper is to study the monetary policy stance that eliminates
multiple equilibria, similar to the main research question in Carapella (2012) and Cooper and
Corbae (2002).

The drop in money velocity that I obtain is also related to Alvarez, Atkeson, and Edmond
(2009), who show that monetary injections reduce velocity in a monetary model with segmented-
asset markets, abstracting from financial crises. However, the drop in velocity in my model is
related to the temporary nature of a monetary injection, whereas Alvarez, Atkeson, and Edmond
(2009) show that segmented asset markets are responsible for drop in velocity when a monetary

injection is permanent.

2 Baseline model: the core environment

This section presents the core environment without banks and Section 3 derives the equilibrium.

Section 4 extends this core environment by introducing banks. The objective is to present a very

5Thus, the unintended consequences of monetary injections are robust to the nature of the crisis, panic versus
fundamentals.



Figure 1: Preferences of impatient households
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simple framework that allows me to explain the intuition of the unintended consequences of mon-
etary injections. Section 6 presents a richer framework that relaxes some of the assumptions used
in the baseline model, showing that the main forces are still at work and can be quantitatively
relevant.

Time is discrete and there are three periods indexed by ¢ € {0, 1, 2}. The economy is populated
by a double continuum of households indexed by h € H = [0, 1] x [0, 1]; the double continuum is
required when introducing banks in Section 4.

The core environment combines preference shocks at ¢ = 1, in the spirit of Diamond and
Dybvig (1983), with a Lucas-tree, cash-in-advance economy. That is, cash is required to finance
consumption expenditure after agents are hit by preference shocks. As a result, a precautionary de-
mand for money arises at ¢ = 0, so that households can finance consumption induced by preference
shocks at ¢ = 1. In order to deal with money in a finite-horizon model, I introduce a technology to

transform money into consumption goods at t = 2.

2.1 Preferences

Let C" and C denote consumption of household h at t = 1 and ¢ = 2, respectively. Households’

utility depends on a preference shock that is realized at the beginning of ¢t = 1:

. u (CP) + BCY  (impatient household) ~ with probability £ .
utility = (1)

pCh (patient household) with probability 1 — x

7In a related paper (Robatto, 2015), I present an infinite-horizon model of banking that motivates this assumption.
That is, money has a continuation value because it can be carried over to the next period.



Figure 2: Timing of production and markets
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Note that both patient and impatient households derive linear utility from consumption at ¢ = 2.

The function u (-) is piecewise-linear, as represented in Figure 1:

6C if C <C —
u(C)=< _ . 6>1,C >0. (2)
6C+(C-C) ifCc>C

The assumption # > 1 captures impatience. If C' < C, the marginal utility at ¢ = 1is # > 1 and
thus larger than the marginal utility at ¢ = 2, which equals one. If instead C' > C, both marginal
utilities are one. This structure gives rise to an important driving force, namely, a desire to consume
at least C if h is impatient.®

The local linearity delivers neat results, in particular for policy analysis. Nonetheless, the main
results are robust to a more standard, smooth utility function. In this case, though, some analyses
can be performed only numerically. More discussion is provided in Section 6.

The preference shock is i.i.d. across households, and I assume that the law of large numbers
holds, so that the fraction of impatient agents in the economy equals k. Moreover, I assume that
the law of large numbers also holds for each subset of H with a continuum of households.® The

preference shock is private information of household h.

2.2 Assets, production and markets

There are two assets with exogenous supply: money and capital. The supply of money is M (1 + ;).

In this economy without banks, p; = 0 for all £; in Section 4, I introduce a central bank that can

8 Another way to understand the role of # > 1 is to note that u (-) is globally concave and thus households are
(globally) risk averse.
9This is consistent with the results of Al-Najjar (2004) about the law of large numbers in large economies.



inject money by choosing p; > 0. Money is the unit of account; thus, without loss of generality,
prices and contracts are expressed in terms of money.

Capital is in fixed supply K at t = 0. The fixed-supply assumption is made for convenience as
it permits abstracting from endogenous investment decisions.

Capital is hit by idiosyncratic, uninsurable shocks at ¢ = 1.!° The effect of these shocks
is to reallocate capital among agents, leaving the aggregate stock of capital unchanged at K.'
For a fraction a € (0,1) of agents, the stock of capital reduces by a factor of 1 + ¢, where
—1 < ¢¥ < 0; that is, if an household bought K(’f capital at t = 0 and is hit by 1%, its stock of
capital at ¢ = 1is K (1 + ¢*). For the other 1 — o agents, capital increases by a factor of 1+ ¢,

where 1" > 0.!% Since the shocks are idiosyncratic, they must satisfy the restriction
a(l+9") +(1—a)(1+97) =1 (3)

Without loss of generality, I set % = —1, so that the capital stock of an agent hit by ¢’ is
completely destroyed.'® In the rest of the analysis, I use « to describe the stochastic process of the
idiosyncratic shocks, while 1) is determined residually by Equation (3). The idiosyncratic shocks
do not play a major role in the bankless economy but are crucial to produce banks’ insolvencies
and runs in the economy with banks.

Next, I describe trading and production. The timing is represented in Figure 2.

At t = 0, there is a Walrasian market in which capital and money can be traded. The price of
capital is denoted by ().

Att = 1 (after preference shocks and capital shocks are realized), each unit of capital produces
Aj units of consumption goods. Consumption goods are sold at price P, and consumption ex-
penditures are subject to a cash-in-advance constraint; as in Lucas and Stokey (1987), households
cannot consume goods produced by their own stock of capital. Capital is illiquid at £ = 1, i.e., it
cannot be traded.'

At t = 2, each unit of money produces 1/ P units of consumption goods and each unit of

capital produces QQ/ P units of consumption goods. @, and P, are exogenous parameters, but

10To keep the model simple, I follow an approach widely used in general equilibrium models that impose exoge-
nously incomplete markets, rather than providing an endogenous motivation for the lack of insurance.

""These shocks are equivalent to idiosyncratic, permanent shocks to the productivity of capital. Moreover, adding
aggregate shocks to capital does not change the results qualitatively.

12 A more rigorous approach at describing the idiosyncratic shocks to capital is the following. The shock ¢ hits a
fraction of agents holding a share « of the overall capital stock, and the shock 4 hits a fraction of agents holding the
remaining share 1 — . However, since all agents are alike, they hold the same amount of capital in equilibrium. Thus,
a fraction « of agents is hit by ¥/ and a fraction 1 — « is hit by ¢

3The results are unchanged if 0 < ¥ < —1, due to the risk-neutrality of households with respect to time-2
consumption. However, setting 1)* = —1 simplifies the expositions and the analysis.

14Similar to Jacklin (1987), trading restrictions are required to provide a role for banks. If households could trade
capital at t = 1 and use the proceeds of trade to consume, there would be no role for banks.



are motivated by an infinite-horizon formulation in which fiat money and capital can be carried
over and used in the next period. '
For future reference, let 1 + X (1)) be the nominal return on capital at ¢ = 2 for an agent that

is hit by the idiosyncratic shock to capital ¢. This return is defined by:

@2+A1P1

4
0o 4)

Lty () = (1+¢)

2.3 Endowments

Without loss of generality, I assume that all households have the same endowment of money and

capital at t = 0. Thus, each household A is endowed with money M and capital K.

2.4 Restriction on parameters

I assume that the parameters (), and P, that govern the value of capital and money at ¢ = 2 are

proportional to the quantity of money in circulation at t = 2:

s B M@t 5 M+
Q2_1_5 F ) PQ_ A1? . (5)

The restrictions in (5) are motivated by an infinite-horizon formulation; that is, @2 and P, would
be, respectively, the price of capital and of consumption goods that would arise in “¢ + 1” in an
infinite-horizon economy.m_Moreover, these restrictions imply monetary neutrality at ¢ = 2. That
is, the real value of capital Q2 / Ps is independent of /1, and corresponds to the present-discounted

value of output,

and the “price level” P, increases one-for-one with a change of the money supply.
I also impose a restriction on the parameter C' that governs the utility of impatient households

defined in (2):
Ay

K

I

C= (6)

A1 K /K is the level of consumption at £ = 1 that can be achieved if all impatient households con-

sume the same amount (total production at ¢ = 1is A; K and there is a mass x of impatient agents).

15See the infinite-horizon, monetary model of banking in Robatto (2015).

161n particular, in the infinite-horizon economy, these prices would arise in a steady-state in which banks are active
and there are no runs. Note that the expressions for @, and P in (5) are similar to those derived for Qy and P; in the
economy with banks and no runs; see Proposition 5.1.



Equation (6) implies that there is a feasible allocation in which consumption of impatient house-
holds is equalized at C' and thus their marginal utility equals one; that is, no impatient household
has marginal utility 6 > 1 in this allocation. For technical reasons, some results require the utility
function u (C) to be differentiable at C' = A; K/ and its derivative to equal one. To guarantee
these results, Equation (6) can be replaced with C' = A, K /x — £, with € > 0 but arbitrarily small.

3 Baseline model without banks: results (bankless economy)

I now study the equilibrium of the economy presented in Section 2. Since households are the only
set of private agents in the economy and there are no banks, I refer to this environment as the
bankless economy.

Households choose money M, capital K/*, and consumption C}* and C¥ by solving:

h h th
MO ’KO 7C11

(.

R

P,

=CJ if h is impatient

M+ QoKFE {1+ ri (")
Py

:Cg if h is patient

+(1-k)p (7)

N

where the expectation is taken with respect to the shocks to capital held by agent h, ", In (7), I
use the fact that the optimal consumption of patient households at ¢ = 1 is zero and thus C? refers
to the consumption at ¢ = 1 if the household is impatient. The maximization in (7) is subject to

the budget and cash-in-advance constraints:

M+ K!Qy < M+ EKQq (8)
~———

value of endowments
h h
PCT < M} 9)

At t = 0, the household has access to the Walrasian market where it can adjust its portfolio of
money and capital, subject to the budget constraint (8); M and K[ are the amount of money
and capital that the household has after trading. At¢ = 1, consumption is subject to the cash-in-
advance constraint (9). At¢ = 2, consumption is financed with unspent money (M — P,C?}, if the
household is impatient, and M{", if it is patient) and capital bought at ¢ = 0 plus its return 75 (¢)");
the return on capital includes the proceeds from selling output A; K (produced by capital att = 1)

at price P, and the output produced by capital at ¢ = 2.

10



To solve problem (7), I conjecture that the cash-in-advance constraint (9) holds with equality
for impatient households. This conjecture is verified later because the opportunity cost of holding
money, represented by the expected return on capital £ {rf (¥) }, is positive in equilibrium. Thus,
it is not optimal for households to carry money that will be unspent.

The first-order conditions imply:

BE{1+7r5 (") %:RU,(C{L)%—F(l—/{)ﬁ%Z (10)
Households are indifferent between investing an extra dollar in capital or in money at ¢t = 0.
Investing in capital gives a return E {1+ ri (¢") , discounted by the factor 3 and evaluated
in units of time-2 consumption (i.e., the return is divided by 1/ Ps). Investing in money allows
households to increase consumption at ¢ = 1, if the household is impatient (i.e., with probability
k), or at t = 2, if the household is patient (i.e., with probability 1 — k).

An equilibrium of this economy is a collection of prices )y and P, and households’ choices
M}, K}, C?, such that (i) M}, Kl', and C solve the problem (7) given prices, (ii) the money and
capital markets clear at ¢ = 0, M = f Mé‘dh and K = f K(’}dh, and (ii1) the goods market clears
att =1, [ Chdh = A1K.

In equilibrium, all households are alike at ¢ = 0 and thus market clearing implies that they hold
the same amount of money and capital, M} = M and K = K for all h. Att = 1, only impatient
households consume; since there is a mass # of them and total output is A; K, consumption is
Ch = AK/k.

Next, I solve for the price level at ¢ = 1. I use the fact that only impatient households
spend money and consume at t = 1. Thus, money spent is M and consumption expenditure
is P, [ Cldh = P, A, K, where the equality follows from goods market clearing at ¢ = 1. Equat-

ing money spent with consumption expenditure, I can solve for the price level P;:

B kM
AK

Py (11)

To solve for g, I first use Equation (6) to note that consumption of impatient households is
at the kink of the utility function, C? = C, and thus the marginal utility of any additional unit of
consumption is one: v’ (C’{’) = 1. Plugging u’ (C{L) = 1 and Equation (11) into Equation (10), I
can solve for the expected return on capital E {1 + r5° (/") and, using Equation (4), for the price
of capital (Qy."”

Finally, I comment on welfare. At¢ = 1, the consumption of impatient households is equalized

7The expected return on capital is E {1 +rk (wh) = %[1 + (1 — k) B] and the price of capital is Qg =

B M | k+B(—kK)
1-B K | 1+8(1—k) |~

11



at C} = A;K /k, whereas the consumption of patient households is zero. This allocation is the
same as the one that a social planner would choose. Nonetheless, introducing banks has important
effects on equilibrium prices. By providing deposits that allow households to withdraw at ¢ = 1 or
to receive a return at ¢t = 2, banks reduce money demand thereby affecting prices.

The baseline model is simple by design to provide an intuitive analysis of the interactions
between banks and the money market, rather than welfare. Regardless, Section 6 presents a more
general model that produces a welfare loss in the bankless economy in comparison to the first-best,
opening up a welfare-increasing role for banks. In the extension, patient households have some
utility from consumption at ¢ = 1. The results of the baseline model can be interpreted as the

limiting case in which such utility is arbitrarily small.

4 Baseline model with banks

I now extend the core environment of Section 2 by introducing a unit mass of banks indexed by b
that act competitively and a central bank that can change the money supply. Similar to the previous
sections, I use the superscript b to denote variables that refer to bank 0.

Depending on parameters that govern the fundamentals of the economy, the equilibrium has
either no runs at¢ = 1, or runs on some banks at ¢ = 1. Therefore, runs are driven by fundamentals,
as in Allen and Gale (1998), rather than panics as in Diamond and Dybvig (1983).

The interaction between banks and households is standard. Households’ endowments are the
same as in Section 2, whereas banks have no endowment. Each bank is associated with a unit
continuum of households and takes prices as given.'® Households deposits at ¢ = 0 and have the
possibility to withdraw money at ¢ = 1. If a household does not withdraw at ¢ = 1, its deposits are
repaid at t = 2 with a return, which can be positive (if the bank is solvent) or negative (if the bank
is insolvent).

Recall that capital is subject to shocks at ¢ = 1, and therefore, capital held by banks is hit by
these shocks as well. I denote ¢* to be the shock to capital of bank b; I continue to denote " to
be the shock to capital of household h. As in the bankless economy, the shocks 1" to capital of
households do not play a major role, because households are risk-neutral at ¢ = 2. In contrast, ¢°
is crucial because a bank becomes insolvent and is subject to a run if it is hit by the negative shock
vh.

18Since there is a unit mass of banks and each bank is associated with a unit continuum of households, there is a
well-defined link between the unit mass of banks and the double continuum of households introduced in Section 3.

12



4.1 Budgets and interaction between households and banks

t = 0: trading and deposits. Bank b can buy money M¢ and capital K¢, using deposits D}:

KiQo+ My < Dy (12)
~—— =~ ~—~
capital money deposits

subject to the non-negativity constraints M > 0, K > 0, and D§ > 0.

Banks’ allocation of deposits D} between money M_ and capital K is the only relevant choice
taken by banks. The other modeling assumptions related to banks and introduced later imply that
the repayment of deposits at ¢ = 1 and ¢ = 2 depends only on the allocation of deposits across
money and capital at t = 0.

Household i makes its portfolio decisions by choosing money, deposits, and capital:

M + Df +QoKfy < M+ KQq (13)
N =~ = ~—_——
money  deposits capital value of endowments

subject to the non-negativity constraints M > 0, D > 0, and K} > 0.

Each household can hold its deposits D} only at one bank. This assumption can be justified
by the costs of maintaining banking relationships. Formally, the cost is zero if household /4 holds
deposits at one bank, and infinite if household h holds deposits at two or more banks.!” This
assumption implies that households face the risk that their own bank may be hit by the negative
shock 1" and subject to a run. If households could deposit at all banks, they would diversify away
this risk.

t = 1: withdrawals and consumption. Households observe their preference shocks and then
decide their withdrawals, Wlh For each household, withdrawals cannot exceed deposits Dg chosen
at t = 0. Moreover, for each bank b, total withdrawals by its depositors cannot exceed the amount
of money M} chosen at ¢ = ( by the bank:

= o

e Wdh < M} (14)
epositors
ofpbankb

where the integral is taken with respect to households that hold deposits at bank b. The inequality
in (14) arises from the fact that, at ¢ = 1, there is no market in which banks can sell capital in

exchange for money.

19The results are qualitatively unchanged if households can deposit at e.g. two or three banks, but it is crucial that
households cannot hold deposits at a large number of banks.
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There are three assumptions governing withdrawals at ¢ = 1. I first describe them and then I
provide a brief discussion at the end of the section:

i. At each bank, withdrawals are repaid based on a sequential service constraint;

ii. Each bank has to repay the full value of deposits that are demanded back at ¢ = 1 as long
as the bank has money available. That is, if an household demand withdrawals Wh = D(’}
at t = 1 and the bank has money in its vault when the household is served, the bank has to
repay W} = D} In other words, no haircut on deposits can be imposed at t = 1;

1ii. Households’ withdrawals at ¢ = 1 can take values Wlh € {0, Dg . That is, if an household
is served when a bank has money, it can either withdraw all its deposits, W' = D}, or
withdraw no money and wait until ¢+ = 2, W} = 0, but it cannot choose to withdraw any
amount in between.

The implication of Items (i) and (ii) is a limit on withdrawal determined by the position in line
during a run. Households at the beginning of the line can withdraw all their deposits, but those
at the end of the line cannot withdraw any money because the bank does not have enough cash to

serve them. Therefore, if an household decides to withdraw at ¢ = 1, Items (i)-(iii) imply:

D! if there is no run, or if A is at the beginning of the line in a run
Wi =4 "
=

0 if h is at the end of the line in a run.

The fraction of households that are able to withdraw W{* = D} depends on the amount invested
in money at ¢t = 0 by the bank, M{. Given deposits D}, the higher are money holdings M_, the
higher is the fraction of depositors that are able to withdraw in the event of a run.

After making withdrawals, households choose consumption expenditure P;C? subject to a
cash-in-advance constraint; that is, P, C{‘ cannot exceed the sum of money M[’)‘ (chosen at t = 0)
and withdrawals W}

PCY < M+ Wi (15)

I now comment on the assumptions governing withdrawals in Items (i)-(ii1). I first explain the
role played by each of them and then provide a justification related to the underlying structure of
the model.

Item (i) is crucial to obtain a flight to liquidity at ¢ = 0, and thus, to replicate a key stylized fact
of the Great Depression and the Great Recession. To see this, note that a bank hit by ¢/’ looses
all its capital K and is subject to a run. That is, households do not truthfully reveal their own
preference shock to such bank. Without the sequential service constraint, Item (i), all households
would be able to withdraw an equal fraction of deposits, instead of some households withdrawing
D} and some others withdrawing zero. As a consequence, all households would be able to finance

some consumption expenditure using the money withdrawn, which in turn would reduce the flight
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to money at ¢ = (. Solving the model without the sequential service constraint, I obtain that
households would not flight to money at all at ¢ = 0; therefore, the model would not replicate
the flight to liquidity observed in the data. The sequential service constraint can be imposed as a
physical constraint as in Wallace (1988), rather than as a restriction on contracts.

The no-haircut restriction in Item (ii) is also required to obtain a flight to liquidity. The optimal
contract would require banks hit by ¥/’ to impose an haircut on deposits in order to elicits truthful
revelation of households’ preference shocks, so that the bank would be able to pay some money
to all impatient households. Without Item (ii), households would not flight to money at ¢ = 0,
similar to Item (i). Different from Item (i), the no-haircut assumption is a restriction on contracts,
although it can be motivated by the exogenous market incompleteness that precludes insurance
against the idiosyncratic shocks to capital. If withdrawals at ¢ = 1 could be made contingent on
the realization of the idiosyncratic shocks to capital, banks would be able to offer contracts that
violate the assumption of incomplete markets.

Item (iii), which restricts withdrawals W to the set {0, D}, simplifies the analysis because
it allows me to solve the equilibrium by conjecturing that impatient households withdraw W) =

D} * The conjecture is then verified if the following incentive-compatibility constraint holds:
unspent money
M+ D — POt
max u(Cp) + p—"—=2 1

h h P
Ch<1WO +DO 2
1>7 7

= FCH D4 14 (07)]
max u(C’f)—l—ﬂ 0 1~1 o 2

ch<mp Py

(16)

That is, the incentive-compatibility constraint in Equation (16) implies that withdrawing W} = D}
att = 1, spending P,CI" < M} + D}, and carrying any unspent money to ¢t = 2 (left-hand side)
gives more utility to an impatient household than withdrawing W} = 0, spending P,C} < M,
carrying any unspent money to ¢ = 2, and getting back deposits D{ plus the return 7} (¢H ) >0
at ¢ = 2 (right-hand side). The restriction Wlh € {0, Dg} in Item (iii) can be justified by costs
of contacting the bank multiple times. That is, if the household has access to the bank only once,

either at £ = 1 or at ¢ = 2, restricting withdrawals to the set {0, D! is actually optimal.

20In addition, if I allow W{* € [0, D], impatient households that hold deposits at a solvent bank might choose to
withdraw only a fraction of their deposits, W} < Dp. This is because a solvent bank is hit by the shock to capital
¢’ = ¢, and thus, its return on deposits r5 () is large (see Equations (4) and (17)), so that it might be convenient
leaving some deposits in the bank and earning such higher return. The restriction W' € {O, Dg} is a simple approach
that guarantees that impatient households withdraw all their deposits at t = 1.
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t = 2: return on deposits and consumption. At¢ = 2, banks are liquidated and the proceeds
are used to pay deposits that have not been withdrawn at t = 1. Let 14173 (wb) denote the return on
deposits not withdrawn. This return is possibly bank-specific because it depends on banks’ choices
of money and deposits made at ¢ = 0, M¢ and K¢, and is affected by the idiosyncratic shock to
capital ¥’

To simplify the exposition, I focus on the relevant case in which all the money is withdrawn at

t = 1. In this case, the return 7 (@/}b) is paid using the return on capital bought at ¢ = 0. Thus:

(@) iyt =gt

ry (V°) = i —

(17)

where 7"5( (wH ) is defined in Equation (4). The second entry of (17) follows from the assumption
¥ = —1. That is, for a bank hit by ¥* at t = 1 (and under the conjecture that all the money is
withdrawn at ¢ = 1), there are no resources left at ¢ = 2, and thus, deposits not withdrawn at ¢ = 1
are completely lost. The fact that deposits not withdrawn at ¢ = 1 are completely lost triggers a
run on such bank, in equilibrium.

After deposits are repaid at t = 2, households consume C%. Similar to the bankless economy,
capital bought at ¢t = 0, K plus its return 75 ("), and unspent money are used to finance
consumption. In addition, consumption is also financed by: deposits not withdrawn D{ — W] plus
the return 74 (wb) paid by the bank; and lump-sum transfer 75 from the central bank, if any (see

Section 4.2). Therefore, household consumption at ¢ = 2 is:

cl =

Kh 1 K h 1
QKL L (0= ) (L o (49)) + (0 + W) = PiC) 433
2 2 O > . ~~ -

N . .‘,
deposits not withdrawn + return unspent money

capital + return

(18)

4.2 Central bank

(Readers only interested in the model without policy intervention can skip this section.) Recall
that the money supply is M (1 + 1), where pi, is chosen by the central bank. If there is no policy
intervention, j; = 0 for all ¢ and money supply is constant at M.

If there is a policy intervention, the central bank changes the money supply by choosing ;.
Interventions are announced at ¢ = 0, before the Walrasian market opens; the central bank fully
commits to the policy announcement.

If 1o > 0, the central bank is injecting oM units of money at ¢+ = 0, because the initial

endowment of money is M and the money supply at ¢ = 0 is M (1 + j). The monetary injection
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is delivered using asset purchases, that is, purchases of capital K§'Z on the market at price Qy:

QuK§P < oM . (19)

asset purchases

All results are unchanged if the central bank uses the newly printed money, 1M, to offer loans
to banks b, as long as such loans are fully collateralized using capital.”?! Buying capital directly
is equivalent to offering loans that are used by banks b to buy capital, which is in turn offered as
collateral with the central bank.

Att = 1, I restrict attention to the case in which the money supply does not change because
there is no market in which capital can be traded.?”> Thus, 1, = L.

At t = 2, the central bank can again change the money supply by varying 5. Monetary injec-
tions at ¢ = 2 are implemented using lump-sum transfers (or taxes, if negative) to households.?
Moreover, any profits from the purchase of capital K§Z are distributed lump-sum to households

as well.”* Thus, transfers 75 to households are:

CB (N a7
TQ = KO (Q2 + Alpl) + (,ug - ,uo) MJ. (20)
gross retu;nr on capital change mg;ey supply
att=2

The last term in Equation (20), (s — jto) M, denotes the change of the money supply at t = 2. For
instance, if po > 0 and py = 0, the monetary injection at ¢ = 0 is temporary and thus the central
bank taxes households at ¢ = 2 to reduce the money supply to the initial level M (recall that banks
and households are endowed with M units of money at ¢ = 0). If ;o = 0 and o > 0, the central
bank is just intervening at t = 2. If yus = po > 0, the monetary injection implemented at ¢ = 0 is

permanent.

2l particular, the central bank could offer nonrecourse, collateralized loans and charge a return on the loans. The
return could either be state-contingent (i.e., contingent on the realization of the shock v® of bank b) or fixed and equal
to 1475 () (where 14 74 () is the return earned by the bank if 1)* = ¢)*7). In the latter case, if ¢* = ", the
central bank makes the return de facto state contingent by seizing the collateral and taking a loss.

22T do not consider loans to banks at £ = 1. Since runs are driven by shocks that make banks fundamentally
insolvent, loans to banks at ¢ = 1 would not eliminate runs unless the central bank provided loans to such banks and
were willing to take losses. This policy is more akin to a bailout rather than a monetary injection and central banks are
typically restricted from using it.

23The parameter restrictions in (5) rule out the possibility that the central bank can increase consumption by printing
money.

24Since the central bank is a large player in the market, I assume that the idiosyncratic shocks to K§'? cancel out.
Thus, the overall stock of capital K{'Z held by the central bank is unchanged at t = 1 and ¢ = 2.
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4.3 Market clearing conditions

The market clearing conditions are as follows.

Capital market, t = 0 : /Kgdb + /Kgdh + K§8 =K. (21)
Money market, ¢t = 0 : /Mé’db + /Mé‘dh = M (1+ pp) . (22)

Deposits, t = 0 : /ngb = /ngh. (23)
Goods market, ¢t = 1 : / Ctdh = A/K. (24)

If there is no monetary policy intervention, the amount of assets bought by the central bank, K,
in (21) and i in (22) are zero.

4.4 Equilibrium definition

The notion of equilibrium is similar to the one used in Section 3. Given a monetary policy { o, f2},
an equilibrium is a collection of:
e prices g, P, and r¥;
e households’ choices My, K}, Dy, Wk, C', C%; banks’ choices M}, K}, and D§, return on
deposits 75 (1) ; and central bank’s asset purchases K§'® and profits Tb;
such that:
e households maximize utility;
e banks serve withdrawals at ¢ = 1 until they run out of money (that is, if withdrawals W* are
constrained at zero for some households, Equation (14) must hold with equality); the return
on deposits not withdrawn, 7 (@/}b) , 1s paid using all the assets available to the bank at ¢t = 2;
e the market clearing conditions, (21)-(24), and the budget constraint of the central bank, (19),
hold.

I consider symmetric equilibria in which all banks have the same amount of deposits at ¢ = 0.

5 Baseline model with banks: results

This section presents the results of the baseline model with piecewise-linear preferences in which
banks offer deposits to households. The key results are obtained in an economy in which o > 0
and is sufficiently large so that many banks are hit by the negative shock to capital, 1/*, and they
become insolvent and are subject to runs at ¢ = 1; as a result, households fly to money and away

from deposits at ¢ = 0 in anticipation of runs (Section 5.3).
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However, to clarify the result of the economy with runs, I first analyze a benchmark economy
in which I set o = 0, and thus, no bank is subject to negative shocks to capital (Section 5.1).%> As
a result, there are no bank runs in this economy.

The economy without bank runs provides a benchmark for the analysis of the economy with
runs. In particular, some results of the economy with runs can be understood as an intermediate

case between the bankless economy of Section 3 and the economy with no runs of Section 5.1.

5.1 Economy with no runs

I start by analyzing an economy in which I shut down the idiosyncratic shocks to capital.”® This
economy provides a benchmark against which the results of the economy with runs can be com-
pared.

Formally, the model without shocks to capital is a special case that arises when o = 0. In this
case, no agent is hit by the negative shock, 1*, and Equation (3) implies that the positive shock
(that hits all agents) is 1»" = 0. That is, it is as if shocks to capital did not happen.

The logic of this equilibrium is similar to the good equilibrium of Diamond and Dybvig (1983).
The equilibrium is characterized by no bank runs because there are essentially no shocks to capital.
All banks remain solvent at ¢ = 1 and pay a positive return at t = 2, r5 > 0. Banks offer deposits
to households, which in turn withdraw at ¢ = 1 only if they are hit by the “impatient” preference
shock.

Proposition 5.1. (Economy with banks and no shocks to capital) Fix jip = 0 and pio = 0. If o = 0,
there exists an equilibrium with no runs and:
® prices:
B
1-p
o ¢ = 0: deposits Dh = DS = D* where

=I| |
=|

Qo = Q" P = =P (25)

D*

M/k; (26)

money holdings M} = 0 and M} = kD* = M; capital K!' and K} residually determined
by the budget constraints of households and banks, respectively;

2By setting o = 0, Equation (3) implies that 1) = 0, so that effectively the shocks to capital are shut down.
%6Since there are no shocks, in this section I suppress the argument v in the notation of the return on capital and of
the return on deposits, denoting them as 7 and r5, respectively.
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e t = 1. withdrawals and consumption

D*, C)  ifh is impatient
(wh, cty = {20 ) hiine
(0, 0) if h is patient;
o t = 2: return on capital 1 + ¥ = 1/ and return on deposits not withdrawn 1 +r§ = 1/3
for all b.

As in the good equilibrium of Diamond and Dybvig (1983), banks provide insurance against
preference shocks, allowing impatient households to withdraw money and consume at ¢ = 1 and
patient households to receive a return on deposits at ¢ = 2. Therefore, households hold no money
(M} = 0). Given the price level P*, D* is the amount of deposits required to finance household’s
consumption expenditure at ¢ = 1 if the household is impatient. That is, at ¢ = 0, households
deposit all their endowment of money and a part of their endowment of capital into banks (in
exchange for a promise to be able to withdraw money at ¢t = 1 or to be repaid at ¢ = 2) and invest
the rest of their wealth into capital.?’

Households do not invest in money, due to the opportunity cost represented by the positive
return on capital. Households prefer to hold banks’ deposits, that have advantages of both money
and capital. That is, deposits can be withdrawn at ¢ = 1 with certainty, and if not withdrawn, they
pay the same return as capital at t = 2.

The expected return on capital equals 1/3; equivalently, the discounted return equals one.
Given consumption C? = A, K /k for impatient households, their marginal utility at ¢ = 1 also
equals one; see Equation (6). Thus, the marginal utilities of impatient households at ¢ = 1 and
t = 2 are equalized.

Banks invest a fraction x of deposits into money, in order to serve withdrawals by the fraction
 of impatient households at ¢ = 1. The remaining fraction of deposits, 1 — , is invested in capital.
At t = 2, the return on capital is used to pay the return on deposits not withdrawn at ¢t = 1.

Similar to the bankless economy, the price of consumption goods, P, is determined by equat-
ing consumption expenditures, [ P;C{:dh, to total money spent. Consumption expenditure can be
rewritten as P, A, K using the market clearing for goods. Unlike the bankless economy, here the
entire money supply M is spent. This follows from the fact that banks hold the entire money supply
att = 0 (MY = M) and that all money withdrawn at ¢ = 1 is spent. As aresult, P, = M/ (A, K).

%7Since the return on deposits not withdrawn equals the return on capital and there are no runs, any allocation with
Dh e [D*, M + Q*E corresponds to an equilibrium of this economy as well. That is, in comparison to the equilib-
rium of Proposition 5.1 in which D} = D*, households are indifferent between investing any extra dollar of wealth
directly into capital, or depositing it and letting banks invest on their behalf. However, if there were intermediation
costs, households would be better off by holding only the minimum amount of deposits required to finance consump-
tion at t = 1. The result D = D* can thus be viewed as arising from a limiting economy in which intermediation
costs approach zero.
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5.2 Bankless economy and economy with no runs: a comparison

This section compares the price level and money velocity between the bankless economy of Sec-
tion 3 and economy with no bank runs of Proposition 5.1. Banks offset the precautionary demand
for money that arises in the bankless economy, reducing the demand for money and thus its equi-
librium value. As a result, the price level P, is higher in the good equilibrium than in the bankless

economy, as summarized below.?®

Corollary 5.2. The price level is lower in the equilibrium of the bankless economy, in comparison

to the economy with no runs:
(Py in bankless equilibrium) < P~

where P* is the price level in the economy with no runs; see (25).

This result follows from the monetary nature of the model. To explain further, let v denote

money velocity, defined implicitly by the equation of exchange:
[M (1+ po)] xv="P (AK). (27)

Money velocity is endogenous and differs between the two equilibria. Less money is used for
transactions in the bankless equilibrium than in the equilibrium with no runs. As a result, money

velocity is lower in the bankless equilibrium and thus the price level is lower as well.

5.3 Economy with runs

This section presents the first main result of the paper. Here, I analyze an economy in which
many banks are hit by the negative shock to capital /%, so that these banks become insolvent and
are subject to runs at ¢ = 1. In comparison to the economy with no bank runs, the equilibrium
displays deflation (i.e., P, is lower) and a flight to liquidity (i.e., an increase of money holdings by
households, M}, and a reduction of deposits, D).

Recall that banks invest in money and capital at ¢ = 0, in amounts M and K, respectively.
If the stock of capital K of bank b is hit by ¢, the stock of capital of bank b is lost because

Y’ = —1 and thus the bank becomes fundamentally insolvent. As a result, the return on deposits

28 A similar result arises in the monetary models of Brunnermeier and Sannikov (2011), Carapella (2012), and
Cooper and Corbae (2002).

2The price of capital Qg in the bankless equilibrium is lower than Q* as well, where Q* is defined in Proposi-
tion 5.1. If banks are not active, households’ preference shocks are not insured. Thus, the illiquidity of capital (i.e.,
its inability to provide insurance against preference shocks) reduces its demand and thus its price. If instead banks
are active, as in the good equilibrium, they provide sufficient insurance against preference shocks. In this case, the
illiquidity of capital is irrelevant to households, and its nominal price )y must be higher to clear the market.
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is negative: 73 (2/1L) = —1 < 0; see (17). From the depositors’ points of view, running on this
bank is optimal, because the return on money withdrawn is zero while the return on deposits not
withdrawn is 75 (¢*) < 0.

The fact that runs are driven by fundamentals is similar to Allen and Gale (1998) but with an
important difference. Unlike Allen and Gale (1998), only a fraction of banks are hit by the negative
shock 1* and subject to a run at ¢ = 1. Thus, the equilibrium of this section always involves runs
on some banks at t = 1.° The identity of banks subject to runs is not known at ¢ = 0 because
the shocks to capital happen at ¢ = 1. A further difference from Allen and Gale (1998) is that
households in my model fly to money and reduce their holdings of deposits at ¢ = 0, in contrast to
the economy with no runs. The flight to money allows households to (partially) self-insure against
preference shocks in the event of a run on their own bank at ¢ = 1. The reduction in deposits
implies that households deposit less money and a smaller fraction of their endowment of capital at
t=0.

The flight to money and away from deposits implies that money holdings by households are
at an intermediate level, in comparison to the economy without banks and the good equilibrium.
Thus, the nominal prices )y and P, are at intermediate levels as well, by a logic similar to that
described in Section 5.2.

To obtain these results, I impose the following restrictions on parameters:
0<(l—a)(1=pr)—ar(@—1)<(1—0a)’B(1—k) (28)

and:
a(l—a)

1-3a(l—a)+ak—a?k(1+k)—a? (1 —k)

0>1+ > 1. (29)

The restrictions in (28) are satisfied if « (i.e., the probability that an agent is hit by the negative
shock to capital 1)*) is neither too large nor too small.?! By the law of large numbers, « is also the
fraction of banks hit by ¢/’ and subject to runs, and thus, it represents the probability of a run. If
is too small, only a few banks in the economy will be subject to runs at ¢ = 1; therefore, the gains
from flying to liquidity are too small in comparison to the opportunity cost of holding money and
thus households hold no money, M = 0. If instead « is too large, many banks are subject to runs
at t = 1 and households are better off by holding no deposits at all, D} = 0. The restriction in
(29) requires @ to be sufficiently large (the right-hand side is greater than one) so that the marginal
utility if consumption is less than C is sufficiently large as well. As a result, households want to

flight to liquidity in the economy with runs.

3T can extend the model to allow two aggregate states at ¢ = 1: one state in which idiosyncratic shocks 1) are
realized and some banks are subject to runs, and another state in which idiosyncratic shocks are not realized and no
bank is subject to runs. However, the main results would be unchanged.

311t can be verified that (28) does not hold if o« — 0 or if o — 1.
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The next proposition summarizes the results of the economy with runs. Appendix A presents
the proof, which also includes the results of the equilibrium prices and allocations as function of

the parameters.

Proposition 5.3. Fix jip = 0 and jo = 0. If the parameters satisfy (28) and (29), there exists an
equilibrium characterized by:

e prices Qg < Q* and P, < P*;

e t = 0: households flight to liquidity, holding M} > 0 and D} < D*; banks invest a fraction
k of deposits into money, MY = D}, and the remainder in capital, K = (1 — k) D§/Qo;

o t = 1: banks hit by " are subject to runs (i.e., both patient and impatient households want
to withdraw at t = 1); impatient households holding deposits at banks not subject to runs
and those at the beginning of the line at banks subject to runs consume C} > C; impatient
households at the end of the line in a run consume C’{l <C;

e t = 2: returns on deposits are 1} (wH) > 0and r} (QZJL) = -1

Let me now provide more details on the maximization problem faced by households. Att =1,
a household h faces three cases. With probability 1 — o, the bank of household  is hit by /7 > 0,
is solvent, and not subject to a run; therefore, an impatient household can withdraw Wlh = D(’JL
(Case 1).>> With probability «, the bank of household  is hit by the negative shock to capital, 1%,
and is thus subject to a run. The household can either be at the beginning of the line and thus able to
withdraw W' = D} (Case 2) or at the end of the line and thus unable to withdraw, W}* = 0 (Case
3). I conjecture that the household makes the following choices and then verify the conjecture in
the proof of the proposition:

i. In Case 1, if A is impatient (i.e., with probability k), it withdraws W{* = D{ and consumes
Cy = (M} + D{) /Py if it is impatient (i.e., with probability 1 — k), it withdraws and
consumes Zero, carrying Méb tot = 2;

ii. In Case 2, the household withdraws W/ = D! no matter what its preference shock is; it
then consumes C} = (Mg + D) /P if it is impatient (i.e., with probability ) and zero if
patient (i.e., with probability 1 — x), carrying M} + D} to t = 2;

iii. In Case 3, the household cannot withdraw; if A is impatient (i.e., with probability ), it faces
a very tight cash-in-advance constraint and can consume only C?' = M@/ Py; if h is impatient
(i.e., with probability 1— k), it consumes zero and carries M to t = 2. Regardless of whether

the household is patient or impatient, it will lose all its deposits, because 74 (wL) =—1.

31n the proof of Proposition 5.3, I verify that an impatient household holding deposits at a solvent bank prefers to
withdraw W} = D}, instead of W* = 0.
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Therefore, the household problem at ¢ = 0 is:

Mh Dh Dh 1+ Tb H + Mh
max (1 —«) KU(M)—F(l—K)B 0 ( 2_(¢ ) 2 (30)
Mp Dl K}~ — P1 R P2
cuel im[;?ient pa;i,ent
Ml + Db MpP + Db
+ a x Pr (beginning of line) |xu <M> +(1—k) 5@
~ ~~ Pl P2
Case 2 ~~
impatient patient
M M KJE {1+ 7 (0"
+a x Pr(end of line) Iiu(—(])—i-(l—/i)ﬁ_—o —|—5Q0 0 {_ > (v")
N d Pl P2 P2
Case 3 N—— N——"
impatient patient

subject to the budget constraint in Equation (13). Due to the piecewise-linear utility function,
the first-order conditions depends only on prices and not on households’ choices. Moreover, the
piecewise-linear utility function implies also that the first-order conditions are linear functions of
prices; > thus, together with the market clearing conditions in Section 4.3, they form a linear system
of equations with a unique solution.

The probabilities that a household is at the beginning or at the end of a line in the event of a run
depends on the fraction of deposits that banks invest in money at ¢ = 0; the higher is the fraction
of money at ¢t = 0, the higher is the fraction of households that can be served in the event of a run.

Next, let me explain the result about consumption C} of impatient households at ¢t = 1. From
the analyses of the three cases in the household’s objective function, it follows that impatient
households that face Cases 1 and 2 at £ = 1 consume more than households that face Case 3.
Moreover, since all impatient households were consuming C' in the economy with no runs, it must
be the case that households facing Cases 1 and 2 consume more than C' (and thus their marginal
utility is one) whereas households facing Case 3 consume less than C' (and thus their marginal
utility is # > 1). In addition, the different consumption among impatient households gives rise to
a welfare loss because marginal utilities are not equalized across such households.

The result about consumption C? of impatient households at ¢ = 1 plays a crucial role in the
flight to liquidity at ¢ = 0. Since w (-) implies global risk-aversion, households fly to money at
t = 0 to partially self-insure against the risk of consuming C* < C. If u (-) were globally linear,
households would be risk-neutral with respect to time-1 consumption, and thus, consumption risk
at t = 1 would be irrelevant, implying no flight to liquidity at ¢ = 0.

Finally, I turn to the analysis of the deposit contract. As discussed in Section 4.1, the only
relevant choice of banks is the fraction of deposits to be invested in money at ¢t = 0, M. In

equilibrium, banks invest a fraction of x of their deposits into money, as in the economy with no

33More precisely, the first-order conditions equated to zero are linear functions of 1/P; and r} (’l/}H ) , given P
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runs. First, note that to serve impatient households when a bank is not subject to a run, the bank
must choose M{ > kDj. Second, I verify that households would be worse off by depositing in
a bank that chooses M{ > xDJ. By holding more money, a bank would be able to pay more
withdrawals in the event of a run, but it would pay a lower return on deposits if not subject to a run.
However, the welfare gains of the former effect do not offset the losses of the latter, because some
of the withdrawals in the event of a run are paid to households that are patient and do not need to

consume att = 1.

5.4 Monetary injections

This section presents the main results of the paper. In what follows, I analyze a temporary monetary
injection implemented in the economy with runs (Section 5.3). Money supply increases at ¢ = (
to M (1 + j), remains constant at ¢ = 1 at M (1 + j), and reverts back to M at t = 2 because
the monetary injection is temporary.>* The key result is that such a temporary monetary injection
does not have any effect on prices (()y and P; are constant), whereas it reduces money velocity and
deposits; that is, a temporary injection amplifies the flight to liquidity. Moreover, I show that these
results differ from those of the economy without runs, in which a temporary monetary injection
does not affect neither money velocity nor deposits.

The next proposition formalizes the effects of a temporary monetary injection. I express all
the results in terms of elasticities. For instance, the elasticity of money velocity v, defined by
Equation (27), with respect to a temporary monetary injection is given by (dv/dpuo) X [(1 + o) /v];

the elasticities of the other endogenous variables can be defined similarly.

Proposition 5.4. (Temporary monetary injection) If the parameters satisfy (28) and (29), then:

dv ><(1—|—[L()):_17 dQOX(l-i—/Lo):O’ dPlX(1+MO):0,
d g v dpio Qo dpo Py
dDh 1 dM? 1
0><(+}fbo)<0, 0><(+ff0)>0.

These results are related to the endogenous determination of money velocity v, defined in
Equation (27). If v were constant, an increase in iy would trigger an increase in nominal prices.
However, money velocity in the model is endogenous and drops as a result of the monetary injec-
tion. In this baseline model, the endogenous reduction in velocity offsets the direct effect of the

monetary injections and thus prices are unchanged.*

34Therefore, p; is constant at zero.
33Note that there is no violation of monetary neutrality in the model. If I compare two identical economies with
different M, real quantities and real prices in the two economies are the same. This exercise, however, requires
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The result of Proposition 5.4 can be understood by decomposing a temporary monetary injec-
tion into two separate interventions: a permanent injection implemented at ¢ = 0, and a reduction
of money supply implemented at ¢ = 2 but announced at ¢ = 0. That is, a temporary injection is
the “sum” of these two interventions. I now analyze these two interventions separately.

A permanent injection at ¢ = 0 implies that money supply increases at t = 0 and stays constant
afterwards; formally, let o = @1 = pe = p so that a permanent injection is represented by
an increase in . The effects of this intervention on velocity and prices are standard. Money
velocity remains constant and thus prices respond one-for-one with the monetary injection; more
precisely, the elasticity of nominal prices with respect to the monetary injection is one. Using the
assumption about the “price level after the crisis” Ps, in Equation (5), P, responds one-for-one
with the injection as well. Since the effects of this permanent injection are purely nominal, the
real quantities of money and deposits held by households, M/P; and D}/P;, are unchanged.
However, nominal money and nominal deposits, M and D}, must respond one-for-one as well
(i.e., their elasticities with respect to the monetary injection is one), because the price level, P, is

higher. The next proposition summarizes this result.

Proposition 5.5. (Permanent monetary injection, t = (0) Assume that |y = ps = p so that

monetary injections implemented at t = 0 are permanent. If the parameters satisfy (28) and
(29), then:
1 1 P (1 Py, (1
do O4p) g dQ (tp) o db (tp) o dPy (4p)
dp v du Qo du P du P,
h h
dDox(1+M):1’ dMox(lﬂLM):l‘
dp D} dp Mp

I now turn to the analysis of a reduction of the money supply at ¢ = 2. This intervention
triggers a one-for-one reduction of P,; see (5). Since the intervention at ¢ = 2 is anticipated at
t = 0, it affects )y and Py, too. In particular, I claim that )y and P, must respond one-for-one with
a change of P,, and thus, one-for-one with the monetary injection. The one-for-one link between
Qo and P, on the one hand, and P, on the other hand, is a byproduct of the local linearity of
households’ utility. To clarify the role of the utility function, let me focus on households’ money
demand, although a similar logic applies to households’ demand for deposits and capital.

The local linearity of households’ utility implies a very large elasticity of money demand with
respect to its price. The price of money is represented by the real opportunity cost of holding
money, which is the difference between the expected nominal return on capital, E,, {rg( (¥) } and

inflation between t = 1 and ¢t = 2, P,/ P;. If a monetary injection triggered a change in the real

changing money supply before the crisis (when M changes, so do endowments), during the crisis, and after the crisis
(by changing M, the values of P and (), change as well).
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opportunity cost of holding money, households’ money demand would change dramatically due
to the large elasticity, thereby violating market clearing in the money market. To obtain market
clearing in the money market, E,, {rf (1))} and P, must adjust one-for-one with P so that the
real opportunity cost of holding money is unchanged. Moreover, the one-for-one adjustment of
Ey {rf (¢)} and P, implies a one-for-one adjustment of Qo; see Equation (4).

Next, I claim that a reduction of money supply at ¢ = 2 also amplifies the flight to liquidity at
t = 0 (i.e., it reduces deposits, D{, and increases money held by households, M). A contraction of
the money supply at ¢ = 2 reduces Py, as explained before. Moreover, P is determined by quantity
of money in circulation at £ = 0, 1 and by money velocity, as stated by the equation of exchange,
(27). Money att = 0, 1 is unchanged because the monetary injection happens at ¢ = 2; therefore,
a drop in P, requires a drop in velocity. A lower velocity is obtained if the flight to liquidity is
amplified. The negative link between money velocity and the flight to liquidity is exemplified by
the fact that velocity is low in the bankless equilibrium, in which the flight to liquidity is maximal
(D! = 0 and M} = M; i.e., households hold the entire money supply), and high in the economy
with banks and no runs, in which there is no flight to liquidity (M} = 0 and D! = D*). The next

proposition summarizes these results.*

Proposition 5.6. (Monetary injection at t = 2) If the parameters satisfy (28) and (29) and a
change of the money supply at t = 2 is anticipated at t = 0:

dv ><(1+M2):1, onx(lJrHa):L dP1X(1+M2):17 dﬁzx(lim)zl
dpa v dpy Qo dpg Py dpia Py
dDPl 1 dM! 1
Ox( "’};U?) >0, Ox( +},Lu2) <0
d,ug DO 1o=0 d,ug DO 1o=0
Hn2=0 p2=0

Let me now comment further on the role of households’ money demand elasticity. Such elas-
ticity is a key element that governs the response of equilibrium variables to monetary injections. In
this baseline model, households” money demand elasticity is very high, implying a zero elasticity
of P, with respect to a temporary monetary injection (see Proposition 5.4); as a result, a temporary
monetary injection has negative effects on deposits. Section 6 presents a model in which house-
holds” money demand elasticity is lower, and thus, P, responds to a monetary injection as well.
Since the temporary monetary injection has some nominal effects, the degree of monetary non-
neutrality in the model of Section 6 is reduced. Thus, the effects of a temporary monetary injection
on D} and M} are reduced. Nonetheless, I present a quantitative example calibrated to the 2008

crisis, showing that the reduction in deposits can be large.

3Note that Proposition 5.6 presents the results of a marginal increase of the money supply at ¢ = 2.
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Finally, I analyze a temporary monetary injection in the economy with no bank runs (Proposi-
tion 5.1). The objective is to highlight the role of bank runs in Proposition 5.4. The next Proposi-
tion shows that the effects of a temporary monetary injection are purely nominal. The price level,
Py, responds one-for-one with the temporary monetary injection, whereas real deposits, Df /Py,

velocity, v, and households” money holdings, M(’}, are not affected.

Proposition 5.7. (Temporary injection in economy with no runs) If « = 0 and p5 = 0:

dUX(1+M0) dP1X(1+M0)

=0, =1,
d,uo v 110=0 dMO Py 1o=0
d(D/P)  (4m)| o dMy (+p)]
d,uo (Dg/P1> 116=0 ’ d:u() MSL po=0

Similar to economy with runs and Proposition 5.4, the results are the “sum” of the effects of
a permanent injection at ¢ = 0 and of an anticipated reduction of money at ¢ = 2. However, in
the economy without runs, the reduction of money at ¢t = 2 does not change households’ deposits
and money holdings. Since there are no runs, households deposit all their money at banks and thus
a deflationary pressure does not change households’ incentives to hold no money in their wallets,
as long as this pressure is small enough so that the opportunity cost of holding money remains

positive.

5.5 A comparison with the Great Depression

I now compare the model to the Great Depression. The objective of this section is twofold. First,
I provide an example that clarifies the mechanics of the model. Second, I focus on an actual crisis
episode — the Great Depression — to emphasize that the model can be relevant not only from a
theoretical point of view, but also for empirical analyses.

I choose most of the parameters to match the equilibrium with no bank runs (Proposition 5.1)
with the data in 1929, before the first wave of bank runs. I then solve for the equilibrium with bank
runs (Proposition 5.3) and compare ¢ = 0,1 with March 1933 (the peak of the crisis) and ¢t = 2
with 1937 (the peak of the recovery, before the 1937-38 recession). Unless otherwise noted, data
are from Friedman and Schwartz (1963, 1970).

As I explain later, the key metric that I use to compare the model with the data is the ability
to replicate the drop of deposits due to runs. That is, I compare the drop of deposits from 1929 to
1933 with the difference between D} in the economy without runs and D} in the economy with
runs. I then perform a simple policy experiment in order to study the effects of monetary injections.

The money supply in 1929 was slightly above $7 billion, of which $3.9 billion was currency
held by the public. However, in the equilibrium with no bank runs, currency held by the public is
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zero (M} = 0) and the entire money supply is held by banks (M} = D} = M). In order to match
this outcome with the 1929 data, I restrict attention to the money supply that was held by banks in
1929; therefore, M = $3.285 billion.”’

The discount factor 3 is set to 0.94; this low value is consistent with the three-year period
between the acute phase of the crisis in 1933 (periods ¢ = 0, 1 in the model) and the peak of the
recovery in 1937 (period ¢t = 2 in the model). I set the fraction of banks hit by the negative shock,
YL, to a = 0.1. This value corresponds to the fraction of banks that suspended operations during
the Great Depression, weighted by the volume of their deposits.

I choose the fraction of patient agents ~ so that I match the deposit-reserve ratio in the economy
with no runs with the 1929 data. In the model, banks keep a fraction ~ of their deposits in money,
so that the deposit-reserve ratio is 1/x. In 1929, before bank runs, the deposit-reserve ratio was
approximately 13, implying x = 0.077.

There is no direct evidence that can be used to calibrate the marginal utility of impatient house-
holds, 6. Therefore, I chose 6 in order to match the 33% deflation observed between September
1929 and March 1933. The implied value of 6 is 35.6.

Finally, the money supply increased 17.5% between August 1929 and March 1933; therefore,
I'set iy = 0.175. Moreover, the price level did not fully recover to the pre-Depression level by
1937; atits 1937 peak, it was 11% lower in comparison to the 1929 peak. To capture this fact, I set
e = —0.11 (i.e., the money supply in the model drops in the years after 1933). This produces a
value of P, lower than the no-runs equilibrium price P*.*® The model focuses on the events of the
acute phase of the Depression and abstracts from the factors that made the recovery slow, requiring
1o < 0 to replicate the low price in 1937.

Table 1 presents the results. In the equilibrium with no runs, deposits are $42.7 billion, as in
the 1929 data. This is a mechanical result, due to the calibration of the deposit-reserve ratio and
the choice of M.

Despite its simplicity, the equilibrium with runs performs well. It explains 77% of the drop
in deposits. Deposits drop by $13.1 billion in the equilibrium with runs, in comparison to the
equilibrium with no runs, so that D} = $29.6.% Deposits in the data dropped by $17 billion (from
$42.7 in 1929 to $25.7 billion in 1933). Although the model overestimates the March 1933 value of
deposits, it underestimates money held by banks ($2.28 billion in the model vs. $3.1 billion in the

data, measured as banks’ reserves). This is because banks’ reserves are the same in equilibria with

37 As noted in Section 5.4, the value of M does not affect real quantities and real prices. However, setting M =
$3.285 billion facilitates a comparison of the model with the data.

33In the model, the only way to obtain P, < P* is to have a contraction of the money supply at ¢ = 2 (up < 0).

3 Alternatively, I could allow banks to be endowed with capital, money, and pre-existing deposits, and then I could
compute the difference between DY and the endowment of deposits. Adding banks’ endowments does not change the
results. That is, if the endowment of deposits is set at $42.7 billion in order to match the 1929 data, I would conclude
that DY drops by $13.1 billion in comparison to the endowment of pre-existing deposits.
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Table 1: Equilibria comparison

Variable Equilibrium  Equilibrium with runs Data

with no runs  (difference from Eq. with no runs) ~ (difference 1933-1929)
Deposits D} 42.7 -13.1 -17
Money, banks Mé’ 3.285 -1.006 -0.185
Money, households M(’} 0 +1.58 +1.67
Money velocity v 1 -0.43 -0.33
Price level P 100 -33.3 -33.3

Parameter values: = 0.94, kK = 0.077, a = 0.1, K* = 0.515, M = 3.285, K = 0.4857,
A; = 0.064, pg = 0.175, pg = —0.11; ¢»* = 0 and § = 35.6 Price level data are from the NBER
Macrohistory Database; other data are from Friedman and Schwartz (1963, 1970). Deposits and
money are in billions of dollars.

and without runs in the model, whereas they increased in the data (from 7.7% in 1929 to 11.8% in
1933). That is, the data show a flight to liquidity by banks that the model is not able to replicate.
Since the model underestimates money held by banks, it mechanically overestimates the flight
to liquidity by households, because money in the model is held either by banks or households.*’
Finally, the model predicts that velocity drops by 43%, slightly more than the 33% drop in the data.

I now conduct a simple policy experiment. As noted above, the money supply increased by
17.5% during the Great Depression. The model predicts that if such monetary injection were tem-
porary, it should have decreased deposits in comparison to the equilibrium without policy interven-
tion.*! T ask what would have happened to deposits if the money supply had remained constant at
its 1929 level; thus, I set ;1o = 0. In this case, deposits would have been $30.3 billion. As a result,
the temporary monetary injection (1o = 0.175) decreased deposits by $0.69 billion. In this quan-
titative example, the drop in deposits triggered by the monetary injection is small. However, in the
richer model presented next and calibrated to the Great Recession, the unintended consequences

of monetary injections are greater.

“OWhile the results about M match the data almost exactly in Table 1, the data counterpart of M} is different than
the raw number reported in Table 1. Due to the choice of M = 3.285 (derived by ignoring money held by the public
in 1929), a better choice for the data counterpart of M@ is the value predicted by the market clearing condition (22)
because this equation must hold in the data as an accounting identity. That is, I subtract money held by banks in the
data, $3.1 billion, from the total money supply at ¢ = 0 in the model, M (1 + p) = $3.86 billion. The result ($0.76
billion) is lower than the value predicted by the model (Mé‘ = $1.58 billion).

#'Friedman and Schwartz (1963) document that some of the monetary injections implemented during the Great
Depression were temporary. The Federal Reserve increased credit during the first banking crisis (October 1930 to
January 1931), but credit decreased as bank failures declined sharply in early 1931. A similar contraction of the
money supply took place in February and March 1932, when bank failures tapered off.
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6 Smooth-utility model

Using the baseline model with piecewise-linear utility, Equation (2), I have shown that temporary
monetary injections implemented during financial crises amplify the flight to liquidity. The local
linearity implied by Equation (2) simplifies the policy analysis, because households are indifferent
among any quantity of money, deposits, and capital as long as their first-order conditions hold with
equality. However, such linearity implies also a very high elasticity of money demand with respect
to the opportunity cost of holding money.

To study the robustness of the results, I present a variant of the baseline model in which I
replace the piecewise-linear utility function with a standard, smooth functional form; in particular,
I use log utility. I also generalize the preference shocks in a way that induces some utility of
consumption at ¢ = 1 for patient households. This second feature opens up a role for banks to
increase welfare, in comparison to a bankless economy. The rest of the model is unchanged.

To study the equilibrium with runs and perform policy analysis in this richer model, I have to
rely on numerical methods. I present a quantitative example calibrated to study the run on money
market mutual funds that took place in 2008.

Policy counterfactual analysis shows that monetary injections reduce velocity and, depending
on the size of the monetary injection, amplify the flight to liquidity. Different from the baseline
model, nominal prices increase with a temporary monetary injection, although less than one-for-
one due to the endogenous reduction in velocity. The quantitative example calibrated to the 2008
crisis shows that the monetary injections implemented by the Federal Reserve to provide liquidity
to money market mutual funds avoided deflation but amplified the run substantially. The welfare

effect of the monetary injections is positive but small.

6.1 Preferences
I replace the utility function in Equation (1) with:

utility = Eo {e} u (C}) } + BCY (31)
where ¢’ is a preference shock realized at ¢t = 1 and taking values:

e impatient household) with probability s
eh— (imp ) P R T N o)

€ (patient household) with probability 1 — &
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Preference shocks are now represented by %, whose realization is private information, similar
to the baseline model.*> T allow for a general formulation in which £ can be positive, so that
even patient households may want to consume at ¢t = 1. However, since e/ > &L, the first-best
consumption is higher for impatient agents. Without loss of generality, I impose the normalization
Eo {5’1‘} =1
I use the functional form
u(C) = ClogC

where C is a constant. Under this parameterization, households’ marginal utilities vary endoge-
nously, creating a richer feedback between policy interventions and households’ choices.
Due to the different specification of preferences, I replace the restriction on C' in Equation (6)
with:
C=AK (33)

The role of this restriction is similar to that of Equation (6). When time-1 consumption of patient
and impatient households is evaluated at the first-best, Equation (33) implies that their marginal
utilities equal one and are thus equal to the marginal utility of consumption at ¢t = 2.

The rest of the model is the same as in the baseline model.

6.2 First-best

I claim that the smooth-utility model creates a role for banks in increasing welfare. To show this
result, I start by characterizing the first-best that solves the social planner’s problem. I consider
here a planner that can observe the realization of the preference shocks and is not subject to the
cash-in-advance constraint. I will then show that this first-best is not achieved in the bankless
economy, whereas it is achieved in the economy with banks, when banks are not subject to runs.
Let C; (¢7) and Cy (¢¥) denote the consumption of agents hit, respectively, by preference
shocks e and . The problem of the planner is to choose C; (¢7), C; (¢*), and C? for all h to

maximize:

cl<sH>,clr(ri%§{cg}h€HH{€ wl[Cr ()]} + (=) {"u [Cr (e )]}+5/Czdh

subject to the aggregate resource constraints at ¢ = 1 and ¢ = 2:

kC (") +(1—k)Cy(e5) < AK

421 also assume that 5}f is i.i.d. across households and the law of large numbers holds, also similar to the baseline
model.
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/ Chdh < (@fp) K + (/p:) T1.

Note that the shocks to capital do not appear in the formulation of the planner’s problem, because
they are idiosyncratic and, thus, do not affect the total amount of available resources.
I now characterize the solution, focusing on the time-1 allocation of consumption.** In the

non-trivial case in which e¥ > 0, the first-order conditions imply:
e’ [Cy ()] = ™' [Ch (£7)].

That is, the planner allocates consumption at ¢ = 1 in order to equate the marginal utilities of
consumption for patient and impatient households.

6.3 Bankless economy

I now turn to the analysis of the bankless economy in the smooth-utility model, focusing on the
case eL > 0. I show that the first-best is not achieved, opening up a role for banks to improve
welfare.

I conjecture that households hit by the preference shock £ face a binding cash-in-advance
constraint and, thus, spend all their money M/ at ¢ = 1. This behavior is optimal because the
nominal interest rate is positive in equilibrium (as shown later); therefore, it is not optimal to carry

money that will be unspent at ¢ = 1. The household problem (7) is replaced by:

max
Mp K Ci(eH

fon [28] QR ()
).C1(el) Py

:C1 (EH)

+ (1 — k) {6Lu [Cy (eL)} + 4

Py

(M} — PCy (1)) + QoG E {1+ 7 (v)} } G4)
P,

subject to the budget constraint (8) and the cash-in-advance constraint P;C' (5L) < MSL. The

first-order conditions imply:
ety [Cy (EH)} > by [C, (5L)] . (35)

Thus, C4 (5L) is greater than the social planner’s optimum and C} (5H ) is smaller. This result

arises because the cash-in-advance constraint is binding for impatient agents but is not binding for

“3Since the utility at ¢ = 2 is linear, consumption allocation among households at t = 2 does not affect ex-ante
welfare.
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patient agents.

6.4 Economy with banks: equilibrium with no runs

The logic of the equilibrium with no runs in the model with log utility is the same as in Section 5.1.
I set & = 0 so that no bank is subject to the negative shock 1", which essentially shuts down the
shocks to capital.

If eL' > 0, both patient and impatient households want to consume at ¢ = 1. Since withdrawals
at t = 1 are restricted to be either zero or Dg (see Section 4.1), households hold a positive amount
of money at ¢t = 0, M} > 0, and use this money to finance consumption if e? = L. That
is, patient households do not withdraw any deposits at ¢ = 1 and consume M[*/P,. If instead
gh = M, household h finances its consumption expenditure using not only its money, M, but
also withdrawals W', and thus, consumes (M{" + W) /P;.

Since banks pay a return on deposits that is equal to the expected return on capital, the opportu-
nity cost of holding deposits is zero — unlike the bankless economy, in which the opportunity cost
of holding money is positive. As a result, the cash-in-advance constraint is never strictly binding.

The next proposition formalizes this result.

Proposition 6.1. If o = 0, there exist an equilibrium with no bank runs that achieves the first best.

6.5 Economy with banks: runs and comparison with the Great Recession

As in the baseline model, a positive and sufficiently large value of o implies that some banks
become insolvent and subject to runs at ¢ = 1, so that households flight to liquidity at ¢ = 0.
Due to the richer model, I cannot solve for the equilibrium in closed-form, and therefore, I rely on
numerical methods. Nonetheless, the logic of the result is identical to Section 5.3.

I present a quantitative example that compares the equilibrium with bank runs with the run on
money market mutual funds that took place in September 2008. I first provide a brief background

and explain why the model is relevant to analyze this event, and then present calibration and results.

The run on money market mutual funds in September 2008. Duygan-Bump et al. (2013) and
Schmidt, Timmermann, and Wermers (2016) document a large run on prime institutional money
market mutual funds (MMMFs) in the month that followed the bankruptcy of Lehman Brothers
on September 15, 2008.* These funds, which managed about $1.3 trillion before September 15,

experienced $400 billion in redemptions during the run. On September 19, the Federal Reserve

#Prime institutional MMMFs are marketed to institutional investors and invest mostly in instruments other than
Treasury securities and agency debt.
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announced a new facility with the objective to provide liquidity to MMMFs, the Asset-Backed
Commercial Paper Money Market Mutual Fund Liquidity Facility (henceforth AMLF). Since the
Federal Reserve could not lend directly to MMMFs, it designed the AMLEF so as to provide funding
indirectly. The AMLF extended nonrecourse loans to “traditional” banks; these loans were col-
lateralized by the asset-backed commercial paper that traditional banks purchased from MMMFs,
which in turn used those resources to pay redemptions.*

Before turning to the quantitative analysis, I argue that the model is relevant to analyze this
event. I do so in three steps. First, I suggest a reinterpretation of the model in order to apply it to
MMMFs. Second, I discuss the role of liquidity in the model and relate it to MMMFs. Third, I
explain how the model can produce an equilibrium with runs but no deflation, in order to match a
key fact of the 2008 data. Additional discussion about timing, the government guarantee extended
by the Treasury on MMMFs, and runs in the model versus the data is provided in Appendix B.

When applying the model to MMMFs, deposits must be interpreted as shares of MMMFs, cap-
ital as asset-backed commercial paper, and money as liquid assets such as M1 or US Treasuries.*®
I also claim that asset purchases by the central bank in the model can be used to model the AMLF.
The results are quantitatively identical if I add “traditional banks” to the model in order to imple-
ment the AMLF as the Federal Reserve did. In this case, traditional banks in the model would
buy capital (interpreted as commercial paper) from banks (interpreted as MMMFs). Traditional
banks’ purchases of capital would be funded with fully collateralized loans from the central bank
(interpreted as loans extended under AMLF). This extension would be consistent with Begenau,
Bigio, and Majerovitz (2016), who provide evidence of a reallocation of assets from shadow banks
(including MMMFs) to traditional banks with funding provided, at least in part, by the liquidity
facilities of the Federal Reserve.

In terms of the liquidity services provided by MMMFs, 1 want to emphasize that the model
would produce the same results if the demand for money arose due to money in the utility function
rather than a cash-in-advance constraint.*’ The money-in-utility approach is a more general way
to motivate a demand for shadow banks liabilities (see, e.g., Nagel, 2014).

Finally, the relevance of the model with log utility is demonstrated by the fact that monetary
injections can produce an equilibrium with runs and flight to liquidity but no deflation, as in 2008.
In the model with log utility, monetary injections affect not only velocity and deposits but also
prices. In particular, in the calibration presented below, monetary injections allow the economy to

achieve constant prices, consistent with the 2008 data.

“For more details, see Duygan-Bump et al. (2013).

46For instance, Krishnamurthy and Vissing-Jorgensen (2012) show that US Treasuries provide liquidity services.

#"This can be obtained with a utility of the form C} + bV [(M} + W) /Pi] + BCY, where V is a strictly
increasing and strictly concave function. As in many other monetary models, modeling money using a cash-in-advance
constraint or money in the utility function produces the same results for some analyses.
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Figure 3: Policy analysis, Great Recession
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The green dotted line represents the good equilibrium (without monetary intervention); the blue solid line
represents the bad equilibrium as a function of the monetary intervention y9. The case po = 0.58 corre-
sponds to the $150 billion injection that the Federal Reserve implemented with the AMLFE. Parameter values:
B =0.998, k=02 a=0.0011, p~ = —1, M = $260 billion, K = 1,297.4, A; = 0.002, o = 0.

Calibration. Similar to the experiment in Section 5.5, I interpret the days before the Lehman
collapse (before September 15, 2008) as the economy without runs, the month after the Lehman
collapse as t = 0,1 in economy with runs, and the following months as ¢ = 2.

The model is calibrated as follows. I choose 3 = 0.998 due to the short period under analysis.
I normalize K and A, so that nominal prices in the good equilibrium are Q* = 100 and P* = 100.
I choose k = 0.2, and thus, banks in the model hold 20% of deposits in money; this is based on the
data of Duygan-Bump et al. (2013) and Schmidt, Timmermann, and Wermers (2016) who report,
respectively, that the MMMFs involved in the run held 21.3% and 18.57% of their portfolio in
liquid assets.

The value of the preference shock £ is a crucial parameter; the value of € is then determined
using the restriction Eg {8’1" = 1 introduced in Section 6.1. Since K = 0.2 and €& > 0, the
restriction E, {5’1‘} = 1 implies e < 1/k. For the baseline calibration, I consider the limit case
in which e = 1/k and, thus, €& = 0. 1 later consider alternative values of £ and €. Changing
el and ¥ does not significantly affect the ability of the model to explain the run on MMMFs, but

el' = 0 and e = 1/k produce the most conservative results about the policy analysis.
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Since & = 0, patient households do not want to consume at ¢ = 1, as in the model of Section 4.
Thus, deposits in economy without runs are D* = M /k as stated by Equation (26). In order
to match assets held by MMMFs before September 15 with assets held by banks in the model
economy without runs, I set M = $260, implying D* = M /k = $1.3 trillion.* At its peak, the
AMLF extended loans for about $150 billion, so I set 1o = $150/M = 0.58. I set 1o = 0 because
the AMLF was a temporary facility (it was closed on February 1, 2010). Setting o = 0 also
implies price stability after the crisis, P, = P*. The distinction between temporary and permanent
injection is not only important for the theoretical results but also empirically relevant.*

I choose « to match price stability (i.e., P in the bad equilibrium with monetary injections
equals P*). The resulting value is very small, o = 0.0011; that is, only 0.11% of banks in the
model are hit by ¢" at t = 1.

Results. In the economy with runs, deposits are D! = $1.114 trillion. I then compare this
result with the corresponding value that would arise in the economy without runs (D* = $1.3
trillion), similar to Section 5.5. T interpret the difference D{ — D*, if negative, as redemptions from
MMMFs and compare them with the $400 billion redemptions in the data. The model predicts $186
billion redemptions; thus, the model accounts for $186/$400 = 46.5% of the redemptions from
prime MMMFs in the data. The model also produces a flight to money of the same magnitude,
M} = $187 billion in comparison to M = 0 in the economy without runs.”

I then ask what would have happened if the Federal Reserve had injected a smaller amount
of money into the economy. Figure 3 presents the results as a function of the monetary injection
parameterized by 1, because M (1 4 1) is the money supply at ¢ = 0. When 1o = 0, the central
bank is not injecting any money into the economy. When 1y = 0.58, the central bank is injecting
$150 billion, as it did with the AMLF.

The top panel depicts the results related to prices and money velocity. Without monetary injec-
tions, money velocity would have been higher and the price level (/) would have dropped 2.86%
the month after the Lehman bankruptcy. That is, the monetary injection reduced velocity, as in the
baseline model, but offset deflation.

The bottom panel depicts the results related to money and deposits. The bottom-left plot rep-
resents the difference between deposits in the economy with runs (D#) and in the economy with-

“Note also that deposits are equal to assets held by banks.

490ther monetary injections implemented by the Federal Reserve in 2008 are also better characterized as temporary
(even though the balance sheet of the Federal Reserve did not shrink after the peak of the crisis) because the Federal
Reserve started to pay interests on reserves. Otherwise, monetary models predict that an inflationary pressure would
arise with a permanent injection if reserves payed no interest.

30Schmidt, Timmermann, and Wermers (2016) document a $400 billion inflow into MMMFs investing in
government-backed securities (i.e., of the same size as redemptions from prime funds). While currently no data
is available to study the hypothesis that money redeemed from prime funds was moved to mutual funds holding
government-backed assets, it is interesting to note that the model produces a pattern very similar to the data.
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out runs (D*), corresponding to redemptions from prime MMMFs. Without monetary injections,
D} = $1.255 trillion and thus redemptions would have been only $45 billion. Similar, the flight to
money (M) without monetary injections is $9 billion.

According to the model, the Federal Reserve avoided deflation. But it amplified the run on
prime MMMFs by $141 billion (= $186 — $45) and the flight to liquidity by $178 billion (=
$187 —$9). This quantitative example shows that the amplification of the flight to liquidity, derived
in the simple model with piecewise-linear utility, can be economically relevant in a model with

standard preferences.

Alternative calibration of ¢, ¢’ and welfare analysis. I now present the results of an alterna-
tive calibrations of ¢ and £%. In the baseline calibration, I chose e/ = 1/k and €& = 0, whereas
I now consider ¢/ < 1/k and e > 0. This calibration is less conservative because it produces
larger effects of policy interventions; however, it gives rise to a non-trivial welfare analysis.

Given e > 0, households hold M}* > 0 even in the good equilibrium, as discussed in Sec-
tion 6.4. If e = 1.62 (and e = 0.85 in order to satisfy the restriction E, (5’{) = 1 imposed in
Section 6.1), the value of M/ in the good equilibrium is $1.421 trillion, corresponding to the stock
of M1 in the data on September 8, 2016.°! Under this calibration, investors that own the shares
of prime institutional MMMFs hold the entire M1 in the U.S. economy as well. While this is not
likely to be the case in practice, this calibration is the opposite case of the baseline scenario, in
which ¢ = 1 /K, el = 0, and holders of prime institutional MMMFs do not hold any fraction of
M1. The correct calibration is thus somewhere in this range.

To match deposits D* in the economy without runs with assets of MMMTFs, I choose M =
$1,681 billion; this choice implies that money held by banks in the economy without runs is
Mt = M — M} = $260 billion, and thus, deposits are D* = $260/x = $1.3 trillion. Given
the value of M, I recalibrate i, to match the monetary injections implemented under the AMLEF,
implying o = $150/M = 0.09. I recalibrate o as well, in order to match price stability in the
economy with runs, implying o = 0.013.

With this calibration, the results of the economy with runs are approximately unchanged. De-
posits are DS = $1.113 trillion; thus, the difference with the calibration in which & = 0 is just
one billion. However, the results of the policy analysis are very different. If the central bank does
not inject any money (uo = 0), the drop in the price level is much smaller (only 0.2%) but deposits
are DY = $1.298 trillion. That is, redemptions from MMMFs (D} — D*) are only $2 billion. Ac-
cording to this calibration, the Federal Reserve has amplified the flight to liquidity by $185 billion,
much more than in the calibration with ¢ = 1/ and £* = 0.

I now turn to the welfare analysis, analyzing the bankless economy and the bad equilibrium

31Source: FRED (Federal Reserve Bank of St. Louis Economic Data).
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first, and then the welfare effects of monetary injections. Welfare is measured in units of time-
2 consumption. The welfare results reflect the simplicity of the model, rather than providing an
accurate welfare analysis of the run on MMMFs. Nonetheless, they are useful to further clarify the
model.

In the bankless economy, welfare is 0.005% smaller than in the first-best. In the economy with
runs, welfare is less than in the first best as well, but higher than in the bankless economy; in
particular, it is 0.0001% smaller than in the first-best. Thus, despite runs, banks improve welfare
in comparison to the bankless economy.

Finally, even if monetary injections reduce deposits, they slightly increase welfare. There are
two counteracting forces at play. First, the reduction of deposits brings the equilibrium closer to
that of the bankless economy, reducing welfare. Second, since monetary injections increase the
flight to liquidity and thereby increase money holdings M, consumption of households who are
at end of the line in a run — and therefore cannot withdraw money — increases. This effect reduces
the misallocation of consumption across impatient households at ¢ = 1. Numerically, the second
effect dominates, and thus, monetary injections increase welfare. Nonetheless, the effect is small,
and welfare is always about 0.0001% smaller than the first-best for any level of monetary injection

considered in this analysis.

7 Conclusions

A few years before the 2008 crisis, Bernanke (2002) outlined a strategy to fight deflation driven
by a financial collapse. While the Federal Reserve achieved this objective in 2008, this paper
argues that such strategy may generate unintended consequences: a reduction of velocity and an
amplification of the flight to liquidity.

The results are derived using a simple model, with the objective of clarifying the channel
responsible for these unintended consequences. Nonetheless, two quantitative examples show that
the model is able to account for two important episodes: the drop in deposits in the Great Recession
and the run on money market mutual funds in September 2008. The second calibration, based on
a slightly richer model, shows that the reduction in deposits triggered by policy interventions can

be large.
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Appendix

A Proofs

Proof of Proposition 5.1. 1 start with the analysis of the household problem, taking as given equi-
librium prices and the contract offered by banks. I conjecture (and later verify) that households
truthfully report their type and, thus, withdraw W' = D} if and only they are impatient. I also
consider the case in which no money is unspent at £ = 1 (otherwise the household could do bet-
ter by investing more in capital at ¢ = 0). Thus, the cash-in-advance constraint (15) holds with
equality, implying:

ot — M+ D}

By

The problem of households is thus:

Mg + D Ky (1+rf
e (20) )
0>7%0>~0 2

Mg+ Dj (1+7%) + QoK (14 75)

+(1-k)p 5 (36)
2

subject to the budget constraint:
Mg + Df + QoKy < M + QoK
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and to the non-negativity constraints Mg” >0, Dg >0, K{f > 0.
The first-order conditions imply that the non-negativity constraint on money is binding and,

thus, M = 0. Moreover, the first-order conditions for money and capital imply is

Dy 1 S S i
k' —0>—+ 1—k — 2 = __ 2
(Pl P ( ) P, p Py

Note that v’ (%?) = 1 using the equilibrium values D! = D* = M /k and P, = P* in Proposi-

tion 5.1, the functional form of u (-) in (2), and the restriction on C in (6). Thus:

1 1475  1+7f
r— 41—k —= = —
5 td=n) 7, B 7,

which holds, given the equilibrium prices in Proposition 5.1 and the restriction on P, in Equa-
tion (5). Thus, the allocation in Proposition 5.1 maximizes households’ utility.

The conjecture that households truthfully reveal their own type can be verified as follow. First,
patient households have no incentive to misreport their type, because the return from not with-
drawing is positive, 75 > 0. Second, the incentive compatibility constraint in Equation (16) holds
when evaluated at M(? = 0, D! = D*and P, = P*, and using the functional form of « (+) in (2)
and the restriction on C in (6).

Market clearing for money holds trivially, because M? = 0 and M} = kD! = M. Market
clearing for consumption goods also holds, because consumption by impatient households at ¢ = 1
is O = AK /K and there is a mass fraction of them; thus, that total consumption is AK and equals
output. The market clearing condition for capital holds by Walras’ Law.

Banks must invest at least a fraction x of money in order to serve withdrawals by impatient
households. It is not optimal to offer contracts that specify M? > kD?; a bank that does so invests
less in capital, and thus, the return 74 would be lower in comparison to the return offered by other
banks that choose M = kD?. O

Proof of Proposition 5.3. Consider the households’ problem, given by (30); I conjecture (and later
verify) that Pr (beginning of line) = x and Pr (end of line) = 1 — . (13). As discussed in
Section 5.3, the marginal utility of consumption in Cases 1 and 2 is one, whereas the marginal
utility is 6 > 1 in Case 3.

First, the incentive compatibility constraint in Equation (16) holds when evaluated at the equi-
librium value of the endogenous variables, using the restriction on parameters in (28) and (29).

Moreover, patient households prefer to truthfully reveal their own type because 75 (¢H ) > 0.
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Second, the household problem implies three households’ first-order conditions (with respect
to Ml, K, and D}) that are independent of consumption allocation, as discussed in Section 5.3,
and linear in 7} (") and 1/P;. Thus, these equations allow me to compute the value of 75 (/)
and P, in addition to the Lagrange multiplier of the budget constraint:
a k(@ —1)[1—a(l—k)

1 G0 well L i ey s

M[1-a(l+4+k(0-1))]
A KB (1—a)

which are both positive due to the assumption in (28), 5 > 0, x > 0,0 < a < 1, and py = 0.

P, =

(1+ p2) (37)

Moreover, these two results and Equations (4) and (17) evaluated at ¢/ = ¥ allow me to solve
for QQq:

Oq = Ma((0 -1k +1)—1) (a(p? + Bt r—1)+ (@ —-Dr+1) - +p-1) (1+ 12) -
(0 —1)(B—1)FK (a2(0 —1)(k — )k —a+ 1) 8

Next, I solve for M, D! and M{. To do so, I use the market clearing conditions for money

att = 0, (22), and for consumption at ¢ = 1, Equation (24), and the banks’ choice of money
holdings M¢ = D} (I will verify the optimality of this choice later). The market clearing con-
dition for money holdings and the fact that all banks are alike and all households are alike imply
MP + M} = M (1+ po). This equation is also linear in the endogenous variables. The market
clearing condition for consumption goods, Equation (24), can be used to pin down the price level,
similar to the bankless economy (Section 3). Multiplying Equation (24) both sides by P, I obtain
f PCMh = P, A, K, where P,C" is the consumption expenditure of household h. To compute
the consumption expenditure of households, I use the three Cases analyzed in Section 5.3 and
the law of large numbers. A fraction 1 — « of households have deposits at banks not subject to
runs and, thus, spend M + D}; a fraction ax have deposits at banks subject to runs but are at
the beginning of the line; therefore, they spend M + D} as well (recall that I am conjecturing
Pr (beginning of line) = k); the remainder fraction « (1 — k) are at the end of the line and, thus,

spend only M. Therefore, the market clearing condition becomes:
PIAK = (1 —a+ak) (M} + D}) +a(l— k) M. (39)
Banks’ choice of money holdings M} = xkD} implies M? = xD{, using the deposit market

clearing condition (23).
To sum up, I have three linear equations in M, D, and M}: M} + Mb = M (1 + o), (39),
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and M} = kD}. These equations imply:

py - 77 (Um0 =) mn Ot o)l =+ 0= DY g
(1= alB—r)n

M(I;ZM((1—&)(1—5%)—%(9—1)—uofﬁ(l—&)+uz[1—a(1+m(0—1))])
(1-a)"B(1- k)

Wl =) (1= BK)—ar(@—1) l-a(l-x) 1-a(l+x(0-1))
M= |1 e e (104)25(1'{"()41])

which simplifies to, when evaluated at ;1o = 0 and po = 0:

[(1—a)(1—pk)—ax(@—1)]
. (1-a)’B(1—r)k
[(1—a)(1—pk)—ax(@—1)]
(1—-a)’B(1— k) ]
(1—a)(1—pk)—ax(0—1)
(1—a)’B(1- k)

Given the restriction on parameters in (28), D{, M}, and M/ are positive.

Dy =M

Mb=M

Mb =M1 -

The quantity of capital held by banks and households, K¢ and K7, are given residually by the
respective budget constraints. The market clearing condition for capital holds by Walras’ Law.

To verify that Pr (beginning of line) = &, note that all households and all banks are identical;
therefore, a bank subject to a run serves a fraction of depositors equal to the ratio of money M to
deposits DY. Since M = x D}, the result follows.

To verify the optimality of M¢ = kD, note first that M{ > kDY in order to serve withdrawals
by impatient households if the bank is not subject to a run. Thus, I need to verify that M} > kD
is not optimal by showing that M} > x D} reduces households’ utility, so that such contract is not
offered in equilibrium. In order to offer the best contract among the class of contracts that I allow,
the bank chooses the composition of money and capital, M and K, in order to maximize the

objective function of households:

(42)

max (1 — «)

M KE P

[m (28008 g2 O) 5 28
2

0
+a38 RU 2

2

M} M! + D! M! + D!
[ (—0+ 0)—1—(1—/{)5—0__'— 0
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ra(1-34) [,w () +(1_K)6¥;’] LIS 8L

subject to the budget constraint of the bank, (12), and where:

(D§ — ME) (L+ 7§ (4°)) + My — kD
(1—#) D '

1+ 75 () = (43)
Note that M¢/D} in (42) is the probability that an household is at the beginning of the line in the
event of a run, as discussed before. Moreover, (43) collapses to (17) if M, b — KDS; if instead
M} > kD}, fewer resources are invested in capital at ¢ = 0, but M? — xD} is not used to pay
withdrawals at ¢ = 1 and, thus, is left to repay deposits not withdrawn at ¢ = 2.

Plugging (12) and (43) into (42), I obtain an unconstrained problem in M}. The first-order
condition, evaluated at M = x DY and at the equilibrium values of the other endogenous variables,
implies:

AKa(@—1) |(1—a)(1—=pr) —ak(@—1)+ (1 —a)* Bk

(1—a) l—a—ak(0—1) <0

where the inequality follows from (28). That is, the first-order condition evaluated at M} = xD}

is negative, so that increasing M} above kDY reduces households’ utility. []

Proof of Proposition 5.4. The results for Qq, Py, D{, and M/ follow by differentiating Equations
(37)-(41) with respect to . In particular:

dD} M
= — <0
dpo — (1—a)(1-r)
dMl — 1 —a(1-
0 _gploel=n g
dpo (1-a)(1-r)
The result for money velocity follows using Equation (27):
dv  [I—al+x(0—-1)]1+u) <0
dpto B(L—a)(1+ p)’
where the inequality uses the restriction on parameters in (28). ]

Proof of Proposition 5.5. The results follow by setting j1p = ps = p in Equations (37)-(41) and
differentiating with respect to p. [

Proof of Proposition 5.6. The results follow by differentiating Equations (37)-(41) with respect to

12 and using the restriction on parameters in (28). ]
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Proof of Proposition 6.1. Before proving the results, I restate the Proposition by providing the
equilibrium values of the endogenous variables. In what follows, I use the restriction E {5’11} =1
to express e~ as e = (1 — rke?) / (1 — k).

Proposition: If @ = 0, there exists an equilibrium characterized by:

e 1 —1— kel g M M 1
Dh ="M Mh =M = — P=— rf=--1 44
0 1_,{&7 0 1_1%7 QO 1_ﬁK7 1 AIK’ Ty ﬂ ( )
Cy (") = A1Ke", Oy (eY) = 4K — (45)
1
Db =D}, M{=kD} r§:5—1 (46)

and no bank runs at ¢ = 1; moreover, the equilibrium allocations achieve the first-best.
To prove the result, I start by analyzing the problem of households, which is similar to (36).
However, patient households may decide to consume since € > 0. I conjecture that patient and

impatient households consume, respectively:

M} Dl + M}
O, (e9) = 20 O (eH) = 20 _ 0 47
1) =5 Gl =""% (47)
Therefore, the household problem is:
MhI + DI K (1 K
max k< elu (—0 + O) +ﬁQO OL +T2)
M} Dl KD Py Py
Mp Kb (1+7r5)+ Dy (1+15
—F(l—/f){SLU(?O)—F/@QO 0( 2?2 0( 2) (48)
1 2

subject to the budget constraint, (12). The first-order conditions imply, using the functional form
u(C) = ClogC:

g @ﬁAlPl) 1

HMél—f—Dg + (1 —k) M ( O Bﬁz (49)
el B (1+T12)) o @2+A1P1> i

“grop T, ‘( o )P GO

The market clearing for money, together with banks’ choice M¢ = 1D} and the the market clearing

condition for deposits D} = D}, implies:

M (14 po) = M} + kD}. (51)
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The market clearing condition for consumption at ¢ = 1, multiplied by P, implies
/ P Ctdh = PLAIK (52)

where [ P\Cdh = P, [cCy (e7) + (1 — k) Cy (4)].

Summing up, I have a system of nine equations (Equations (4), (17) evaluated at ) = 1, (47),
(49)-(52), M{ = D}, and D§ = D{}) in ten endogenous variables (Df, M, Qo, P1, 4, C (),
Ch (8L) , DS, Mél, rg). The solution is given by (44)-(46).

Finally, using problem (48), it can be verified that any choice of M # M% is not optimal.
Moreover, using the utility function in (31), it can be verified that the equilibrium achieves the
first-best (see Section 6.2). [l

Proof of Proposition 6.1. If a = 0 and py = 0, the equilibrium is characterized by:

M (1 M (1 1—-p8—
iy —o, pp = MUEm) - p MUtw) e 10 b (g
K AlK ﬁ + /8/’1/0
as long as X > 0, i.e., as long as pg < % A positive r implies a positive opportunity

cost of holding money so that households’ optimal money holdings is M = 0. The results in
(53) can be proven similar to (5.1); moreover 1y = 0, the values in (53) becomes the same as in
Proposition 5.1.

The results of the Proposition follows by differentiating (53) with respect to p; the result for

money velocity follows using Equation (27). ]

B The run on MMMFs: discussion

This appendix discusses further the comparison between the model and the run on prime institu-
tional MMMFs in September 2008.

Timing: redemptions from MMMFs and AMLF announcement. In the model, the central
bank announces its intervention before the Walrasian market opens at ¢t = (0. However, in practice,
redemptions from MMMFs begun right after the collapse of Lehman (September 15) while the
AMLF was announced a few days later (September 19).

This difference in timing is not relevant if the announcement of the Federal Reserve was an-
ticipated, which I argue was likely to be the case, at least in part. The Federal Reserve had an-

nounced its commitment to provide liquidity to solvent institutions (Federal Reserve Press Release,
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09/14/2008) and spillovers to MMMFs appeared to be one of the concerns that motivated the AIG
bailouts;>? therefore, the AMLF announcement could have been anticipated, at least in part.

Alternatively, note that MMMFs have up to seven days to repay redemptions and the AMLF
was established four days after the collapse of Lehman Brothers. In this respect, the AMLF was
de facto established contemporaneously with the beginning of the run.

Moreover, even if the AMLF announcement had been unanticipated, the run continued for
several weeks after September 19. Despite the fact that a large part of the $400 billion redemptions
took place before the AMLF was announced, about $100 billion was redeemed after the AMLF

was announced (see Figure 1, panel B in Schmidt et al., 2016).

Treasury Guarantee Program for Money Market Funds. On September 19, the Treasury an-
nounced a guarantee program for money market funds, including MMMFs. This program is akin
to a deposit insurance, in which funds would be insured in exchange for a fee. However, the anal-
ysis that I perform is still valid as long as there is some state of the world with positive probability
in which the Guarantee would have not been implemented.

For the model to be valid, there should be a positive probability of a run at ¢ = 1. The results
are qualitatively unchanged if there are more states at ¢ = 1, such as some states in which the run
is stopped by deposit insurance and other states in which the insurance is not implemented.

I now argue that the data are consistent with the possibility that the Guarantee Program might
not have been implemented in some states of the world. While commercial banks are typically
required to have deposit insurance, the Guarantee Program for MMMFs left the participation de-
cision to each fund.’> Moreover, while the program was announced on September 19, funds had
time until October 8 to apply. In addition, the run on prime institutional MMMFs did not stop until
few days before October 8; about $100 billion was redeemed from prime institutional MMMFs be-
tween September 19 and October 6 (see Figure 1, Panel B in Schmidt et al., 2016). All these facts
are consistent with a story in which the lags in the implementation of the Guarantee — and more
generally the political uncertainty related to the response of the crisis — left open the possibility
that there could have been some states in which the Guarantee might not be implemented.

Finally, even without any uncertainty about the implementation of the Guarantee Program, only
$50 billion was available, while the overall size of the MMMFs industry in September 2008 was
$3.5 trillion (Duygan-Bump et al., 2013). If there is uncertainty about the number of mutual funds
that can be in trouble (i.e., uncertainty about « in the model), there could be states of the world in

which many funds are subject to runs, and thus, $50 billion is not sufficient to cover all the losses.

52For the concern related to spillovers to MMMFs, see Karnitschnig, M., D. Solomon, L. Pleven, and J. E. Hilsen-
rath, “US to take over AIG in $85 billion bailout; central banks inject cash as credit dries up,” Wall Street Journal,
September 16, 2008.

3See the press release at https://www.treasury.gov/press-center/press-releases/Pages/hp1161.aspx.
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Many states of the world at ¢ = 1 and runs in the model versus the data. As noted in Sec-
tion 5.3, the model can be extended by adding two aggregate states at ¢ = 1: a state in which
there are idiosyncratic shocks to capital, and thus, runs on banks hit by v/*, and a state in which the
idiosyncratic shocks to capital are zero for all agents. In the second state, no bank would be subject
to runs. The model would still produce a flight to liquidity at ¢ = 0 (replicating the redemptions
in the month after the collapse of Lehman) and, in the second aggregate state, no runs at t = 1

(replicating the fact that no fund was subject to a full run thereafter).
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