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Abstract 

This paper presents a comprehensive model of financial contagion encompassing 
both direct and indirect transmission channels. We introduce direct contagion 
through a 2-layered multiplex network to account for the distinct dynamics 
resulting from collateralized and uncollateralized transactions. Moreover, the 
spillover effects of fire sales, haircut prociclicality and liquidity hoarding are 
specifically considered through indirect transmission channels. This framework 
allows us to analyze the determinants of systemic crisis and the resilience of 
different financial network configurations. Our first experiment demonstrates the 
benefits of counterparty diversification as a way of reducing systemic risk. The 
second experiment highlights the positive effect of higher initial capital and 
liquidity levels, while stressing the potentially counterproductive impact of rapidly 
increasing the minimum capital and liquidity ratios, particularly in times of stress. 
The third experiment examines the possibility of controlling the maximum haircut 
rates, although the impact of this measure is modest compared to other 
alternatives. Finally, our last experiment evidences the fundamental role played by 
fire sales and market liquidity in either leading or mitigating systemic crises. 
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1. Introduction 

This paper presents a comprehensive framework to study the systemic risk emerging from the 
interaction of collateralized and uncollateralized transactions. Securities financing transactions 
(SFTs) are widely used financial instruments that enhance the functioning, efficiency and liquidity of 
financial market.1 Credit institutions, insurance companies and investment funds are clear examples 
of market participants who rely heavily on these transactions.2 In isolation, SFTs are conceived as 
low-risk financial instruments, but their extensive usage results in a dense network of interactions 
that might give rise to systemic risk.3 

Several definitions of systemic risk have been proposed in the literature. In accordance with De 
Bandt and Hartmann (2000), we define it as the likelihood of systemic breakdown that materializes 
through the failure of a large proportion of the financial system. As explained in ESRB (2016), there 
are different sources of financial contagion that can lead to systemic risks. In order to provide new 
insights, our framework jointly considers three of the most prominent ones: (i) counterparty risks 
arising from direct financial interconnections; (ii) negative pricing effects due to fire sales and market 
illiquidity and (iii) funding restrictions arising from hoarding behaviors and haircuts prociclicality. 

Our model characterizes the development of financial contagion by means of a multiplex network. 
The direct contagion channels are introduced through a 2-layered network accounting for the 
different shock-spreading dynamics of the collateralized and uncollateralized transactions (see D’ 
Agostino, 2014 for an introduction to multiple layered networks). Previous literature (Upper, 2011) 
has shown that an independent consideration of different sources of contagion can severely 
underestimate the consequences of financial shocks. Consequently, our framework couples direct 
contagion channels with three indirect transmission mechanisms: fire sales, haircut procyclicality and 
liquidity hoarding. This paper contributes to the systemic risk literature by specifically focusing on 
the interactions among direct and indirect contagion channels. Furthermore, as far as we know, the 
current study is the first to deal with collateralized and uncollateralized transactions in a multiplex 
network context. 

Our paper builds upon the growing literature of financial random networks (e.g. Nier et al., 2007, 
Gai and Kapadia, 2010, Battiston et al., 2012 and Elliott, Golub, and Jackson 2014, among others). 
Methodologically, we rely on computer simulations for three reasons. First, artificial scenarios are 
investigated in order to test the resiliency of particular financial system configurations. Second, the 
flexibility of simulations allows us to model complex interaction dynamics that would be difficult to 
consider through analytical methods. Finally, simulations are effective tools to overcome the 

problem regarding the lack of detailed data on bilateral exposures among financial firms.
4
 

                                                           
1 For instance, the access to liquid repo and securities lending markets helps financial institutions prevent a chain of 
settlement delivery failures from developing; post-trade market infrastructures such as international central securities 
depositories (ICSDs) may also engage in securities lending to increase settlement efficiency (See FSB, 2012). 
2 See FSB (2012) for a detailed description of SFT markets and their use by market participants. 
3
 In fact, prominent research papers have described the 2007-2008 financial crisis as a large disruption in the repo market 

(e.g. Gorton and Metrick, 2012). 
4 The recently adopted EU regulation “on transparency of SFT and of reuse” will certainly alleviate this problem. See 
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R2365&from=EN. 

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R2365&from=EN
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We run four simulation experiments. Experiment 1 investigates the effects of different 
interconnectedness levels in the secured and the unsecured market, also considering the 
consequences of positive multiplexity, arising when central firms in the collateralized segment also 

correspond to central firms in the uncollateralized one.
5
 Our results demonstrate the benefits of 

counterparty diversification as a way of reducing systemic risk. In contrast, when central firms 
coincide across different layers, shocks hitting one of them may have severe consequences for the 
entire financial system. Experiment 2 analyzes the modification of two regulatory parameters: the 
minimum risk-weighted capital and the minimum liquid holdings. Our results show that higher 
initial capital and liquidity levels can substantially restrain the severity of unfolding crises. However, 
we also point out how sudden and unanticipated increases in the minimum capital and liquidity 
requirements might aggravate the consequences of emerging crises. Experiment 3 considers the 
possibility that a policy intervention might be able to control the maximum haircut rate, although 
this measure only achieves a modest tempering in the median number of defaults. Finally, 
Experiment 4 shows the fundamental role of fire sales and market illiquidity as a major driver of 
systemic risk. 

The remainder of the paper is organized as follows. Section 2 summarizes the salient findings from 
the financial contagion literature. Section 3 details the contagion model. Section 4 describes the 
setup for the numerical simulations. Section 5 presents the results of the four experiments. Finally, 
section 6 draws the conclusions and sets out future research lines. 

 

2. Literature Review 

In their seminal paper, Allen and Gale (2000) suggest that the pattern of interconnectivity among 
financial institutions is a fundamental element in assessing the danger of contagion in financial 
networks. Default contagion studies can be classified into two groups depending on whether they rely 
on real-world financial networks or on artificially simulated ones. Considering the former group, 
Furfine (2003) builds an interbank network based on detailed bilateral transactions in US Fed Funds, 
finding that systemic effects do exist but are relatively small. Other related studies use aggregate 
interbank assets and liabilities to estimate a matrix of interbank exposures, often based on the 
maximum entropy algorithm. Several national banking systems have been subjected to this type of 
study, including Switzerland (e.g. Sheldon and Maurer (1998) and Müller (2006)), United Kingdom 
(Wells (2002), Sweden (Blavarg and Nimander (2002)), Germany (Upper and Worms (2004)), 
Netherlands (van Lelyveld and Liedorp (2006)), Belgium (Degryse and Nguyen (2007)), Mexico 
(Martinez Jaramillo et al. (2010)) and Italy (Mistrulli (2011)). Consistent with the US evidence, these 
studies generally do find contagion effects following the default of large banks, but they are rather 
limited and concentrated on small institutions. See Upper (2011) for a comprehensive review of this 
strand of the literature. 

By relying on artificial simulated networks, researchers gain some flexibility to assess the danger of 
contagion stemming from particular network configurations. Nier et al. (2007) show how increasing 
the interconnectivity among financial firms can initially lead to larger default cascades. However, the 
rise of system interconnectedness beyond a certain threshold improves its resilience, a result that is 

                                                           
5
 The measure of centrality used in this study is degree centrality. 



4 
 

in line with the main conclusions of Allen and Gale (2000). Gai and Kapadia (2010) also use 
simulated networks to show that financial systems exhibit a robust-yet-fragile tendency in a highly 
interconnected system: while the probability of contagion may be low, the effects can be extremely 
widespread when problems occur. Taking a different approach, Battiston et al. (2012) use a 
dynamical setting in which the probability of firms defaulting reaches its minimum at an 
intermediate level of connectivity. As clearly shown in Acemoglu, Ozdaglar, and Tahbaz-Salehi 
(2015), the relationship between the likelihood of a systemic failure and the underlying network 
structure is contingent on the magnitude and the number of negative shocks affecting financial 
institutions. They argue that for sufficient small shocks, a denser network enhances system stability 
while the same structure becomes the most fragile when the magnitude of those shocks increases. 
The reasons behind these heterogeneous results regarding the relationship between financial 
network topologies and default performances are analytically investigated in Acemoglu, Ozdaglar, 
and Thabaz-Salehi (2015). 

A much less explored area is the study of liquidity contagion. Similarly to the spread of economic 
losses, liquidity shocks are also susceptible to propagation, potentially leading to the materialization 
of liquidity risk. Despite being intimately related, the nature of liquidity contagion is different to the 

process of default contagion.
6
 Lee (2013) studies the contagion of liquidity shortage under different 

network topologies, finding that core-periphery structures with deficitary money centers show the 
highest systemic risk. Liquidity crises in network contexts are also considered in Gai, Haldane, and 
Kapadia (2011) where the focus is on their complexity, concentration and financial 
interconnectedness. By implementing several simulation experiments, they find tipping points for 
the system similar to the ones found in Gai and Kapadia (2010) in the context of default contagion. 

Just recently, researchers have started to consider financial multiplex networks (see D’Agostino 
(2014) for a general treatment) as a way to address the different nature of financial interactions 
among market participants. In these types of structures, the nodes in the network are connected 
through different sorts of links representing heterogeneous exposures. Empirical investigations of 
the multiplex banking networks of Colombia, UK, Italy and Mexico are provided by León, 
Berndsen, and Renneboog (2014), Langfield, Liu, and Ota (2014), Bargigli et al. (2015) and Molina-
Borboa, Martínez-Jaramillo, and Lopez-Gallo (2015), respectively. There are two major lessons 
stemming from this emerging literature: i) the topology of each layer of interactions might be 
noticeably different and ii) the rankings of relative importance of financial firms across layers are not 
necessarily correlated. Montagna and Kok (2013) provide the first empirical assessment of the 
contagion risk among European banks in a multiplex network context. The authors stress the 
importance of simultaneously considering the relevant contagion channels in a unified setting in 
order to properly assess systemic risk. Recently, Caccioli et al. (2015) have investigated the Austrian 
banking system using a similar approach and concluded that direct interbank exposures by 
themselves do not significantly contribute to financial contagion. However, by coupling 
counterparty risk with overlapping portfolio risk, the amplification effects might result in much 
larger cascading failures.  

Finally, it is worth mentioning that the current paper is also closely related to the literature of 
indirect contagion due to fire sales (Shleifer and Vishny, 2011) in combination with overlapping 
portfolios (Cifuentes, Ferrucci, and Shin, 2005). As discussed in Brunnermeier (2009) and in Gorton 

                                                           
6
 Among others, a main difference is that liquidity shocks are transmitted from lender to borrowers while losses go from 

borrowers to lenders. 
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and Metrick (2012), these types of indirect contagion represent economic mechanisms that amplify 
initial shocks and could potentially cause disproportionately large financial crisis. 

3. The Contagion Model 

3.1 Preliminaries 

Throughout the paper, lattice operations are used along with other standard matrix definitions. In 
order to improve readability, definitions and mathematical notations are collected in this subsection. 

Let us define two column vectors 𝑥, 𝑦 ∈ ℝ𝑛. The standard lattice operations are 

𝑥 ∧ 𝑦 = [min(𝑥1, 𝑦1) , min(𝑥2, 𝑦2) , … , min(𝑥𝑛, 𝑦𝑛)]𝑇 

𝑥 ∨ 𝑦 = [max(𝑥1, 𝑦1) , max(𝑥2, 𝑦2) , … , max(𝑥𝑛, 𝑦𝑛)]𝑇 

𝑥+ = [max(𝑥1, 0) , max(𝑥2, 0) , … , max(𝑥𝑛, 0)]𝑇 

𝑥 ∘ 𝑦 = [(𝑥1 ∗ 𝑦1), (𝑥2 ∗ 𝑦2), … , (𝑥𝑛 ∗ 𝑦𝑛)]𝑇 

Let 𝟏 be a column vector in ℝ𝑛 whose elements are equal to one and 𝟏𝑺  another column vector 

whose ith-element equals one when condition S is satisfied for the ith element and zero otherwise. 

Unless otherwise stated, the mathematical notation is as follows: Greek letters correspond to model 

parameters, right sub-indices identify either a particular financial firm i (𝑎𝑖 ) or the relationship 

between firms i and j (𝑎𝑖𝑗 ). Small letters account for column vectors in ℝ𝑛  whose components 

represents firms’ level variables 𝑎 = [𝑎𝑖] while capital letters are reserved for 𝑛𝑥𝑛 matrices of the 

form 𝐴 = [𝑎𝑖𝑗] whose elements represent paired interactions among firms. Finally, the left sub-

index indicates the time period while the left super-index refers to the specific financial instrument 
under consideration. 

3.2 General Framework 

This section presents a model of financial contagion that extends the framework developed in 
Montagna and Kok (2013) towards the inclusion of collateralized transactions, liquidity hoarding and 
haircut prociclicality. Our model comprises three distinct building blocks: i) firms’ balance sheets, 
which describe the multiplex network of direct interconnections, ii) the firms’ behaviors to fulfill 
their regulatory requirements and iii) the contagion dynamics through both direct and indirect 
transmission channels. A graphical outline of the contagion model is provided in Appendix A. 

3.2.1 From Balance Sheets to a Multiplex Network 

The financial system is populated by a set of financial firms 𝑁 = {1,2, … , 𝑛} with particular balance 
sheet configurations. Figure 1 plots a stylized balance sheet for a firm i in a period t. Total firm 

assets in period t is given by 𝑎𝑡 𝑖 = 𝑎𝑡
𝑒

𝑖 + 𝑎𝑡
𝑢𝑐

𝑖 + 𝑎𝑡
𝑐

𝑖 + 𝑎𝑡
𝑚

𝑖 + 𝑎𝑡
𝑜

𝑖  where 𝑎𝑡
𝑢𝑐

𝑖  and 𝑎𝑡
𝑐

𝑖  
corresponds to the outstanding amount of uncollateralized and collateralized lending respectively, 

𝑎𝑡
𝑚

𝑖  accounts for cash holdings and 𝑎𝑡
𝑜

𝑖  measures the value of other assets held by institution i. 



6 
 

The item 𝑎𝑡
𝑒

𝑖 = 𝑠𝑡 𝑖 ∗ 𝑝𝑡  accounts for the marked-to-market value of its security portfolio where 

𝑠𝑡 𝑖  is the amount of securities held at the beginning of period t and 𝑝𝑡  denotes its endogenously 
determined market price. For simplicity, only one financial asset is considered in the portfolio and 

fractional holdings of 𝑠𝑡 𝑖  are also allowed.
7
 Total firm liabilities in period t is given by 𝑙𝑡 𝑖 =

𝑙𝑡
𝑢𝑐

𝑖 + 𝑙𝑡
𝑐

𝑖 + 𝑙𝑡
𝑙𝑡

𝑖 + 𝑙𝑡
𝑠𝑡

𝑖  where 𝑙𝑡
𝑢𝑐

𝑖  and 𝑙𝑡
𝑐

𝑖  accounts for the outstanding amount of 

uncollateralized and collateralized borrowing respectively and 𝑙𝑡
𝑙𝑡

𝑖  and 𝑙𝑡
𝑠𝑡

𝑖  measure other short- 

and long-term liabilities. Finally, 𝑘𝑡 𝑖  represents the firm’s capital, and 𝑎𝑡 𝑖 = 𝑙𝑡 𝑖 + 𝑘𝑡 𝑖  should 
hold at any time. 

 

 

It is assumed that the n firms in the market are interconnected through two different market 

segments.
8
 Such interconnections can be mapped into a 2-layered multiplex, , as depicted in figure 2, 

where nodes correspond to financial institutions while the links represent directed and weighted 

exposures. More precisely, the multiplex network ℜ = {𝑁, [ 𝑊𝑡
𝑢𝑐 , 𝑊𝑡

𝑐 ]} is composed by the set 

of financial firms 𝑁 and two different single-layered networks. The first accounts for exposures in 

the unsecured segment –with an adjacency matrix given by 𝑊𝑡
𝑢𝑐 = [ 𝑤𝑡

𝑢𝑐
𝑖,𝑗] – while the second 

corresponds to exposures in the secured segment –with an adjacency matrix given by 𝑊𝑡
𝑐 =

[ 𝑤𝑡
𝑐

𝑖,𝑗]–. Therefore, a loan granted from firm i to firm j in the unsecured (secured market) market is 

measured by the element 𝑤𝑡
𝑢𝑐

𝑖,𝑗 ( 𝑤𝑡
𝑐

𝑖,𝑗) in the corresponding adjacency matrix.
9
 Consequently, the 

outstanding amounts of uncollateralized and collateralized lending of entity i at period t are given by 

𝑎𝑡
𝑢𝑐

𝑖 = ∑ 𝑤𝑡
𝑢𝑐

𝑖,𝑗
𝑛
𝑗=1  and 𝑎𝑡

𝑐
𝑖 = ∑ 𝑤𝑡

𝑐
𝑖,𝑗

𝑛
𝑗=1 . Similarly, the outstanding amounts of uncollateralized 

and collateralized borrowing are given by 𝑙𝑡
𝑢𝑐

𝑖 = ∑ 𝑤𝑡
𝑢𝑐

𝑗,𝑖
𝑛
𝑗=1  and 𝑙𝑡

𝑐
𝑖 = ∑ 𝑤𝑡

𝑐
𝑗,𝑖

𝑛
𝑗=1 . 

                                                           
7
 Given the close correlation among securities’ returns in distress scenarios, considering a portfolio with just one 

financial asset allows us to model mark-to-market pricing effects while keeping our framework relatively simple. 
8
 Throughout the paper the concepts of uncollateralized and unsecured are considered as synonymous as are 

collateralized and secured. 
9
 𝑤𝑡
𝑟

𝑖,𝑖 = 0 𝑓𝑜𝑟 𝑟 = 𝑢𝑐, 𝑐 in order to avoid the possibility that a financial institution grants a loan to itself. 

Figure 1: Stylized balance sheets 
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3.2.2 Firms’ Behavior and Legal Constraints 

Each financial entity must respect two regulatory constraints: a minimum level of liquid assets and a 
minimum risk-weighted capital. In addition, a liquidity hoarding behavior is introduced to capture 
the increased withdrawals of funds that are typically observed in distressed periods and are not 
explained by regulatory restrictions. 

The first constraint requires that the amount of cash held by institution i in period t, must be at least 

a certain proportion 𝜃𝑙𝑖𝑞 of its total short-term liabilities given by 𝑙𝑡
𝑢𝑐

𝑖 + 𝑙𝑡
𝑐

𝑖 + 𝑙𝑡
𝑠𝑡

𝑖 . A liquidity 

shock 𝜀𝑖 is introduced for each firm by considering the dynamics 𝑙0
𝑠𝑡

𝑖 = 𝑙𝑖𝑛𝑖
𝑠𝑡

𝑖 + 𝜀𝑖
10. The liquidity 

constraint coupled with liquidity shocks gives rise to the vector of liquidity demand, denoted by 𝑑𝑡
𝑙𝑖𝑞

. 

Following Montagna and Kok (2013), we assume that this liquidity demand is first satisfied with 
cash holdings and subsequently by the withdrawal of funds from debtors, as expressed in (1). 

𝑑 = ( 𝑎𝑡
𝑢𝑐 + 𝑎𝑡

𝑐 ) ∧ [𝜃𝑙𝑖𝑞 ( 𝑙𝑡
𝑢𝑐 + 𝑙𝑡

𝑐 + 𝑙𝑖𝑛𝑡
𝑠𝑡

𝑖
+ 𝜀𝑖) − 𝑎𝑡

𝑚 ]
+

𝑡
𝑙𝑖𝑞

 (1) 

The second regulatory constraint requires that the risk-weighted capital of entity i in period t, 𝑘𝑡
𝑟𝑤

𝑖 , 

must be equal or greater than a pre-specified threshold �̅� 

𝑘𝑡
𝑟𝑤

𝑖 ≡
𝑘𝑡 𝑖

𝜃𝑙𝑒𝑛( 𝑎𝑡
𝑢𝑐

𝑖 + 𝑎𝑡
𝑐

𝑖 ) + 𝜃𝑠𝑒𝑐( 𝑎𝑡
𝑒

𝑖 ) + 𝜃𝑜( 𝑎𝑡
𝑜

𝑖 )
≥ �̅� (2) 

where 𝜃𝑙𝑒𝑛, 𝜃𝑠𝑒𝑐 and 𝜃𝑜 account for the risk weighting parameters corresponding to different asset 
classes. If equation (2) does not hold, firms can withdraw funds from their debtors in an amount 

equal to ∆ 𝑎𝑡
𝑙𝑒𝑛

𝑖 , thus generating an additional liquidity demand due to capital requirements, 

denoted 𝑑𝑖𝑡
𝑘  

                                                           
10

 Liquidity shocks drawn from a particular density function confers some advantages over idiosyncratic shocks; for 
instance, the possibility to introduce correlated liquidity shocks drawn from fat-tailed distributions. 

Figure 2: 2-Layered network of financial interactions 
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𝑑𝑡
𝑘 = [( 𝑎𝑡

𝑢𝑐 + 𝑎𝑡
𝑐 − 𝑑𝑡

𝑙𝑖𝑞 ) ∧  ∆ 𝑎𝑡
𝑙𝑒𝑛𝑑 ]

+
 

 
(3) 

where ∆ 𝑎𝑡
𝑙𝑒𝑛𝑑

𝑖  comes from solving expression (2) as follows. 

∆ 𝑎𝑡
𝑙𝑒𝑛𝑑

𝑖 =
�̅�[𝜃𝑙𝑒𝑛( 𝑎𝑡

𝑢𝑐
𝑖 + 𝑎𝑡

𝑐
𝑖 − 𝑑𝑖𝑡

𝑙𝑖𝑞 ) + 𝜃𝑠𝑒𝑐( 𝑎𝑡
𝑒

𝑖 ) + 𝜃𝑜( 𝑎𝑡
𝑜

𝑖 )] − 𝑘𝑡 𝑖

�̅� 𝜃𝑙𝑒𝑛
 (4) 

By combining expressions (1) and (3), the required liquidity vector due to regulatory constraints is 

given by 𝑑𝑡
𝑟𝑒𝑞 = 𝑑𝑡

𝑙𝑖𝑞 + 𝑑𝑡
𝑘 . 

A financial firm may also withdraw funds from its counterparties as part of a defensive action in 
distress contexts. This behavior is modeled in a similar fashion to that in Fourel et al. (2013) by 

assuming that proportion of liquidity hoarding by firm i in period t denoted by 𝑧𝑖 𝑡  is given by 

𝑧𝑖 𝑡 = 1 − 𝜙(θ1,θ2) ((
𝑘𝑡

𝑟𝑤
𝑖

�̅�
)

+

), where 𝜙(θ1=1,θ2)  is the cumulative log normal distribution with 

parameters θ1 and θ2 corresponding to the mean and standard deviation of the underlying normal 
distribution. This assumption implies that the liquidity hoarding becomes more intense as the firms’ 
distance-to-default reduces. Therefore, the vector of total demand for liquidity is 

𝑑𝑡
𝑡𝑜𝑡 =  [ 𝑧𝑡 ( 𝑎𝑡

𝑢𝑐 + 𝑎𝑡
𝑐 ) ∨ 𝑑𝑡

𝑟𝑒𝑞
] (5) 

Finally, a pecking order in the use of firm assets is assumed. It is considered that, to satisfy their 
liquidity needs, firms rely first on cash holdings and afterwards withdraw funds from their secured 
and unsecured exposures. If the shortage persists, firms can turn to fire sales of their portfolio of 
securities to meet their regulatory constraints. 

3.2.3 Contagion Mechanisms 

We consider both direct and indirect contagion channels, each with their specific dynamics and 
rules. Direct contagion is local in nature and takes place through exposures between firms in the 
secured and unsecured market. Indirect contagion is broader in scope and can simultaneously affect 
all firms in the system. 

Before explicitly stating the contagion mechanisms, some mathematical notation is required. The 

matrices 𝑊0
𝑐 and 𝑊0

𝑢𝑐 characterize each layer of the financial multiplex network in period zero, 

when no defaults have occurred yet.
11

 We denote by 𝟏𝑡
𝐷  a column vector whose ith-component is 

equal to one when firm i defaults at the end of period t (or the beginning of period t+1) and zero 

otherwise. The diagonal matrix Λ𝑡  tracks non-defaulted firms through time by setting its ith-main 
diagonal element to one when the corresponding entity satisfies this condition until the end of 

period t and to zero otherwise. Therefore, the column vector 𝟏 = 𝑑𝑖𝑎𝑔( Λ𝑡 )𝑡
𝑁𝐷  contains the same 

                                                           
11

 The precise definition of a default state is given below 
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information as Λ𝑡 .
12

 It is important to note that while 𝟏𝑡
𝐷  accounts for the flow of defaults from 

period t to t+1, the matrix Λ𝑡  and the vector 𝟏𝑡
𝑁𝐷  accumulate defaults until the end of period t. Let 

us define the vector of proportional withdrawal as 𝑓𝑡 = [ 𝑓𝑡 𝑖] where 𝑓𝑡 𝑖 ∈ [0,1] is the percentage 

fund withdrawal made by firms i in period t. The vector 𝑓𝑡  will be fully specified in section 3.3 as 

part of the solution of the model. Finally, we introduce the diagonal matrix 𝐹𝑡  whose main diagonal 

is given by the vector 𝑓𝑡 . 

The effects of defaults depend on the market segment considered. For the unsecured segment, a 
default of firm j at the end of period t-1 results in a loss to its creditors in period t equal to the 
corresponding outstanding exposure. This assumption implies zero-recovery which, in spite of being 
questionable in the long term, is a reasonable working assumption for the short-term perspective in 
which the model is embedded. In mathematical terms, the default of firm j at the end of period t-1 

converts the column’s j entries in 𝑊𝑡
𝑢𝑐  to zero. Moreover, since each firm i has withdrawn funds 

from its counterparties in a proportion equal to 𝑓𝑡−1 𝑖  in period t-1, the adjacency matrix of the 
remaining exposures in the unsecured market in period t is 

𝑊𝑡
𝑢𝑐 = (𝐼 − 𝐹𝑡−1 ) ∗ 𝑊𝑡−1

𝑢𝑐 ∗ Λ𝑡−1   (6) 

Conversely, a firm’s default in the secured segment does not directly result in losses to its creditors, 
since they may re-use the pledged collateral. Mathematically, the exposure of firms i to firm j in the 

secured segment is given by 𝑤0
𝑐

𝑖,𝑗 . This transaction is backed with 𝑐0 𝑗𝑖  units of collateral whose 

market value is 𝑝0
𝑐 ∗ 𝑐0 𝑗𝑖 . Denoting the haircut rate applied to firm j in period t by ℎ0 𝑗 , the 

relationship between the exposure of firm i towards j and the amount of pledged collateral is  

𝑤0
𝑐

𝑖,𝑗 = (1 − ℎ0 𝑗
) ∗ 𝑐0 𝑗𝑖

∗ 𝑝
0
𝑐  (7) 

Expression (7) could be restated in matrix form as in (8) where 𝐶0 = [ 𝑐0 𝑖𝑗] is the collateral matrix 

and 𝐻0  is a diagonal matrix whose ith-entry in the main diagonal is equal to the haircut rates of firm 

i in period t.
13

 

𝑊0
𝑐 = 𝑝

0
𝑐 ∗ 𝐶0

𝑇 ∗ (𝐼 − 𝐻0 ) (8) 

When a default occurs in the secured market, it is assumed that lenders can re-use the pledged 
collateral to partially offset their credit exposures. The amount of new funds raised and the credit 

losses in the secured segment depend on the prevailing market price of the collateral 𝑝𝑡
𝑐  and the 

haircut rates for each financial firm 𝐻𝑡 . Furthermore, the outstanding bilateral exposures in the 

secured market are given by the matrix 𝑊𝑡
𝑐  in equation (9). A detailed description of the dynamics 

of each balance sheet item is provided in Appendix B. 

                                                           
12

 The operator 𝑑𝑖𝑎𝑔(X) extracts the main diagonal of matrix X. 

13
 Note that 𝐶0 =

1

𝑝0
𝑐 (𝐼 − 𝐻0 )

−1
∗ 𝑊𝑇

0

𝑐
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𝑊𝑡
𝑐 = (𝐼 − 𝐹𝑡−1 ) ∗ 𝑊𝑡−1

𝑐 ∗ Λ𝑡−1  (9) 

Regarding the indirect contagion channels, three propagation mechanisms are considered: security 
price fails due to fire sales, haircut procyclicality and liquidity hoarding. The first two channels are 
modeled as contingent functions of two state variables: (i) the cumulative amount of defaults and (ii) 
the relative number of fire sales. As a crisis unfolds, these state variables act as a thermometer for 
the financial system. 

The cumulative amount of default 𝑑𝑟 𝑡  tracks the proportion of the system that has switched to a 
default state in period t  

𝑑𝑟𝑡 = 1 −
 𝟏𝑻 ∗ 𝟏𝑡

𝑁𝐷

𝟏𝑻 ∗ 𝟏
 (10) 

whereas the relative number of fire sales 𝑟𝑡𝑠 ∈ [ 0,1]𝑡 , is determined by the ratio between the total 
number of securities sold in the market at the beginning of period t and its total (inelastic) supply. 

This variable is quantified by expression (11), where 𝑓𝑠𝑡  denotes the vector of fire sales which is 
specified as part of the solution of the model in section 3.3. 

𝑟𝑡𝑠𝑡 =
𝟏𝑡

𝑁𝐷 𝑇 ∗ 𝑓𝑠𝑡 + 𝟏𝑻
𝑡

𝐷 ∗ 𝑠𝑡

𝟏𝑻 ∗ 𝑠0
𝑇

 (11) 

The security returns process 𝑟𝑡  is modeled as a geometric Brownian motion given by expression 

(12), where the expected return and volatility are 𝜇( 𝑟𝑡𝑠𝑡 )𝑡  and 𝜎( 𝑑𝑟𝑡 )𝑡 , respectively and 𝜂 

follows a standard normal distribution. Expression (12) explicitly describes the link between the two 
state variables and the security return process. 

𝑟𝑡 ≡ 𝜇( 𝑟𝑡𝑠𝑡 )𝑡 Δ𝑡 + 𝜎( 𝑑𝑟𝑡 )𝑡 √Δ𝑡 𝜂𝑡  (12) 

Note that the expected rate of return of the return process is a function of 𝑟𝑡𝑠𝑡  while its volatility 

depends on 𝑑𝑟𝑡 . This allows us to capture the increased uncertainty that comes with higher default 

rates (
𝜕 𝜎𝑡

𝜕 𝑑𝑟𝑡

> 0) as well as the downward price pressure that emanates from fire sales (
𝜕 𝜇𝑡

𝜕 𝑟𝑡𝑠𝑡

< 0). 

Expressions (13) and (14) describe such effects. The parameter 𝛼 in (13) measures security price 

elasticity to fire sales and 𝜎𝑚𝑖𝑛  and 𝜎𝑚𝑎𝑥  stand for the minimum and maximum return volatility, 
respectively. 

𝜇𝑡 = exp(−𝛼 ∗ 𝑟𝑡𝑠𝑡 ) − 1 (13) 

  

𝜎𝑡 = 𝜎𝑚𝑖𝑛 ∗ 𝑒
ln(

𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛

) ( 𝑑𝑟𝑡 )

 (14) 
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The aggregate haircut rate is modeled as a function of market volatility, as stated in (15). This 
relationship replicates the empirical pattern found in Gorton and Metrick (2012). The parameter 

ℎ𝑚𝑎𝑥 , accounts for the maximum haircut, 𝛿 controls the steepness of the relationship between 𝜎𝑡  

and ℎ𝑡 , and 𝜎 𝑖𝑠 the value of 𝜎𝑡  at which ℎ𝑡  reaches its midpoint. 

ℎ𝑡 =
ℎ𝑚𝑎𝑥

1 + e−𝛿 ( 𝜎𝑡 −�̅�)
 (15) 

Figure 3 summarizes the pattern of relationships among 𝑑𝑟𝑡 , 𝑟𝑡𝑠𝑡 , 𝜇𝑡 , 𝜎𝑡  and ℎ𝑡 , and the 
approximate shape of their relationships. 

 

 

Finally, the liquidity hoarding dynamics were already introduced in equation (5). Compared to the 
effects of fire sales and haircuts procyclicality, liquidity hoarding is local in nature and stems from 
the individual firm’s distress. However, despite its narrow origin, a widespread hoarding by many 
firms can generate funding constraints for the whole financial system, thus potentially generating a 
significant systemic event.  

3.3 Solving the model 

The solution of the model consists of two sequential steps for each period t. In the first step, the 
liquidity requirements are determined (see equation (5)) and the vector of unconstrained 

proportional withdrawals 𝑓𝑡  is computed. In the second one, we follow a modified version of 
Eisenberg and Noe (2001) to quantify (i) the clearing payment vector, (ii) the funds that are 
withdrawn from each counterparty and (iii) the amount of fire sales. At the end of each period t, 
defaulting firms are defined as those that cannot meet their obligations to creditors or their 
regulatory constraints.  

The contagion spiral is depicted in figure 4. The process starts with an initial liquidity shock 
randomly hitting financial firms and pushing them to withdraw funds. The initial shock might also 
lead to fire sales of securities with the subsequent fall in security prices and the propagation of mark-

Figure 3: Relationship between state variables and market variables 
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to-market losses to other firms in the system. Plummeting security prices and funding constraints 
may result in defaults which will affect the level of haircuts and the amount of liquidity hoarding. 
The default of an entity leads to losses in the capital account of their counterparties and the fire 
selling of its securities portfolio, with a further impact on securities prices. Such dynamics give rise 
to additional waves of withdrawals, fire sales and defaults, starting new contagion rounds until the 
system converges to a steady state. 

 

 

Step 1: Computing the proportional withdrawals of funds 

Let us denote by 𝑎𝑡
𝑡𝑜𝑡 = 𝑎𝑡

𝑢𝑐 + 𝑎𝑡
𝑐  the vector of total firm exposures as the sum of their 

exposures in the secured and the unsecured segments. Equivalently 𝑊𝑡
𝑡𝑜𝑡 = 𝑊𝑡

𝑢𝑐 + 𝑊𝑡
𝑐  

denotes the matrix of total bilateral exposures. 

The proportional withdrawal vector 𝑓𝑡 = [ 𝑓𝑡 𝑖] is computed by solving the fixed-point equation 

(16) where 𝑑𝑡
𝑡𝑜𝑡  is given in (5). Therefore, 𝑓𝑡 𝑖 accounts for the percentage of its total lending that 

firm i needs to withdraw in order to meet its liquidity demand. Since equation (16) is an increasing 

and concave function on the lattice ℝ+
𝑛 , the existence and uniqueness of 𝑓𝑡  is guaranteed (Kennan, 

2001). 

𝑓𝑡 ∘ 𝑎𝑡
𝑡𝑜𝑡 = 𝑎𝑡

𝑡𝑜𝑡 ∧ [ 𝑑𝑡
𝑡𝑜𝑡 + 𝑊𝑇

𝑡
𝑡𝑜𝑡 ∗ 𝑓𝑡 ] (16) 

The left hand side of (16) quantifies the amount of withdrawals made by each entity 𝑓𝑡 ∘ 𝑎𝑡
𝑡𝑜𝑡 . 

The right hand side is the minimum between the vector of total claims towards any other firms 

𝑎𝑡
𝑡𝑜𝑡  and the total demand for liquidity. Note that the term 𝑑𝑡

𝑡𝑜𝑡  accounts for an internal demand 

for liquidity due to regulatory requirements and precautionary hoarding, while 𝑊𝑇
𝑡

𝑡𝑜𝑡 ∗ 𝑓𝑡  captures 
the external liquidity demands that originate due to withdrawals from other firms in the system. 

Step 2: Clearing the market 

Once the proportional withdrawal vector has been defined, the next step is to determine whether 
such an amount of withdrawals could be cleared simultaneously in the market. To calculate the 

Figure 4: Contagion Spiral 
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clearing vector 𝑔𝑡 = [ 𝑔𝑖𝑡 ],  we rely on the approach proposed by Eisenberg and Noe (2001) , 

thus determining the maximum payment that each firm can provide. 

The total liability (book value) of firm i towards the rest of the agents in the system is given by 

𝑏𝑙𝑖𝑡
𝑡𝑜𝑡 = ∑ 𝑤𝑡

𝑡𝑜𝑡
𝑗,𝑖

𝑛
𝑗=1 𝑓𝑗𝑡  or 𝑏𝑙𝑡

𝑡𝑜𝑡 = 𝑊𝑇
𝑡

𝑡𝑜𝑡 ∗ 𝑓𝑡  in matrix form. The maximum total payment 

made by any financial entity could not exceed the value of its available liquid assets. Furthermore, 

since debtors might not be able to pay their debt in full, it may happen that 𝑔𝑖𝑡 ≤ 𝑏𝑙𝑖𝑡
𝑡𝑜𝑡 . 

The proportional demand for withdrawal faced by institution i from its counterparty j in period t is 

denoted as 𝑣𝑡 𝑖,𝑗 and given by 

𝑣𝑡 𝑖,𝑗 =
𝑤𝑡

𝑡𝑜𝑡
𝑗,𝑖 𝑓𝑗𝑡

∑ 𝑤𝑡
𝑡𝑜𝑡

𝑗,𝑖 𝑓𝑗𝑡
𝑁
𝑗

 (17) 

Therefore, the market value of the withdrawals collected by firm i from all of its counterparties is 

∑ 𝑣𝑡 𝑗,𝑖 𝑔𝑗𝑡
𝑛
𝑗=1  or 𝑉𝑇

𝑡 𝑔𝑡  in matrix notation. Besides these withdrawals, there are two additional 

sources of funds that firm i can use to repay its liabilities: cash holdings 𝑎𝑡
𝑚

𝑖  and fire sales 𝑓𝑠𝑡 𝑖 . 

Consequently, the clearing vector 𝑔𝑡  is obtained by solving the following fixed-point equation 

𝑔𝑡 = 𝑏𝑙𝑡
𝑡𝑜𝑡 ∧ [ 𝑉𝑇

𝑡 𝑔𝑡 + 𝑎𝑡
𝑚 + 𝑝𝑡 𝑓𝑠𝑡 ] (18) 

The number of securities that firms i sell in period t cannot exceed 𝑠𝑡 𝑖  (short sales are not 
allowed). As long as this limit is not reached, entity i is able to fire sell securities to cover its liquidity 
shortage as described in expression (19). Therefore, by introducing (19) into (18) we have the 

complete specification to compute the vector 𝑔𝑡 . 

𝑓𝑠𝑡 = 𝑠𝑡−1 ∧ [
𝑏𝑙𝑡

𝑡𝑜𝑡 − 𝑉𝑇
𝑡 𝑔𝑡 − 𝑎𝑡

𝑚

𝑝𝑡

]

+

 (19) 

In accordance with Eisenberg and Noe (2001), the existence and uniqueness of 𝑔𝑡  is guaranteed 
when all the nodes/firms show positive cash balances or when the financial network is connected 
and some nodes present positive cash holdings. Our simulations also obey such restrictions 

 

4. Model Calibration 

To simulate our model, we rely on the Erdös-Rényi framework, randomly creating multiple 
realizations of the 2-layered financial network. The network arrangement is denoted by 

𝐺(𝑛, 𝑝𝑢𝑐, 𝑝𝑐)  where 𝑛  is the number of financial institutions and 𝑝𝑢𝑐  and 𝑝𝑐  account for the 
probability of directed links in the uncollateralized and collateralized market segments, respectively. 
We refer to these parameters as the densities of the network in the corresponding layers. The 

baseline system is characterized by 𝑛 = 30 , 𝑝𝑢𝑐, 𝑝𝑐𝜖[0.05, 0.5]  and the bilateral netting of 
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exposures is not allowed. For each initial network configuration, we run 2.000 realizations of the 
system and expose them to the full contagion process. The first, second and third quartiles of the 
default distribution are recorded and interpreted as measures of the system’s robustness to liquidity 
shocks. 

We mainly follow Gai, Haldane, and Kapadia (2011) for the construction of firms’ balance sheets. 

Each financial entity starts with a balance sheet drawn from normal distribution 𝑁(100,4). The 

initial proportions for the liability items are as follows: capital ( 𝑘𝑡 𝑖 ) 8.5%, uncollateralized borrowing 

( 𝑙𝑡
𝑢𝑐

𝑖 ) 15%, collateralized borrowing ( 𝑙𝑡
𝑐

𝑖 ) 20%, other short term liabilities ( 𝑙𝑡
𝑠𝑡

𝑖 ) 20%. The item other long 

term liabilities ( 𝑙𝑡
𝑙𝑡

𝑖 ) accounts for the remaining part of total liabilities adding up to 100%. It is 

assumed that both, 𝑙𝑡
𝑢𝑐

𝑖  and 𝑙𝑡
𝑐

𝑖  are evenly distributed over the corresponding borrowing links. In 

the case where a particular realization of 𝐺(𝑛, 𝑝1, 𝑝2) does not contain borrowing links attached to 
firm i in a market segment, the total borrowing of that firm in that segment is set to zero. The 

balance sheet proportion for the asset items are as follows: portfolio of securities ( 𝑎𝑡
𝑒

𝑖 ) is drawn from a 

𝑁(20%, 10%), similarly, cash holdings ( 𝑎𝑡
𝑚

𝑖 ) comes from a 𝑁(5%, 2%). Both, uncollateralized lending 

( 𝑎𝑡
𝑢𝑐

𝑖 ) and collateralized lending ( 𝑎𝑡
𝑐

𝑖 ) are endogenously determined by each particular realization of 
the multiplex network. Therefore, although the total borrowing equals total lending at system level, 

individual firms may initially exhibit notable credit imbalances. Finally, other assets ( 𝑎𝑡
𝑜

𝑖 ) is the 
adjustments item that completes the 100% of the asset side. 

The contagion process starts by introducing the liquidity shocks into the system. We assume that the 

increases in 𝑙𝑡
𝑠𝑡

𝑖  are fully compensated with a reduction in 𝑙𝑡
𝑙𝑡

𝑖 . The vector of liquidity shocks 

comes from a multivariate normal distribution with mean vector 𝜇 = 𝟏 and covariance matrix Σ =
𝐼.

14
 For the baseline simulation, the collateral price is assumed to remain fixed and equal to 1. The 

rest of the model parameters are specified in Table 1. 

Item Symbol Strategy or Value 

Minimum risk-weighted capital �̅� 8% 

Minimum Cash - Legal Parameter 𝜃𝑙𝑖𝑞  0.05 

Counterparty Exposure - Legal Parameter 𝜃𝑙𝑒𝑛 0.20 

Security Exposure - Legal Parameter 𝜃𝑠𝑒𝑐 1.00 

Other Exposure – Legal Parameter 𝜃𝑜 1.00 

Hoarding Parameters (𝜃1, 𝜃2) (1.0, 0.05) 

Market Liquidity 𝛼 0.25 

Initial Security Price 𝑝0  1.0 

Security Returns Volatility ( 𝜎𝑚𝑎𝑥 , 𝜎𝑚𝑖𝑛 ) (0.05, 0.20) 

Aggregate Haircut Parameters ( ℎ𝑚𝑎𝑥 , 𝛿, 𝜎) (0.5, 40, 0.1) 

 

 

                                                           
14

 Correlated liquidity shocks might by easily incorporated by assuming Σ ≠ 𝐼 

Table 1: Model’s parameters for the baseline case. 
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5 Results of the simulations 

5.1 Baseline simulations 

Let us start by characterizing the dynamics of the contagion process by considering one typical 
realization of the model. For this illustrative example we assuming that the average interconnectivity 

in each market segment is 𝑝𝑢𝑐 = 𝑝𝑐 = 0.15. Figure 5 plots the evolution of six key indicators of the 
system throughout several iterations of the contagion algorithm until convergence: i) balance sheet 
assets, ii) fire sales, iii) aggregate haircut, iv) security price v) cumulative defaults and vi) average 
proportional withdrawals. 

 

 

The first aspect to consider in this realization is the gradual reduction of interfirm exposures which 
are partially compensated by increments in cash holdings along with a secular shrinkage of the 
average size of balance sheets. The security price contractions in the sixth and seventh iterations are 
consistent with the sizeable amount of fire sales taking place in the two preceding time periods. The 
proportional withdrawal also reaches its maximum in the sixth iteration, resulting in considerable 

Figure 5: Baseline case. Evolution of key indicators through a particular realization of the contagion process 
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flight to liquidity as a way to address liquidity shortfalls. Both, the cumulative defaults and the 
aggregate haircut level, show a “S-shaped” behavior, exposing the higher level of stress in the system 
as the contagion unfolds. The simulation reaches a steady state after twelve iterations, with roughly 
44% of firms defaulting at the end of this particular realization. 

 

5.2 Interconnectivity levels and Correlated Multiplexity 

This subsection investigates the effects derived from different levels of interconnectivity and from 
the so-called correlated multiplexity (D’ Agostino, 2014). Correlated multiplexity refers to non-

random arrangements of the degree of nodes across the layers of a multiplex network.
15

 Maximally-
positive correlated multiplexity indicates that the ranking of node’s degree coincides across different 
layers of the network. Conversely, maximally-negative correlated multiplexity indicates that the 
ranking of node’s degrees in the first layer is fully reversed in the second layer, whereas a neutral 
correlated network shows no correlation across node’s degree in different layers. In our context, a 
positive correlated multiplexity refers to a situation where firms with many counterparts in the 
collateralized market correspond to financial institutions with many interactions in the 

uncollateralized segment as well. 
16

 Therefore, positive correlated multiplexity characterizes a 
situation in which highly influential firms tend to coincide across market segments. 

 

 

Figure 6 shows the results of the simulations, where the subplots refer to the cases of negative, 
neutral and positive correlated multiplexity. The vertical and horizontal axes account for the 
interconnectivity levels in the collateralized and uncollateralized segments, while the color map 
corresponds to the median proportion of defaults in each network configuration. 

There are three aspects to highlight. First, in line with previous research (Nier et al., 2007 and Gai 
and Kapadia, 2010), larger interconnectivity levels strengthen system resilience against liquidity 

shocks: lower default rates are found when 𝑝𝑢𝑐 and 𝑝𝑐 take the greatest values. This pattern remains 
regardless of the specific correlated multiplexity configurations. Therefore, our results show the 

                                                           
15

 The degree of node i is defined as the number of links attached to it. 
16

 We are particularly focused on the correlated multiplexity in terms of lending links (out-degrees). 

Figure 6: Effect of connectivity on the median defaults 
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benefits of counterparty diversification as a way of reducing systemic risks. Second, figure 6 reveals a 

substitution effect between 𝑝𝑢𝑐 and 𝑝𝑐. The negative effects of a reduced interconnectivity in the 
uncollateralized market can be partially or totally offset by higher interconnectivity levels in the 
collateralized segment. Third, the market resiliency is severely undermined when the system exhibits 
a positive correlated multiplexity. In particular, when highly central firms coincide across segments, 
shocks hitting one of them may have severe consequences for the stability of the entire financial 
system. 

 

5.3 Regulatory parameters and initial capital and liquidity 

The effects of changes in the risk-weighted capital and the liquidity requirements are analyzed in this 
subsection. The left panel of figure 7 plots the simulation results in terms of the 25th, 50th and 75th 

percentiles of the default distribution for different values of �̅� , whereas the right panel presents 

equivalent quantities for changes in 𝜃𝑙𝑖𝑞. 

 

 

Before considering these results, it is worth mentioning that our baseline parametrization imposes an 
initial distress in the system, with roughly 50% of firms starting with a liquidity shortfall (cash 

holdings are distributed as N(5%, 2%) while 𝜃𝑙𝑖𝑞 is 5%). In such distress situation, our experiments 

highlight the potentially counterproductive impact of rapidly increasing �̅�  and 𝜃𝑙𝑖𝑞 ,  particularly 
when a forthcoming tightening has not been anticipated by market participants. In our setting, firms 
that do not meet the regulatory requirements are required to immediately accommodate their 

balance sheets structures to comply with the new regulations. Consequently, sharp increments of �̅� 

or 𝜃𝑙𝑖𝑞, may prompt firms to withdraw funds and to fire sell assets, thus aggravating the effect of 
unfolding crises. Therefore, these experiments highlight the importance of (i) properly 
communicating forthcoming policy changes and (ii) giving market participants enough time to 
accommodate their balance sheet to upcoming regulations. 

Figure 7: Effect of changes in the regulatory parameters 
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However, these results shall not be interpreted as an argument in favor of lower regulatory 
requirements. On the contrary, for any given financial system configuration, higher initial capital and 
liquidity levels are clearly beneficial towards containing systemic risk. This argument is clearly 
supported by figure 8, which plots the effects of the initial capital and cash holdings on the median 

levels of defaults. As expected, as the initial levels of  𝑎𝑡
𝑚

𝑖  and 𝑘𝑡 𝑖  increase, individual firms are 
better prepared to absorbs external shocks and the whole system becomes more resilient, thus 
restraining the severity of emerging crises. Conversely, when individual firms are undercapitalized or 
face liquidity shortfalls, external shocks will rapidly fuel the deleveraging pressures, kicking off the 
contagion spiral and significantly increasing the median number of defaults. 

 

 

 

5.4 Haircut rates and collateral market 

The effects of changes in the collateral market are considered in this subsection. As explained in 
ESRB (2016), conservative minimum haircuts can be used in non-stressed times to reduce financial 
leverage and prociclicality. However, in turbulent periods, both sudden spikes and abnormally high 
haircuts may also exacerbate the consequence of unfolding crisis. Policy tools designed to address 
the effects of increasing haircuts include, among others, step limits (i.e.: establishing a temporary 
ceiling in the upward changes of haircuts) or outright restrictions in the overall haircuts level. 

Figure 9 plots the effects in the default distribution stemming from a possible control of the 

maximum haircut rate ℎ𝑚𝑎𝑥 . The left-hand panel shows the results assuming a fixed collateral price, 
while the right-hand panel considers that the collateral behavior is perfectly correlated with the 
security price. As figure 9 shows, correlation effects are particularly noticeable in terms of the 75th 
percentile of the default distributions. The rationale is that it is precisely in the adverse scenarios (i.e: 
those leading to the 75th percentile) where security prices will be typically characterized by a 
downward price spiral. Consequently, a perfectly correlated collateral price further introduces an 

Figure 8: Effect of the initial Cash ( 𝑎𝑡
𝑚

𝑖 ) and Capital ( 𝑘𝑡 𝑖 ) on the median defaults 
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additional source of stress in scenarios where the securities pricing contribution were already quite 
negative, thus aggravating the severity of the crisis in the right tail of the distribution. 

Conversely, if we consider the median number of defaults, controlling the maximum haircuts does 

not stand out as a particularly effective measure: despite considering a wide range of ℎ𝑚𝑎𝑥  values, 
the number of defaults only drops from 23% to 20%, and therefore the impact of this measure is 
modest compared to other alternatives. 

 

 

5.5 Securities market liquidity 

Previous literature has emphasized the fundamental role of market liquidity for the preservation of 
financial stability (Brunnermeier, 2009). We capture this effect by considering different securities 

prices elasticities through modifications of the parameter 𝛼 , in a similar fashion to Cifuentes, 

Ferrucci, and Shin (2005). Basically, higher values of 𝛼 lead to larger price impacts from fire sales.  

Figure 10 presents the 25th, 50th and 75th percentiles of the default distribution for different values of 

𝛼 . Consistent with previous studies, 𝛼  plays a fundamental role in driving financial contagion. 

Specifically, while the median default drops to 13% when 𝛼 is 0.0, the systemic stress significantly 
increases when higher price elasticities are observed, and the median amount of defaults reaches a 

40% of the system when 𝛼 is 0.5. The downward price spiral started by fire sales is reinforced by 
capital losses due to the falling securities prices, which in turn fuel new rounds of withdrawals and 
fire sales, exacerbating the initial shocks and increasing the number of defaults. As a result, our 
experiments evidence that policy measures designed to prevent the downward price spirals 
stemming from the lack of liquidity and fire sales can be particularly useful in preserving financial 
stability. 

Figure 9: Effect of maximum haircuts in the median defaults 
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6. Conclusions 

Financial network literature has been successful in providing new insights and tools to disentangle 
the undesirable effects of contagion and systemic risk. However, despite the notable developments 
observed in the last years, the interconnections between different market segments and different 
contagion channels have been mainly overlooked. This study contributes to the literature by 
considering in a single framework collateralized and uncollateralized transactions as well as direct 
and indirect contagion channels. Specifically, we rely on a 2-layered multiplex network to model the 
distinct exposures and shock-spreading dynamics of the collateralized and uncollateralized markets. 
Additionally, the spillover effect of fire sales, haircut prociclicality and liquidity hoarding are 
explicitly considered through indirect contagion channels. 

Our results are drawn from a set of simulated experiments which analyze the robustness of different 
financial system configurations. The first experiment demonstrates the benefits of greater 
interconnectivity levels while illustrating the so-called substitution effect, arising when a high 
interconnectedness in the secured market is compensated by a reduction of the network density in 
the unsecured segment. In addition, our results show how positive correlated multiplexity can 
severely undermine market resiliency. The second experiment illustrates the positive effects of 
higher initial capital and liquidity ratios while also stressing the counterproductive consequences of a 
sharp tightening in the capital and liquidity requirements, particularly when the system is already 
under distress. The third experiment analyses the possibility of stabilizing rapidly increasing collateral 
haircuts. Our results show that restraining the maximum haircuts can mitigate systemic events, 
although the impact of this measure is modest compared to other alternatives. Finally, the last 
experiment evidences the fundamental role played by fire sales and market liquidity in either leading 
or mitigating systemic crises, a result that is consistent with previous literature. 

Two future research lines might be considered. First, although we rely on simulated networks, the 
model is general enough to accommodate real-world data. Therefore, contingent on data availability, 
this framework could be used to test the fragility of particular financial system configurations. 

Figure 10: Effect of changes in the securities market liquidity 
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Second, new insights could be gained by considering more sophisticated degree distributions and 
higher heterogeneity in the firm’s balance sheets, both representing promising alternatives to close 
the gap between purely simulated results and real-world scenarios. 

 

References 

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi, 2015, Systemic Risk and Stability in Financial Networks, 
The American Economic Review 105, 564–608. 

Acemoglu, D., A. Ozdaglar, and A. Thabaz-Salehi, 2015, Networks, Shocks and Systemic Risk. NBER - 
Working Paper. 

Allen, F., and D. Gale, 2000, Financial Contagion, Journal of Political Economy 108, 1–33. 

Bargigli, L., G. di Iasio, L. Infante, F. Lillo, and F. Pierobon, 2015, The multiplex structure of interbank 
networks, Quantitative Finance 15, 673–691. 

Battiston, S., D. Delli Gatti, M. Gallegati, B. Greenwald, and J. E. Stiglitz, 2012, Liaisons dangereuses: 
Increasing connectivity, risk sharing, and systemic risk, Journal of Economic Dynamics & Control 36, 1121–1141. 

Blavarg, M., and P. Nimander, 2002, Inter-bank exposures and systemic risk, Sveriges Riksbank. Economic Review 
2, 19–45. 

Brunnermeier, M., 2009, Deciphering the Liquidity and Credit Crunch 2007–2008, Journal of Economic 
Perspectives 23, 77–100. 

Caccioli, Fabio, J. Doyne Farmer, Nick Foti, and Daniel Rockmore, 2015, Overlapping portfolios, contagion, 
and financial stability, Journal of Economic Dynamics and Control 51, 50–63. 

Cifuentes, R., G. Ferrucci, and H. Shin, 2005, Liquidity Risk and Contagion, Journal of the European Economic 
Association 3, 556–566. 

D’Agostino, G., 2014, Networks of Networks: The Last Frontier of Complexity. Ed. Gregorio D’Agostino and 
Antonio Scala. Understanding Complex Systems (Springer International Publishing, Cham). 

De Bandt, O., and P. Hartmann, 2000, SYSTEMIC RISK: A SURVEY, European Central Bank - Working Paper. 

Degryse, H., and G. Nguyen, 2007, Interbank Exposures : An Empirical Examination of Contagion Risk in 
the Belgian, International Journal of Central Banking 3, 123–171. 

Eisenberg, L., and T. H. Noe, 2001, Systemic Risk in Financial Systems, Management Science 47, 236–249. 

Elliott, M., B. Golub, and M. O. Jackson, 2014, Financial Networks and Contagion, The American Economic 
Review 104, 3115–53. 

ESRB, 2016, Indirect contagion : the policy problem, ESRB Occasional Paper Series 9. 

Fourel, V., J.C. Hèam, D. Salakhova, and S. Tavolaro, 2013, Domino Effects when Banks Hoard Liquidity: 
The French Network. Working Paper - Banque de France. 

FSB, 2012, Securities Lending and Repos: Market Overview and Financial Stability Issues, . 

Furfine, C., 2003, Interbank Exposures : Quantifying the Risk of Contagion, Journal of Money, Credit and 
Banking 35, 111–128. 

Gai, P., A. Haldane, and S. Kapadia, 2011, Complexity, concentration and contagion, Journal of Monetary 
Economics 58, 453–470. 

Gai, P., and S. Kapadia, 2010, Contagion in financial networks, Proceedings of the Royal Society A: Mathematical, 
Physical and Engineering Sciences 466, 2401–2423. 



22 
 

Gorton, G., and A. Metrick, 2012, Securitized banking and the run on repo, Journal of Financial Economics 104, 
425–451. 

Kennan, J., 2001, Uniqueness of Positive Fixed Points for Increasing Concave Functions on n: An 
Elementary Result, Review of Economic Dynamics 4, 893–899. 

Langfield, Sam, Zijun Liu, and Tomohiro Ota, 2014, Mapping the UK interbank system, Journal of Banking and 
Finance 45, 288–303. 

Lee, S. H., 2013, Systemic liquidity shortages and interbank network structures, Journal of Financial Stability 9, 
1–12. 

León, C., R. Berndsen, and L. Renneboog, 2014, Financial Stability and Interacting Networks of Financial 
Institutions and Market Infrastructures. 

Martinez Jaramillo, S., O. Pérez Pérez, F. Avlia Embriz, and F. Lopez Gallo Dey, 2010, Systemic risk, 
financial contagion and financial fragility, Journal of Economic Dynamics & Control 34, 2358–2374. 

Mistrulli, P., 2011, Assessing financial contagion in the interbank market: Maximum entropy versus observed 
interbank lending patterns, Journal of Banking & Finance 35, 1114–1127. 

Molina-Borboa, J., S. Martínez-Jaramillo, and F. Lopez-Gallo, 2015, A multiplex network analysis of the 

Mexican banking system : link persistence , overlap, Journal of Network Theory in Finance 1, 99–138. 

Montagna, M., and C. Kok, 2013, Multi-layered interbank model for assessing systemic risk. Kiel Working 
Papers. 

Müller, J., 2006, Interbank Credit Lines as a Channel of Contagion, Journal of Financial Services Research 29, 37–
61. 

Nier, E., J. Yang, T. Yorulmazer, and A. Alentorn, 2007, Network models and financial stability, Journal of 
Economic Dynamics & Control 31, 2033–2060. 

Sheldon, G., and M. Maurer, 1998, Interbank lendinding and systemic risk: an empirical analysis for 
switzerland, Swiss Journal of Economics and Statistics 134, 685–704. 

Shleifer, A., and R. W. Vishny, 2011, Fire sales in finance and macroeconomics, The Journal of Economic 
Perspectives 25, 29–48. 

Upper, C., 2011, Simulation methods to assess the danger of contagion in interbank markets, Journal of 
Financial Stability 7, 111–125. 

Upper, C., and A. Worms, 2004, Estimating bilateral exposures in the German interbank market: Is there a 
danger of contagion?, European Economic Review 48, 827–849. 

van Lelyveld, I., and F. Liedorp, 2006, Interbank Contagion in the Dutch Banking Sector: A Sensitivity 
Analysis, International Journal of Central Banking 2, 99–133. 

Wells, S., 2002, UK interbank exposures: systemic risk implications, Financial Stability Review - Bank of England, 
175–182. 

  



23 
 

Appendix A: Contagion Algorithm 

Figure A.1 illustrates the contagion algorithm and the relationship among the different variables. 

 

 

  

Figure A.1: Contagion Algorithm 
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Appendix B: Balance Sheet Dynamics 

This appendix describes the balance sheet dynamics.
17

 Starting from the asset side, there are three 

sources of changes for cash holdings (∆ 𝑎 ): 𝑡
𝑚  the reuse of collateral ∆ 𝑎𝑐𝑜𝑙

𝑡
𝑚 , the net cash flow 

resulting from transactions in the secured and unsecured segments and the proceeds from fire sales. 
These effects are collected in equations B.1-B.4. 

∆ 𝑎𝑡
𝑚 = ∆ 𝑎𝑐𝑜𝑙

𝑡
𝑚 + ∆ 𝑎𝑤𝑑

𝑡
𝑚 + ∆ 𝑎𝑓𝑠

𝑡
𝑚  (B.1) 

∆ 𝑎𝑐𝑜𝑙
𝑡

𝑚 = 𝑝 ∗𝑡
𝑐 (𝐼 − 𝐻𝑡−1

𝑡𝑜𝑡 ) ∗ 𝐶0
𝑇 ∗ 𝟏𝑡−1

𝐷  (B.2) 

∆ 𝑎𝑤𝑑
𝑡

𝑚 = { 𝐹𝑡−1 ∗ 𝑊𝑡−1
𝑡𝑜𝑡 − 𝐹𝑡−1 ∗ 𝑊𝑇

𝑡−1
𝑡𝑜𝑡 } 𝟏𝑡−1

𝑁𝐷  (B.3) 

∆ 𝑎𝑓𝑠
𝑡

𝑚 = 𝑝 ∗𝑡 ( 𝟏𝑡
𝑁𝐷 𝑇

∗ 𝑓𝑠
𝑡

+ 𝟏𝑻
𝑡

𝐷
∗ 𝑠𝑡 ) (B.4) 

The changes in total outstanding lending in each market segment are given by  

∆ 𝑎 =𝑡
𝑢𝑐 − 𝐹𝑡−1 ∗ 𝑊𝑡−1

𝑢𝑐
∗ 𝟏𝑻

𝑡
𝑁𝐷 − 𝑊𝑡−1

𝑢𝑐
∗ 𝟏𝑻

𝑡
𝐷  (B.5) 

∆ 𝑎 =𝑡
𝑐 − 𝐹𝑡−1 ∗ 𝑊𝑡−1

𝑐
∗ 𝟏𝑻

𝑡
𝑁𝐷 − 𝑊𝑡−1

𝑐
∗ 𝟏𝑻

𝑡
𝐷  (B.6) 

Note that the first term from the right hand side of equations (B.5) and (B.6) corresponds to the 
reduction of outstanding interfirm exposures due to fund withdrawals that are transformed into cash 
holdings (See equation (B.3)). The second term accounts for the losses suffered by lenders due to 
the defaults of borrowers that reduce their capital, as detailed in equation (B.10). 

The dynamics for the portfolio of securities is given by (B.7). The first term in the right hand side of 
(B.7) corresponds to the losses due to the erosion of the security price which also reduces the capital 
account as in (B.10). The second term accounts for the effects of fire sales with the subsequent 
growth of cash holdings as in (B.4). 

∆ 𝑎𝑡
𝑒 = 𝑠𝑡−1 ∗ 𝑝 ∗𝑡 (exp( 𝑟𝑡−1 ) − 1) − 𝑝 ∗𝑡 ( 𝟏𝑡

𝑁𝐷 𝑇 ∗ 𝑓𝑠𝑡 + 𝟏𝑻
𝑡

𝐷 ∗ 𝑠𝑡 ) (B.7) 

For the liability items, the outstanding borrowing in the unsecured and secured segments is 
described in (B.8) and (B.9). Note that negative changes in these items result in a symmetrical 
reduction of cash holdings as captured by (B.3). 

∆ 𝑙𝑤𝑑
𝑡

𝑢𝑐 = −[ 𝐹𝑡−1 ∗ 𝑊𝑡−1
𝑢𝑐 ]

𝑇
∗ 𝟏𝑡−1

𝑁𝐷  (B.8) 

                                                           
17

 We follow the convention 𝑥𝑡+1 = 𝑥𝑡 + Δ𝑥𝑡 for stating the dynamics of variable x 



25 
 

∆ 𝑙𝑤𝑑
𝑡
𝑐 = −[ 𝐹𝑡−1 ∗ 𝑊𝑡−1

𝑐 ]
𝑇

∗ 𝟏𝑡−1
𝑁𝐷  (B.9) 

Changes in the firm’s capital stem from counterparty defaults (which are partially compensated by 
reuse of collateral in the secured segment) and from market appreciation or depreciation of the 
security portfolio. This dynamic is given by 

 ∆ 𝑘𝑡 = − 𝑊𝑡−1
𝑢𝑐 ∗ 𝟏𝑻

𝑡

𝐷
+ ∆ 𝑎𝑐𝑜𝑙

𝑡
𝑚 + 𝑠𝑡−1 ∗ 𝑝 ∗𝑡 (exp( 𝑟𝑡−1 ) − 1) (B.10) 

Finally, the updating rules for the portfolio of securities, its market price and the matrices of bilateral 
exposures are as follows 

𝑠𝑡 = 𝑠𝑡−1 − ( 𝟏𝑡−1
𝑁𝐷 𝑇 ∗ 𝑓𝑠𝑡−1 + 𝟏𝑻

𝑡−1
𝐷 ∗ 𝑠𝑡−1 ) (B.11) 

𝑝𝑡 = 𝑝𝑡−1 ∗ exp( 𝑟𝑡−1 ) (B.12) 

𝑊𝑡
𝑞 = (𝐼 − 𝐹𝑡−1 ) ∗ 𝑊𝑡−1

𝑞 ∗ Λ𝑡−1   𝑓𝑜𝑟 𝑞 = 𝑢, 𝑢𝑐 (B.13) 
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