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Abstract

This paper measures the joint default risk of financial institutions by exploiting informa-
tion about counterparty risk in credit default swaps (CDS). A CDS contract written by a
bank to insure against the default of another bank is exposed to the risk that both banks
default. From CDS spreads we can then learn about the joint default risk of pairs of
banks. From bond prices we can learn the individual default probabilities. Since knowing
individual and pairwise probabilities is not sufficient to fully characterize multiple default
risk, I derive the tightest bounds on the probability that many banks fail simultaneously.



1 Introduction

The market for credit default swaps (CDS), contracts that insure against a default event, is
an over-the-counter market dominated by large financial intermediaries. These banks buy and
sell insurance against the default of a variety of entities, like firms and countries; often, they
also insure against the default of other large banks.

Since the bank that sells the CDS contract can default, the buyer of the CDS is exposed to
counterparty risk. In particular, suppose that bank A sells a credit default swap against bank
B. The CDS price then reflects the individual probability that B defaults as well as the joint
probability that A and B default: the purchaser of the CDS may not receive the promised
insurance payment from A, if when B defaults A defaults as well. Such counterparty risk can
significantly lower the CDS spread (the value of the insurance) when the risk of joint default
of the two banks is high – as during systemic risk episodes. At the same time, the price of
bank-issued bonds is not affected by counterparty risk: bond prices reflect only individual
default probabilities.

Bond prices together with the prices of CDSs written by banks against other banks, there-
fore, contain information about individual and pairwise default risk of these financial institu-
tions. In this paper, I show how to combine CDS and bond price data to infer the probability
of joint default of several banks and ultimately measure systemic risk in financial markets.
This represents an improvement over traditional measures that only use CDS or bond data
separately, since it allows to observe direct information about the joint default probabilities
across banks.

While using bond and CDS data together gives us more information about joint default
risks, individual and pairwise probabilities alone do not completely pin down the probability
that many banks default together, which is what constitutes systemic risk. To construct a
measure of systemic risk, strong functional form assumptions are usually imposed on the joint
distribution function of defaults. In this paper, instead, I show how to construct bounds on
the probability that several banks default together, derived without imposing any assumption
about the shape of the joint distribution function. In particular, I show how the problem of
finding the maximum and minimum probability of joint default of several banks consistent
with the observed bond and CDS prices can be reformulated as a linear programming problem,
which can be easily solved numerically even when the number of banks considered is large. In
addition, the linear programming approach allows me to compute the contribution to systemic
risk of each individual institution, at the upper and lower bound of joint default risk.

Using CDS and bond data from 2004 to 2010, I compute the tightest bounds on the
probability that at least r out of 15 large financial institutions default within a month, for
different values of r ranging from 1 to 4. The bounds on systemic risk that I calculate reveal
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features of the evolution of systemic risk that are missed by most other measures that do not
have direct information on joint default risks.

First, systemic risk measures based on either bond prices or CDS prices (but not both
together) indicate a sharp increase in systemic risk already in 2007.1 Figure 1 reports two
(very simple) examples of such measures, the average CDS spread and the average bond yield
spread2 of the 15 largest financial institutions. Using information on joint default risk, I can
actually exclude a large increase in systemic default risk before Bear Stearns’ failure in March
2008. Only after March 2008 systemic risk increases sharply, reaching a peak in early 2009.
Therefore, the combination of bonds and CDS prices allows us to better measure the timing
of the rise in systemic risk.

More generally, using my methodology I can decompose some of the observed spikes in
CDS and bond spreads (visible in Figure 1) into idiosyncratic versus systemic risk. For
example, I can exclude that the spike in CDS spreads observed in the month before Bear
Stearns’ collapse corresponded to an increase in systemic risk. Similarly, only part of the
rise in spreads observed in the month after Lehman’s default can be due to an increase in
systemic risk. In the paper I show that only by considering all the information contained in
individual bond and CDS spreads one can decompose the idiosyncratic and systematic part
of the spreads’ movements. Simpler measures that do not use all information in bonds and
CDSs will miss these patterns and mistake idiosyncratic risk for systemic risk during those
episodes.

Besides obtaining informative results about the level of systemic risk during the crisis, the
approach allows us to compute the individual contribution to systemic risk of each bank, as
well as the joint default probabilities of subsets of banks. From this analysis, we learn that
more than one month before their simultaneous collapse, Lehman Brothers and Merrill Lynch
were already indicated (by bond and CDS prices) as the pair of banks with the highest possible
probability of joint default. In addition, Lehman Brothers appears from the estimates as the
bank whose contribution to systemic risk was highest all the way since March 2008.

The approach to measuring systemic risk employed in this paper differs from other sys-
temic risk measures that also use bond or CDS data, but only extract individual default
probabilities from CDS spreads or bond prices – ignoring counterparty risk. To fully char-
acterize the joint distribution function of defaults, they make strong assumptions about the
shape of this distribution, for example imposing multivariate normality of returns.3 All the

1For example, Huang, Zhou and Zhu (2009) and Segoviano and Goodhart (2009).
2The bond yield spread is defined as the bond yield minus the yield of the Treasury bond of corresponding

maturity.
3If some additional parameters need to be specified after choosing a certain copula (for example correla-

tions), these are usually estimated from historical data. Huang, Zhou and Zhu (2009), Avesani, Pascual and
Li (2006) and Segoviano and Goodhart (2009) are prominent examples of this approach.
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information about tail events these measures employ comes only from the individual default
probabilities. In Section 4.4, I compare my results with a measure of systemic risk obtained
from a standard multivariate normal model, that uses bond spreads to extract individual de-
fault probabilities. The comparison shows that the strong functional form assumptions may
lead to underestimating systemic risk in some periods; in other periods, instead, the normal
model overestimates systemic risk, because it ignores the additional restrictions on systemic
risk derived from the pricing of counterparty risk in CDS spreads. In fact, in the paper I show
that ignoring the effect of counterparty risk in CDS spreads can actually bias the results of
these measures, since in periods of high systemic risk, counterparty risk lowers the observed
CDS spreads – which will then be interpreted as a lower amount of default risk.4

The market-based approach of this paper (that uses information about future defaults
embedded in current market prices) has also several advantages over non-market-based ap-
proaches to measure systemic risk. Relative to reduced-form measures that estimate the joint
default probabilities using historical data on returns,5 the bounds constructed in this paper
have the advantage of immediately incorporating new information as soon as it is reflected
in prices. In addition, the bounds – based on forward-looking market prices – do not need
to rely on a few data points to estimate the tails of the distributions, as reduced-form his-
torical returns measures do. Relative to structural measures of default based on the Merton
(1974) model,6 the measure I construct requires less stringent assumptions about the liability
structure of financial institutions.

Three limitations affect the empirical construction of the bounds. First, the presence of
an unobserved liquidity process in the bond market confounds the estimation of individual
default probabilities. Second, for every bank, I observe only an average of the CDS quotes
across counterparties, rather than counterparty-specific quotes. Third, I obtain bounds on
risk-neutral, not objective, probabilities of systemic events.7 Risk-neutral probabilities are
interesting since they reveal the markets’ combined perception of the probability and sever-
ity of these states of the world. In addition, they can be considered upper bounds on the
objective default probabilities, as long as default states are states with high marginal utility.

4An alternative approach, followed by Longstaff and Rajan (2008) and Bhansali, Gingrich and Longstaff
(2008), looks directly at the price of tranches of portfolios of CDSs. To measure the joint default risk of large
financial intermediaries, we would need to observe the prices of tranches of portfolios of CDSs of the main
financial institutions, while in practice we observe portfolios of more than a hundred firms, both financials and
nonfinancials (like the CDX).

5Acharya et al. (2010) and Adrian and Brunnermeier (2011) are recent examples of measures based on
historical returns data.

6For example, Lehar (2005) and Gray et al. (2008) apply the Merton (1974) model to estimating joint
default probabilities.

7Anderson (2009) underlines the differences between the two by comparing risk-neutral default processes
obtained from CDS spreads with objective processes obtained using historical data on defaults.
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Notwithstanding these limitations, the bounds allow us to learn significant information about
the evolution of systemic risk during the financial crisis.

The paper proceeds as follows. After discussing the role of counterparty risk in CDS
contracts in section 2, section 3 shows how to construct the optimal probability bounds.
Section 4 presents the empirical results on the evolution of systemic risk during the financial
crisis, and section 5 concludes.

2 CDSs and Counterparty Risk

2.1 The CDS Market – an Introduction

In a typical CDS contract, the protection seller offers the protection buyer insurance against
the default of an underlying bond issued by a certain company, called the reference entity. The
seller commits to buy the bond from the protection buyer for a price equal to its face value
in the event of default by the reference entity (or other defined credit event). In some cases,
the contract is cash settled, so that the seller directly pays the buyer the difference between
the face value and the recovery value of the bond.8 The buyer pays a quarterly premium,
the CDS spread, quoted as an annualized percentage of the notional value insured. If default
occurs, the contract terminates. If default does not occur during the life of the contract, the
contract terminates at its maturity date.

While in general these contracts are traded over the counter and can be customized by
the buyer and the seller, in recent years they have become more standardized, following the
guidelines of the International Swaps and Derivatives Association (ISDA). The CDS market
is quite liquid, at least for the 5-year maturity contract, with low transaction costs to initiate
a contract with a market maker on short notice, and with numerous dealers posting quotes
(see Blanco et al. (2005) and Longstaff et al. (2005)). Reliable quotes for the 5-year maturity
CDS can be obtained through several financial data providers (e.g. Bloomberg, Markit).

The CDS market has grown quickly in the last few years. Notional exposures grew from
about $5 trillion in 2004 to around $60 trillion at its peak in 2007, and despite the financial
crisis, the total notional exposure (total amount insured) is still around $40 trillion. The high
liquidity of the CDS market has made it the easiest way to adjust exposures to credit risk,
and has been the primary reason for its growth. As a consequence, rather than trading in the
bond market or canceling agreements already in place, adjustments of credit exposures have
mostly been achieved by simply entering new CDS contracts, possibly offsetting existing ones.
At the center of this network of CDS contracts, a few main dealers operate with very high

8See Appendix C for more details on the contract.
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gross and low net exposures, emerging as the main counterparties in the market. For example,
Fitch Ratings (2006) states that in 2006 the top 10 counterparties accounted for about 89%
of the total protection sold. With the crisis, the market concentrated even more after some of
its key players disappeared.

2.2 Counterparty Risk

Traded over the counter, a CDS contract involves counterparty risk: the protection seller may
go bankrupt during the life of the CDS and therefore might not be able to comply with the
commitments arising from the contract.9 When the counterparty goes bankrupt, the contract
terminates and a claim arises equal to the current value of the contract. A buyer of a CDS
contract is then exposed to the risk that when the seller defaults, the credit risk of the reference
entity is higher than it was when the contract was originated. In this case, the buyer has a
claim against the bankrupt counterparty, which might be difficult to recover in full. The larger
the increase in the CDS spread of the reference entity (its credit risk) when the seller defaults,
the larger the amount the seller owes the buyer. In the extreme case, in which the bankruptcy
of the seller occurs simultaneously with the default of the reference entity, the payment due
to the buyer would be equal to the full notional value of the CDS, and the buyer would have
a very large claim against the bankrupt counterparty. The buyer risks not to get paid exactly
in the one state where the CDS contract is supposed to pay off, thus greatly reducing the
ex-ante value of the insurance.

The CDS buyer can be exposed to a large loss even without a simultaneous default of the
reference entity and the seller. For example, the reference entity might default after the seller
defaults, but the default risk of the reference already jumps when the seller goes bankrupt.
In this case the amount the buyer has to claim against the bankrupt seller can be very high.
Alternatively, the buyer might suffer a large loss if the default of the reference entity triggers
the subsequent default of the counterparty, for example if the latter is not adequately hedged.
All these cases – collectively referred to as double default cases – are relevant for the value of
the CDS to the buyer even though the two defaults do not occur simultaneously: in all these
cases the buyer finds herself with a large amount owed by the bankrupt counterparty.

The value of the CDS protection crucially depends on how much of this claim the buyer can
expect to recover from the counterparty in bankruptcy. Like other derivatives, CDS claims are
protected by “safe harbor” provisions. These provisions exempt claimants from the automatic

9The role of counterparty risk in CDS spreads has been studied by Hull and White (2001), Jarrow and
Turnbull (1995), Jarrow and Yu (2001), and more recently by Arora, Gandhi and Longstaff (2012) and Bai
and Collin-Dufresne (2012). To mitigate counterparty risk, which stems mainly from the over-the-counter
nature of the contract, there are now several proposals to create a centralized clearinghouse. For a detailed
discussion, see Duffie and Zhu (2011).
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stay of the assets of the firms, so that the buyers can immediately seize any collateral that has
been posted for them, as discussed below. Additionally, positions across different derivatives
with the same counterparty can be netted against each other. The latter fact potentially
increases the recovery in case of counterparty default, but only if the buyer finds herself with
large enough out-of-the-money positions with the seller, when the seller defaults, to offset the
counterparty exposure arising from the CDS contract.

For all amounts that remain after netting and seizing posted collateral, the buyer is an
unsecured creditor in the bankruptcy process, and as such is exposed to potentially large losses
(Roe 2011).

2.3 The Pricing of Counterparty Risk: a Simple Example

A simple two-period example of the pricing of bonds and CDSs can be useful to understand
the role of counterparty risk for CDS prices. Suppose that N dealers issue zero-coupon bonds
with a face value of $1 maturing at time 1, and consider the CDS contract written at time 0
by each of them against the default of each other. Call Ai the event of default of institution
i at time 1. Call P (Ai) the probability of default of bank i, and P (Ai \ Aj) the probability
of joint default of i and j at time 1. All probabilities are risk-neutral. Call R the expected
recovery rate on the unsecured bond in case of default, and suppose that in the event of
joint default the CDS claim recovers a fraction S. Note that S � R since as an unsecured
creditor the buyer of CDS protection would obtain R in bankruptcy court, but netting and
collateralization mean that she might recover part of the amount even before going to court.
Finally, assume that the risk-free rate between periods 0 and 1 is zero.

In this setting, the price of the bond issued by i, pi, is determined as:

pi = (1� P (Ai)) + P (Ai)R (1)

If there is no counterparty risk in the CDS contract, the insurance premium zi, or CDS
spread, paid at time 0 to insure that bond is:

zi = P (Ai)(1�R)

since the CDS pays the amount not recovered by the bond (1 � R) in case of default. An
arbitrage relation then links the bond and the CDS (Longstaff et al. (2005)): zi = 1� pi.

Consider now the case in which there is counterparty risk in the CDS contract. Then, the
spread paid to buy insurance from j against i’s default will be:
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zji = [P (Ai)� P (Ai \ Aj)] (1�R) + P (Ai \ Aj)(1�R)S

= [P (Ai)� (1� S)P (Ai \ Aj)] (1�R) (2)

since the buyer of protection obtains the full payment (1�R) if the reference entity defaults
alone, and only a fraction S of it otherwise. The spread zji decreases with the probability of
joint default P (Ai \Aj); the arbitrage relation with the bond is broken. Note that the effect
of counterparty risk, (1 � S)P (Ai \ Aj), could be as large as the default risk itself, P (Ai).
Only if defaults are independent we would have P (Ai\Aj) = P (Ai)P (Aj), but this is unlikely
to be the case for financial intermediaries even at short horizons, as visible during financial
crises.

Importantly, equation (2) shows that by only looking at CDS spreads it is not possible
to distinguish the component of the CDS spread that comes from the risk of the reference
entity, P (Ai), from the joint default risk with the counterparty, P (Ai \ Aj), since the spread
zji depends on both. Therefore, unless one makes additional assumptions, it is not possible
to detect counterparty risk in CDSs using CDS data alone. For example, Arora et al. (2012)
study the cross-section of CDS prices across counterparties under the assumption that given
a reference entity i, counterparty risk of i with each counterparty j is captured by P (Aj), not
by P (Ai \ Aj) as the theory would predict.10

From equation (2) we also see that ignoring counterparty risk biases the estimates of default
probability extracted from CDS spreads downwards. In particular, measures of systemic risk
obtained by averaging the CDS spreads of banks (as in Figure 1) depend negatively on averages
of P (Ai\Aj) across i and j. If joint default risk increases, these measures would then decrease,
and erroneously suggest a decrease in systemic risk.

2.4 Collateral Agreements and Counterparty Risk

In order to protect buyers against counterparty risk, some (but not all) CDS contracts involve
a collateral agreement. The presence of collateral improves the recovery of the contract in
case of counterparty default (in the notation of the example presented above, it increases S).
Under the standard collateral agreement, a small margin is posted at the inception of the
contract. Subsequent collateral calls are tied to changes in the value of the CDS contract, as
well as to the credit risk of the seller.

While helpful in reducing counterparty exposure, collateral agreements cannot eliminate
10In the empirical analysis of Section 4, in which I allow for individual and joint default probabilities to move

independently, I find that this assumption is often violated: the pairwise probabilities behave quite differently
from the individual ones.
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counterparty risk. No CDS contract can be collateralized at all times to cover the full claim
potentially arising from a double default, since the event of double default cannot be fully
anticipated, and posting large amounts of excess collateral would be very costly. In practice,
the gap between the amount of collateral posted at each point in time and the claim that
can arise in case of double default can be very large. First, according to the ISDA Margin
Survey 2008, only about 66% of the nominal exposure in credit derivatives, of which CDSs are
the most important type, had a collateral agreement at all in 2007 and 2008;11 in addition,
collateral agreements were employed much less frequently when the counterparty was a large
dealer. Second, margins were often posted at a less than daily frequency: only 61% of all
trades executed by large dealers had daily collateral adjustment, most of which concentrated
in inter-dealer trades. For 26% of trades by large dealers margins were not adjusted regularly.
Finally, often collateral posted was lower than the current value of the position. Even the CDS
buyer that most aggressively called for collateral during the crisis, Goldman Sachs, wasn’t
always fully covered on its CDS exposures with other large dealers (in particular, AIG).12

More generally, the sudden nature of default events imposes counterparty risk even when the
current value of the positions is fully covered by collateral: the jump-to-default risk will not
be eliminated by collateral.

The Lehman bankruptcy is an interesting example of the limits of collateralization. Before
the weekend of September during which Lehman collapsed and two other large financial in-
stitutions were bailed out (Merrill Lynch and AIG), low CDS spreads were suggesting a small
risk of bankruptcy of those institutions. The joint shock to the three institutions was certainly
not anticipated, and the amount of collateral posted before the collapse was small. For exam-
ple, someone who bought a 5-year Lehman CDS a month before its default would have been
in the money, on Friday September 12th, by about 15 cents on the dollar; this would have
been the amount of collateral in her possession if the contract was fully collateralized. The
next day, once Lehman defaulted, she would have been owed by her counterparties 92 cents
on the dollar, an amount much higher than the collateral posted. As it turned out, thanks to
the government bailout of Merrill Lynch and AIG, a double default event did not materialize.
However, these events show that the risk of simultaneous collapse of several banks is relevant,
and that standard collateralization practices would not have prevented large losses to buyers
of CDS contracts, had the government decided not to intervene.

It is worth discussing here a recent study of counterparty risk pricing by Arora et al. (2012),
who have access to proprietary data that report the quotes posted by different counterparties.

11This number went up to 93% in 2011 as collateralization became more widely used.
12The documents reported in Appendix A refer specifically to a large amount ($22bn) of CDS protection

bought by Goldman from AIG on super-senior tranches of CDOs, but arguably similar practices were used on
all credit derivatives instruments.
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They document that dealers with high CDS spreads posted quotes systematically lower than
the other dealers for the same reference entity, and especially so after Lehman’s bankruptcy.
However, they also report that for most reference entities, the difference is small, in the order
of a few basis points. This suggests that counterparty risk may only be partially incorporated
into CDS prices; however, it is important to take into account the following considerations.

First, the study looks at the relation between the price quoted by each dealer and its
marginal – or individual – default risk, as captured by the CDS spread against the counter-
party. However, what matters for CDS pricing is the joint default risk of the reference entity
and the counterparty; the results I present in the paper (see for example Section 4.3) show that
there can be a significant difference between marginal and pairwise default risk, and this may
translate into a weak observed relation between marginal default risk and the quotes posted by
the dealers. Second, the study looks at the cross-sectional variation of quotes across counter-
parties around the daily average (i.e., controlling for day fixed effects): therefore, the exercise
filters out all components of counterparty risk which are common to all dealers. Given that
the financial crisis affected several large financial institutions at the same time, this common
effect could be quite large, if not dominant. The bounds I construct are based only on the
average quote and therefore do not depend on the cross-sectional dispersion around it at all:
on this respect, the results obtained in this paper complement those in Arora et al. (2012).
Finally, in this paper I allow – but do not impose – counterparty risk to explain part of the
difference between bond yields and CDS spreads. To the extent that in fact counterparty risk
was not priced in these securities, this will be reflected in the empirical results.

To conclude, the presence of collateral agreements improves but does not solve the problem
of counterparty risk related to double default: the amount owed by the CDS seller in case of
double default may be very large, and for the reasons specified above it may easily exceed the
collateral posted. Appendix A reports more evidence on the limits of collateralization. The
Appendix also shows that buyers of CDSs were aware of this residual counterparty risk even
before the crisis hit13, and frequently believed that the best way to reduce their remaining
counterparty exposure was to buy additional CDS protection against their counterparty, which
directly increased the cost of buying CDS protection.

3 Construction of the probability bounds

This section shows how to construct probability bounds on systemic risk for a network of
banks in which bond and CDS prices are observed, starting with a simple 3-bank example.

13For example, Barclays Capital issued a report in February 2008, “Counterparty Risk in Credit Markets”,
precisely on the effect of counterparty risk on CDS prices.
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3.1 Introductory example: 3 banks

Consider a two-period setting, and suppose that the financial sector consists of only three
intermediaries – banks 1, 2 and 3. Protection against the default of i 2 I ⌘ {1, 2, 3} must be
bought from a bank j 2 I\i , i.e. one of the other two intermediaries. By inverting the pricing
formulas (1) and (2), if we observe all bond prices pi and all CDS spreads zji, we can learn
the marginal default probabilities of each bank as well as the pairwise default probabilities for
each pair (i, j) of banks. For example, from bond and CDS spreads we might obtain:

P (Ai) = 0.2 8i

P (A1 \ A2) = P (A2 \ A3) = 0.07, P (A1 \ A3) = 0.01 (3)

We can measure systemic risk by studying Pr, the probability of joint default of at least r

financial intermediaries:

P1 = P (A1 [ A2 [ A3) (4)

P2 = P ((A1 \ A2) [ (A2 \ A3) [ (A1 \ A3)) (5)

P3 = P (A1 \ A2 \ A3) (6)

Information about individual and pairwise probabilities is insufficient to fully characterize
Pr. Figure 2 presents an example, a Venn diagram in which areas represent default probabili-
ties. The area of each event is the same across the two panels, so the marginal probabilities of
default are the same. The same is true for the pairwise default probabilities (0.07, 0.07, 0.01):
they also are equal across the two panels. However, P3, the intersection of all three events, is
positive (0.01) in the left panel and zero in the right panel; similarly, P1 and P2 are different
across panels.

Knowledge of marginal and pairwise probabilities, however, allows us to put bounds on
other probabilities, and in particular on systemic risk Pr. For example, because we know
P (A1 \ A2 \ A3)  P (A1 \ A3), we can immediately establish P3  0.01. Finding the other
bounds is more complicated. The object of the rest of this Section is to show how to find the
tightest possible ones.14

3.2 N banks and Linear Programming representation

I now show how to construct the tightest possible bounds for systemic default probabilities Pr

(the probability that at least r out of N banks default) given a set of individual and pairwise
probabilities, using linear programming.

14For this example, they are 0.45  P1  0.46, 0.13  P2  0.15, 0  P3  0.01.
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Suppose that we know a set of marginal and pairwise default probabilities of the type:
P (Ai) = ai, P (Ai \ Aj) = aij. Then, for any r, we could find the tightest upper bound on
Pr conditional on our information set by looking for the probability system that solves the
problem:

maxPr (7)

s.t.
P (Ai) = ai

...

P (Ai \ Aj) = aij

We solve the corresponding minimization problem to find the tightest lower bound.
In general, finding a solution to problem (7) is a difficult task, as it requires us to search

in the space of all possible probability systems. However, as shown by Hailperin (1965)
and Kwerel (1975), probability bound problems of this type can be transformed into linear
programming (LP) problems. LP problems are difficult to solve analytically, but easy to solve
numerically even as the scale of the problem gets large. Additionally, the linearity of the
problem guarantees that the global optimum is always achieved when it exists.

The LP approach to probability bounds is summarized by the following proposition, based
on Hailperin (1965):

Proposition 1. The solution to problem (7) can be found as a solution to the linear program-

ming problem:

maxp c
0
p (8)

s.t.

Fp = b

p � 0, i0p = 1

where p is the unknown vector and i is a vector of ones, and where the vectors c, b and the

matrix F depend only on the available information, i.e. on the values ai, ..., aij. The lower

bound is obtained by solving the corresponding minimization problem.

I now describe the main intuition behind the linear programming approach. In Appendix
B, I provide a detailed description of the algorithm. Start from the basic default events
{A1, ..., AN}, and consider the finest partition V of the sample space generated from these
events through union and intersection. This partition will have 2N elements. For example,
Figure 3 reports the 8 elements of the partition for the case N = 3. Calling A the complement
of A, the partition V will contain: {A1 \ A2 \ A3}, {A1 \ A2 \ A3}, etc.
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Knowing the probabilities of these 8 elementary events is enough to know the probability
of any union or intersection of the original events A1, A2 and A3 and their complements. For
example, Pr{A1 \ A2} = Pr{A1 \ A2 \ A3}+ Pr{A1 \ A2 \ A3}.

Together, the probabilities of the elements of V therefore represent the whole probability
system generated by the basic default events. Since V contains 2N elements, it is also possible
to represent this probability space by a vector p with 2N elements, each corresponding to
the probability of an elementary event in V . To do this, we only need to choose a mapping
between the elements of p and the elements of V . For example, the mapping shown in the
figure associates the first element of p to Pr{A1 \ A2 \ A3}, the second element of p to
Pr{A1 \ A2 \ A3}, and so on.

It follows that we can express the probability of any union or intersection of the basic
events as a specific sum of elements in p: if A0 is an event obtained by union or intersection
of the basic default events, we will have Pr{A0} = c

0
p for some vector c. In our example:

P (A1 \ A2) = [0 0 0 0 0 0 1 1] · p

P2 ⌘ P ((A1 \ A2) [ (A2 \ A3) [ (A1 \ A3)) = [0 0 0 1 0 1 1 1] · p

P3 ⌘ P (A1 \ A2 \ A3) = [0 0 0 0 0 0 0 1] · p

The objective function and all constraints of problem (7) can then be written as linear
functions of a vector p. We can join all of them in matrix form and write: Fp = b. Finally,
when solving the maximization problem we also require that p actually represents a probability
system. For this purpose, we need that all probabilities of the elementary events in V are
nonnegative (p � 0) and they sum to 1, since V represents a partition of the sample space
(i0p = 1, where i is a vector of ones). Given these linear constraints on p, we can then maximize
over the unknown vector p.

3.2.1 Probability bounds with inequalities and linear combinations of the con-
straints

In the previous Section I showed how to construct probability bounds when we have marginal
and pairwise probability constraints of the form P (Ai) = ai, ..., P (Ai \ Aj) = aij. A linear
programming representation can be derived in two additional cases:

a) When we have linear inequality constraints in addition to equality constraints. Inequalities
of the form P (Ai)  ai will be represented by inequality constraints of the form d

0
p  ai.

b) When we have constraints in terms of linear combinations of the marginal and pairwise
probabilities. For example, the constraint 1

2 (P (Ai \ Aj) + P (Ai \ Ah)) = b can also be rep-
resented in the LP problem by a linear constraint on p. To see why, take the two vectors
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cij and cih such that c

0
ijp represents P (Ai \ Aj) and c

0
ihp represents P (Ai \ Ah). Then,

1
2 (P (Ai \ Aj) + P (Ai \ Ah)) = b is represented by 1

2c
0
p = b, with c = cij + cih.

The fact that the LP approach still works in these two cases is important because, as
I show below, the availability of data for bonds and CDSs only allows us to obtain linear
constraints of the form a) and b).

3.3 Construction of the bounds with bond and CDS data

3.3.1 Reduced-form pricing models for bonds and CDSs

In order to estimate marginal and pairwise default probabilities using observed prices, I specify
a pricing model for bonds and CDSs that takes into account not only default risk, but also
other important determinants of prices. I employ, with few modifications, the reduced form
pricing model of Duffie (1998), Lando (1998), Duffie and Singleton (1999), and Longstaff,
Mithal and Neis (2005).

The starting point for the model is the specification of the risk-neutral dynamics of the
risk-neutral hazard rate (intensity process) of default for firm i, hi

t, and of a liquidity process
�

i
t that affects the bonds of firm i:

dh

i
t = �

i
p

h

i
tdZhit

d�

i
t = ⌘

i
dZ�it

where h

i
t will always be nonnegative, while the liquidity process may potentially be positive

or negative. Zhi and Z�i are standard Brownian motions. The fact that CDS spreads, which
depend in large part on h

i
t, are extremely persistent – for all banks, a Dickey-Fuller test does

not reject the null of unit root – provides a justification for representing h

i
t as a martingale. I

also model �i
t as a random walk following Longstaff, Mithal and Neis (2005).

As shown by Longstaff, Mithal and Neis (2005), the price at time 0 of a fixed coupon bond
issued by a bank i with maturity T , recovery rate R and coupon c is determined as (subscript
i is omitted from the formula):

P (c, R, T ) = E

2

4
c

T̂

0

exp(�
ˆ t

0

rs + hs + �sds)dt

3

5

+E


exp(�

ˆ T

0

rs + hs + �sds)

�
+ E

2

4
R

T̂

0

htexp(�
ˆ t

0

rs + hs + �sds)dt

3

5 (9)
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where the expectation is taken under the risk-neutral measure. The first term is the present
value of the coupons; the second term is the present value of the principal payment at time
T ; the last term is the present value of the amount recovered in case of default. Following
Longstaff et al. (2005), a closed-form solution for the bond (see Appendix C) can be obtained
assuming independence under risk-neutral probabilities of the processes for the risk free rate,
Zh and Z�. In the model specified above, the price of a bond at time t only depends on the
current values of �i

t and h

i
t, in addition to the volatility of the two processes ⌘ and �, and of

course T,R and c.
The parameter �i

t , the per-period cost of holding the bond, captures the liquidity premia in
bond prices as in Duffie (1999).15 While in theory many other factors can affect the bond-CDS
basis (defined as the difference between CDS spreads and bond yields), like delivery option
and restructuring clauses in CDSs, they typically have a small effect, as discussed in Appendix
C. Liquidity premia in bond markets, instead, have a first order effect on the bond price and,
consequently, on the bond/CDS basis, and need to be taken into account explicitly.16 Liquidity
premia in CDS markets may also be relevant; as I discuss below, �i

t can also be interpreted
as capturing the difference in liquidity premia between bonds and CDSs, in the case liquidity
premia are present in both.17

The pricing formula for a CDS is obtained starting from the same reduced-form model,
with the addition that counterparty risk is explicitly considered. I assume that, conditional
on the contract still being active at time t + s, if the seller does not default within the next
period but the reference entity defaults, the payment is made in full. If instead both the
reference entity and the seller default in the same period, the buyer recovers only a fraction
of the promised amount. The process for the joint default of banks i and j is governed by:

dh

ij = �

ij
p
h

ij
dZhij

I allow the joint default intensity h

ij to vary separately from the two individual default prob-
abilities over time, h

i and h

j, therefore capturing time variation in the short-term default
correlations. As a consequence, contrary to a large part of the literature, I do not assume that
defaults are independent at short horizons. In the estimation, I impose that h

ij is not higher
than h

i and h

j (see below). Calling S the recovery rate of the CDS contract in case of double
15This parameter may also be interpreted as the opportunity cost that arbitrageurs with limited capital

incur when buying bonds on the margin, as in the model of Garleanu and Pedersen (2011).
16For example, see Bao et al. (2011), Chen et al. (2007), Collin-Dufresne et al. (2007), Huang and Huang

(2012), or Longstaff et al. (2005).
17Bongaerts, de Jong and Driessen (2011) have argued for the presence of liquidity premia in CDS spreads.

Generally, the CDSs of the particular financial institutions considered here remained within the most traded
CDSs of all even during the crisis (Fitch Ratings), so CDS liquidity premia are likely small for these institutions.
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default of the seller and the reference entity, the spread of the CDS written by j against i, zji,
solves:

E[zji

T̂

0

exp(�
ˆ t

0

rs + (hi
s + h

j
s � h

ij
s )ds)dt]

= E[

T̂

0

exp(�
ˆ t

0

rs + (hi
s + h

j
s � h

ij
s )ds) {

⇥
h

i
t � h

ij
t

⇤
(1�R) + h

ij
t S(1�R)}dt] (10)

The left-hand side of the formula represents the present value of payments to the protection
seller; they only occur as long as neither a credit event occurred nor the counterparty defaulted.
The right-hand side represents the expected payment in case of default. In each period,
conditional on both firms surviving until then, there is a probability (hi

t � h

ij
t )dt that the

reference entity defaults while the counterparty has not defaulted, so that the payment of
(1 � R) is made in full. With probability h

ij
t dt there is a double-default event, and only a

fraction S of that payment is recovered.
In the bond and CDS pricing model presented so far, the spread of a CDS written by j

against institution i depends positively on the credit risk of i, hi, and negatively on the joint
default risk h

ij. The yield of a bond issued by i depends positively on both the credit risk of
i, captured by h

i, and the liquidity premium �

i. The basis, or the difference between the CDS
spread and the bond yield, will be determined by a combination of counterparty risk h

ij and
liquidity premium �

i.
Finally, to extract probabilities from observed prices I need to make assumptions about the

recovery rates R and S. As discussed in Section 2, due to the status of CDSs in bankruptcy
and to the presence of collateral, S is at least as large as R. As a baseline case, I assume
S = R = 30%, which corresponds to the case in which little or no collateral is posted on
the CDS contract. Section 4.5 explores the robustness of the results to different assumptions
about R and S, as well as the case of stochastic recovery rates correlated with the default
events.

As presented so far, the reduced-form model cannot be directly estimated because of the
presence of the unobserved liquidity process �t. In addition, equation (10) is not linear in
the probabilities h

i, hj and h

ij, so that we cannot directly use it in the linear programming
formulation. I now make additional modeling assumptions that allow me to estimate the
bounds using the linear programming approach with the available data.
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3.3.2 Obtaining linear inequalities on P (Ai) from bonds: P (Ai)  h

i
t

In the model presented above the price of a bond at time t depends on the current values of
h

i
t and �

i
t and on the variances of the two processes, �2 and ⌘

2 respectively. Here, I employ
approximate pricing formulas for bonds that ignore the convexity terms related to �

2 and ⌘

2. I
do this for two reasons. First, the liquidity process is unobservable, so it would be very difficult
to estimate ⌘

2 (its variance). Second, this approximation allows me to extract the marginal
and joint default probabilities using only the information in the cross-section of bonds and
CDSs, separately for each time t. This means that I can estimate the bounds separately day
by day, which is computationally convenient. To gauge how good this approximation is, I
estimate �

2 using CDS prices to proxy for hi
t (ignoring counterparty risk) for all banks, and I

show by simulation that for a typical 5-year bond the approximation error from ignoring the
convexity terms is less than 0.1% of the correct price of the bond.18

In estimating the hazard rates from bonds and CDS prices, I discretize all pricing formulas
to a monthly frequency. In what follows, I refer to h

i
t as the marginal probability of default

during month t estimated from the discretized model, and similarly h

ij
t will correspond to be

the joint probability of default during month t. As discussed in Section 2, a month is the
appropriate horizon to employ when thinking about counterparty risk: from the point of view
of the buyer of a CDS, double default risk (captured by h

ij
t ) does not only arise from the

exactly simultaneous default of the two banks. Rather, the joint default of two banks within
a relatively short horizon of time (here taken to be a month) may produce large losses for a
CDS buyer.

After ignoring the convexity terms and discretizing at the monthly horizon, the price of
the bond at time t will be:

Pt(c, R, T ) = c

 
TX

s=1

�(t, t+ s)(1� h

i
t)

s(1� �

i
t)

s

!

+�(t, t+ T )(1� h

i
t)

T (1� �

i
t)

T +R

 
TX

s=1

�(t, t+ s)(1� h

i
t)

s�1(1� �

i
t)

s�1
h

i
t

!
(11)

where �(t, t+ s) is the risk-free discount factor from t to t+ s.
While this approximation of the bond price is very tractable, it still depends on the liquidity

parameter �

i which we do not observe and is difficult to estimate. Without knowing �

i, we
cannot extract hi from bond prices. However, if we impose a lower bound on �

i
t – a much easier

task than estimating it – we can obtain an upper bound on h

i
t and therefore still construct

18In particular, I calibrate the bond with 5 years maturity and at a level of hazard rate at the 90th percentile
of those observed during the financial crisis.
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the bounds on systemic risk: as I discussed in section 2, we can use the corresponding linear
inequality as a constraint in the linear programming problem.

To see how we can obtain an upper bound on h

i
t, note that the price of a bond is decreasing

in both �

i
t and h

i
t: a low bond price can be explained by either high �

i
t (high liquidity premia) or

by high h

i
t (high credit risk). The maximum h

i
t compatible with an observed price corresponds

to the minimum possible �

i
t . Once we fix a lower bound for �

i
t , call it �

i
t
, to find an upper

bound on h

i
t we can simply estimate the level of hi

t that prices the bonds issued by firm i when
�

i
t = �

i
t
. Call this estimated upper bound h

t
i.

Separately at each time t and for each firm i, I estimate h

t
i using equation (11) by mini-

mizing the mean absolute pricing error among the cross-section of outstanding bonds, after
imposing �

i
t = �

i
t
.19 The upper bound on the marginal probability h

i
t (or, equivalently, P (Ai))

obtained in this way can be used directly as a constraint in the LP problem (to compute the
time-t bounds):

P (Ai)  h

i
t (12)

Naturally, the upper bound depends on the specific lower bound on � chosen, �i
t
. I examine

three plausible lower bounds on �

i
t .

The weakest possible assumption is just that �

i
t � 0, for all t and i: a large literature has

established that bond liquidity premia are definitely not negative. A second possibility is to
assume that liquidity premia were, during the crisis, at least as high as they were in 2004
(the beginning of my sample). Assume that �

i
t can be decomposed into the product of two

components: �

i
t = ↵i�t. ↵i is fixed over time but varies by firm and is scaled to capture the

average liquidity premium of bank i in 2004 (equivalently, �t = 1 in 2004). �t captures the
common movement in liquidity premia for financial firms. If we believe that counterparty risk
played a minor role in CDS pricing back in 2004, we can estimate ↵i directly from the average
bond/CDS basis in 200420, and impose �

i
t � ↵i.

Finally, my preferred approach obtains a time-varying lower bound for the liquidity process
by comparing the financial institutions in the sample to non-financial institutions with high
credit rating, and therefore with the lowest margins and cost of funding. A CDS written by
a financial institution on a safe non-financial firm, j, is much less likely to be affected by the
risk of double default. If the two defaults are close to independent, the bond/CDS basis of
these nonfinancial firms will essentially only reflect liquidity premia. Under this assumption,
for a set J of nonfinancial firms with high credit rating, I estimate �

j
t for each t and j from the

19The average bond pricing error is below 2% of the price in 90% of the periods t, and below 5% in 95% of
the cases. All results are robust to the use of mean squared pricing error as a loss function.

20I take the average of the basis in 2004 as opposed to the basis on, say, 1/1/2004, to reduce noise. The
basis was not volatile during that period, so the exact window used to define ↵i makes little difference to the
results. It also makes very little difference if one uses the basis in any other period before mid 2007.
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bond/CDS basis. I then decompose �

j
t as �j

t = ↵j�
⇤
t , and extract the common component for

non-financial firms �

⇤
t , again normalized so that �

⇤
t = 1 in 2004.21 The margin requirements

and other liquidity-related costs for the bonds of these firms arguably increased less during
the crisis than for bonds issued by financial firms, so �

⇤
t  �t. I then obtain a third possible

constraint on the liquidity process of financial firms: �

i
t � ↵

i
�

⇤
t . If liquidity premia change

in a way that is correlated with systemic risk, this approach will capture it and allow us to
obtain tighter bounds.

One important advantage of imposing only a lower bound on �

i
t is that most results go

through if we instead interpret �

i
t as the relative liquidity of bonds and CDSs. While credit

default swaps are more liquid than bonds, they may nonetheless incorporate some liquidity
premia. As long as the assumptions on the lower bound for �

i
t are valid when interpreted in

terms of relative liquidity (for example: �

i
t � 0 corresponds to bonds being always less liquid

than CDSs, and so on), the bounds computed here will be valid.
In some cases, the calibrated liquidity premium can be larger than the observed bond-CDS

basis (in other words, after adjusting the bond yield for the liquidity component, it becomes
lower than the CDS spread: the liquidity-adjusted basis is positive). For example, when the
liquidity process is calibrated to fully explain the average basis in 2004, around half of the
banks will have a positive liquidity-adjusted basis in each given day during that year. When
this happens, I reduce the effect of liquidity up to the point where the liquidity-adjusted bond
yield is not any more below the CDS spread: all the bond-CDS basis is explained by liquidity,
and counterparty risk goes to zero. This phenomenon occurs less frequently as the financial
crisis unfolds and the basis widens for more banks.

3.3.3 Obtaining average linear constraints from CDS

The CDS pricing formula (10) is not linear in the marginal and pairwise default probabilities,
h

i
t, h

j
t and h

ij
t . To be able to use the CDS information in the linear programming problem,

the formula needs to be approximated to be linear in the default probabilities. I employ an
approximation to the CDS pricing formula, described in detail in Appendix C, that allows me
to write:

z

ji
t ' (hi

t � (1� S)hij
t )(1�R) (13)

which is linear in the marginal and pairwise probabilities, so it can be used as a constraint
in the LP problem. As reported in the Appendix, the approximation is extremely good, with
approximation errors below 0.3% of the true CDS spread for a wide range of parameter values.
Again, I will use the discretized version of this formula, in which z

ji
t represents the monthly

21This can be done under the assumption that �j
t is observed with independent proportional noise ✏jt , i.e.

we observe �̃j
t = �j

t ✏
j
t ; we can then estimate the series �⇤

t for each t using OLS on the logs.
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CDS spread, and h

i
t and h

ij
t are the monthly default probabilities. Note also that when

imposing this constraint in the LP problem, the optimization will automatically ensure that
0  h

ij
t  min{hi

t, h
j
t} for all t, so that the probability system is always internally consistent.

Note also that I don’t observe the spread z

ij
t for each pair of banks i and j. Rather, for

each reference entity i, I only observe (from Markit or Bloomberg) the average CDS quote
among its N-1 counterparties:

z

i
t =

1

N � 1

X

j 6=i

z

ji
t

from which I can obtain the linear constraint between marginal and pairwise probabilities

z

i
t =

(
h

i
t � (1� S)

"
1

N � 1

X

j 6=i

h

ij
t

#)
(1�R) (14)

Therefore, only information about average counterparty risk is available for the estimation
of the probability bounds. Note that (14) is still a linear constraint on the marginal proba-
bilities hi

t (or Pt(Ai)) and the pairwise ones hij
t (or Pt(Ai \Aj)), so that as described above it

can be used as a constraint in the linear programming problem.
Finally, I do not observe the exact set of counterparties that contribute quotes each day

to the data providers. For this reason I compute bounds for the group of 15 largest dealers
by volume and trade count, which are likely to represent the sample of firms from which the
quotes come from.22 To find the most active dealers during the crisis, I employ a list of the
Top 15 dealers by activity in July 2008 provided by Credit Derivatives Research. While Bear
Stearns could not be a part of that list (it had already been bought by JP Morgan), Fitch
Ratings (2006) shows that it was an important player in the CDS market in 2006, and therefore
I include it in the sample. I drop HSBC for lack of enough bond data, so that in the end
my sample includes 15 banks, 9 American and 6 European (listed in Table 1). After March
15th 2008 Bear Stearns disappears, and after September 12th 2008 both Lehman Brothers
and Merrill Lynch drop out of the group. I assume that each of these large dealers has the
same probability of contributing a quote, and I explore alternative hypotheses in Section 4.5.

To conclude, to estimate the bounds I maximize and minimize, separately for every time
t, the probability that at least r out of N banks default together (Pr) subject to:

1) the N linear inequality constraints on the individual default probabilities, obtained from
the cross-section of bonds of each bank, eq. (12)

2) the N average linear constraints on the pairwise default probabilities of the form (14),
obtained from the N observed CDS prices (one for each bank as a reference entity).

22The market is extremely concentrated, and the top 10 dealers account for more than 90% of the volume
of CDS sold.
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3.3.4 Bond and CDS data

The data cover the period from January 2004 to June 2010 with daily frequency. For each
of the 15 institutions considered, I obtain clean closing prices23 from Bloomberg for senior
unsecured zero and fixed coupon bonds with maturity less than 10 years. Given that the
maturity of CDSs is 5 years, it would also be possible to use only outstanding bonds of
remaining maturity close to 5 years when comparing bonds and CDSs. However, for many
European firms we do not have enough bonds around the 5-year maturity for all periods,
so that we need to use a wider window. The quotes provided by Bloomberg are indicative,
not necessarily actionable. However, if the bond is TRACE-eligible, Bloomberg reports the
closing price from TRACE, which corresponds to an actual trade. I exclude callable, putable,
sinking, and structured bonds, since their prices reflect the value of the embedded options. I
remove all bonds for which I have price information for less than 5 trading days.

I consider bonds denominated in five main currencies: USD, Euro, GBP, Yen, CHF. Since
Bloomberg data on European bonds is fairly limited, I integrate them with bond pricing data
from Markit whenever it adds at least 5 observations to the price series of each bond. As the
reference risk-free rate, I use government zero-coupon yields obtained from Bloomberg. As
discussed in Section 4.5, results are robust to using swap rates.

Table 1 reports some statistics on the availability of bond data. For each institution, we
can see the average daily number of valid bond prices available, in total and by year. The
Table shows that for some European dealers, bond data is scarce especially in the early part
of the sample.

I obtain data on the 5-year CDS contract (the only liquid maturity throughout the sample
period) from Markit.24 Markit reports spreads that are obtained by averaging the quotes
reported by different dealers, after removing stale prices and outliers.25

Table 2 reports summary statistics on CDS spreads. While CDS spreads between 2004
and 2010 are usually quite low, on the order of 50bp (0.5%), they reach levels higher than
1000bp (10%) in some periods. On the right side of Table 2, I report statistics for the basis

zi � (yi � r

F ), where zi is the CDS spread, yi is the 5-year interpolated bond yield and r

F

the 5-year Treasury rate. As expected, the basis is usually negative, because the CDS spread
23Clean prices adjust the price for the coupon accrued between actual coupon payment dates, as if coupons

were paid continuously. This corresponds to the pricing model I employ for bonds and CDSs.
24All results are robust to using Bloomberg - CMA data instead. Note that I do not observe bid and ask

quotes for CDS spreads, but only mid quotes. Ask quotes might be more appropriate to capture the effect of
counterparty risk; however note that using mid quotes will if anything overestimate the basis and result in a
less tight but still correct upper bound on systemic risk, so all the results remain valid.

25Removing outliers, while helpful to reduce noise coming from erroneous prices, can potentially bias the
reported CDS spread away from the average spread if the distribution of quotes is skewed. This in particular
can be a concern if the distribution of quotes is left-skewed, i.e. most dealers have low counterparty risk but
a few dealers have higher counterparty risk, as the observed CDS spread would be biased upwards.
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is lower than the corresponding bond yield spread. Only in a few cases the basis becomes
positive.

4 Empirical Results

4.1 Bounds on the level of systemic risk

I start by presenting the empirical results under my preferred liquidity assumption, that
calibrates the liquidity process using the bond/CDS basis of nonfinancial firms. In the notation
of Section 3, I assume �

i
t � ↵

i
t�

⇤
t , where �

⇤
t is a time-varying component estimated from

nonfinancial firms that allows to capture at least some of the variation in liquidity premia
over the crisis.26

Figure 4 presents the bounds on the probability that at least r financial institutions default
within a month, Pr, for r between 1 and 4. The upper and lower bounds on the probability
that at least one bank defaults, P1, vary significantly over time. The width of the bounds
is less than 1% before 2008, and increases to about 3% in 2009. For all r > 1, the lower
bound on Pr is 0. The upper bound, however, is relatively tight, and displays noticeable time
variation between 2007 and 2010. For example, the maximum monthly probability that at
least 4 banks default is at most a few basis points before March 2008, and rises up to about
1% at the peak in 2009.

All the bounds in the Figure suggest an increase in systemic risk up to early 2009, followed
by a decrease starting in May 2009 after the positive results from the stress tests on these
banks (in which the main banks were deemed by the Fed to be resilient to severe systemic risk
scenarios). Systemic risk picks up again at the very end of the sample (June 2010), following
worries about the stability of the European banking system.

While the bounds on different degrees of systemic risk – from P1 in the top panel to P4

in the bottom panel – often move in similar ways during the crisis, significant differences
emerge during specific periods. Before Bear Stearns’ collapse in March 2008, the probability
that at least one bank defaults increases noticeably, but this spike does not appear for the
maximum probability that many banks default (bottom three panels) until the day Bear
Stearns collapses. Similarly, during the month after Lehman Brothers’ collapse in September
2008 we observe a spike in maximum systemic risk, but the spike is smaller for r > 1 than

26The estimated process for �⇤ – normalized to be 1 in 2004, capturing proportional movements in liquidity
– increases by up to 5 times between 2007 and 2008, then decreases back to levels at or below 1 after May
2009. To compute �⇤ I look at the nonfinancial firms that compose the CDX IG index (the main CDS index
of investment-grade bonds), restricting to those with credit rating of A1 or higher (according to Moody’s). I
have enough bond and CDS data for 8 of them: Boeing, Caterpillar, John Deere, Disney, Honeywell, IBM,
Pfizer, Walmart.
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it is for r = 1. For these periods, the bounds suggest an interesting decomposition of the
movements of bond yields and CDS spreads into idiosyncratic and systemic risk: systemic
risk (the probability that many banks default) was not spiking as much as idiosyncratic risk
(as captured by P1, the probability that at least one bank defaults).

The results in Figure 4 are obtained under the most stringent calibration of the liquidity
process among the three presented in Section 3.3.2. In that calibration, a time-varying lower
bound for liquidity (extracted from nonfinancial firms) explains a portion of the bond-CDS
basis of financial institutions; this limits the part of the basis that can be due to counterparty
risk, therefore tightening the upper bound on systemic risk. The main results of the analysis,
and in particular the decomposition between idiosyncratic and systemic risk, are present even
under weaker assumptions about �. Figure 5 reports the bounds obtained under the three
different liquidity calibrations discussed in Section 3.3.2. The top panel reports, for reference,
the bounds on P1 under the preferred liquidity calibration, the same as in Figure 4. The
bottom three panels report the bounds on P4 under the three liquidity calibrations discussed
in Section 3.3.2: nonnegative liquidity premia, liquidity premia at least as high as 2004, and
liquidity premia calibrated to nonfinancials.

Comparing the bottom three panels we can see that while making more stringent liquidity
assumptions does tighten significantly the upper bound on P4, the main decomposition of
idiosyncratic and systemic risk is present even under the weakest calibration �

i
t � 0 (second

panel of the Figure). This decomposition between idiosyncratic and systemic risk holds very
strongly in the months around Bear Stearns, in which none of the bottom three panels show a
peak similar to the one we observe for P1 in the top panel. A similar result holds, less strongly,
for the month after Lehman’s collapse.

The bounds on systemic risk reported in Figure 4 give the following account of the financial
crisis. Up to the collapse of Bear Stearns, bond and CDS prices indicate that systemic risk was
low. The upper bound on P4, the probability that at least 4 banks default together, does not

indicate a sharp increase in systemic risk at the beginning of 2008, contrary to what several
other measures of systemic risk suggest, e.g. the average CDS spread.27 As confirmed by the
top panel of Figure 4, the observed increase in bond yields and CDS spreads in early 2008 is
due to idiosyncratic, not systemic risk. After jumping in March 2008, systemic risk increased
smoothly up to April 2009. After Lehman’s collapse in September 2008, the probability that
at least one (other) bank would default shows a large spike for a whole month. However,
a smaller spike is observed for the probability that many banks default. Systemic risk then
declines in 2009 and 2010.

The main patterns of this decomposition can be traced back to the raw data depicted
27See Huang, Zhou and Zhu (2009) or Segoviano and Goodhart (2009).
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in Figure 1. Episodes of high idiosyncratic risk but low systemic risk are those in which the
bond yields and CDS spreads tend to spike but the difference between the two (the bond/CDS
basis) does not. For example, this clearly applies to the events of March 2008: the average
basis (dotted line) is low all the way until after Bear Stearns’ collapse on March 15th, then it
jumps. Since the methodology presented in this paper extracts information on counterparty
risk, and therefore pairwise default risk, from the bond/CDS basis, periods in which bond
yields and CDS spreads spike but the basis does not cannot be interpreted as episodes of high
systemic risk. As a consequence, the bounds interpret the small basis observed consistently
up to March 2008 as indicating low counterparty (and systemic) risk; after the basis widens
in March 2008, the maximum amount of systemic risk increases dramatically. The intuition
for this result is simple: if agents were worried about the joint default risk of these banks
they should have required a much higher discount for these CDSs than we observe, since these
were exactly the banks that were selling protection against each other. This effect is even
stronger once we take into account that part of the basis is due to liquidity, not counterparty
risk. The methodology presented in this paper allows us to capture and aggregate optimally
all this information.

These empirical results are also consistent with the common view of the events of the fi-
nancial crisis. Before Bear Stearns collapsed, market participants were aware of the possibility
that banks could fail. However, a joint default event of multiple banks within a short hori-
zon was seen as unlikely, and therefore counterparty risk for a buyer of CDS protection was
perceived to be low.28 Bear Stearns’ collapse showed that defaults of these large banks could
happen suddenly, in a way that would not allow buyers to cover their counterparty exposures
in time. Only then the basis starts to widen. Similarly, while people observed Lehman’s
sudden default in September 2008, they also observed the government saving Merrill Lynch
and AIG in the next two days – thus avoiding a multiple default event. Markets learned that
the government might let a bank fail but was unlikely to let many banks fail - hence the larger
spike in P1 than in P2, P3 and P4.

All these results were derived for risk-neutral probabilities. But importantly, if this de-
composition between idiosyncratic and systemic risk holds for risk-neutral probabilities, it
should hold even more strongly for objective probabilities. Around Bear’s collapse and after
Lehman’s default, we observe that P1 spikes, but maximum values of P2, P3 and P4 do not
increase as much. Suppose P1 was jumping due to an increase in risk premia: agents’ marginal
utility becomes higher in states of the world when at least one bank defaults. Since events in

28Even Bernanke, in his February 28th 2008 testimony (two weeks before Bear’s collapse), remarked: “There
will probably be some bank failures. There are some small and in many cases new banks that have heavily
invested in real estate in locales where prices have fallen. Among the largest banks, the capital ratios remain
good and I don’t expect any serious problems among the larger banks.” (Feb 28th Senate Banking Committee).

23



which many banks default arguably happen in states of the world with even higher marginal
utility, we would then expect P2, P3 and P4 to increase even more. But empirically, the latter
do not increase as much in these cases. Therefore these episodes are likely to be driven by
movements in the objective probabilities, and not in risk premia: the objective probability
that one bank would fail increases while the objective probability that many default does not.

4.2 Probability bounds with different information sets

To understand the importance of using all available information (bonds and CDS spreads of
all banks), in this Section I compare the optimal bounds with bounds obtained using smaller
information sets.

4.2.1 Using only bonds or only CDSs

The top panel of Figure 6 compares the bounds on P4 obtained using all information available
to bounds obtained using only bond prices or only CDS spreads. In particular, the thin lines
in the top panel represent the upper bounds obtained using only bond prices, i.e. discarding
the constraints coming from CDS prices (all lower bounds are 0). The dotted lines use only
CDS data, ignoring the constraints coming from bond prices (upper bounds on marginal
probabilities). Both sets of bounds ignore the information contained in the bond/CDS basis,
since in neither case the basis is observed. The shaded bounds represent the full-information
bounds.

The bounds on P4 that do not use information contained in the basis tell quite a different
story than the bounds that use all the information available. In particular, they present a sharp
increase in systemic risk before March 2008 and a much larger spike after September 2008. In
fact, these bounds on P4 closely resemble the bounds on idiosyncratic risk P1 shown in the top
panel of Figure 4. They do not allow to distinguish relative movements of idiosyncratic and
systemic risk. This confirms the importance of considering the information in the bond/CDS
basis to learn the most about systemic risk.

4.2.2 Using only cross-sectional averages of bond and CDS spreads

Another useful exercise is to examine what we can learn about systemic risk if we only look at
average bond and CDS spreads across banks (essentially the information depicted in Figure
1), rather than using the disaggregated bond and CDS prices of the N banks.

As a consequence of the linearity of the constraints in the marginal and pairwise probabili-
ties (see Section 3.2.1), we can compute the optimal bounds that only use average information
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by simply averaging the available constraints across the N banks, obtaining therefore only one
constraint for the average bond price and one constraint for the average CDS spread.

This exercise is useful because it allows us to gauge how much information we gain from
the asymmetry of the probability system. In particular, I prove in Appendix B that:

Proposition 2. Among all probability systems with the same average marginal and pairwise

default probabilities, the widest bounds on systemic risk, for any r, are obtained for the sym-

metric system, in which all marginal probabilities are the same (and equal to the average) and

all pairwise probabilities are the same (and equal to the average).

Proof. See Appendix B.

This Proposition implies that asymmetry in marginal and pairwise probabilities always

results in more informative bounds. By comparing the bounds obtained under our full infor-
mation set to the ones obtained by looking at average bond and CDS spreads we can then
gauge how much are we learning due to the asymmetry of the network.

The bottom panel of Figure 6 reports both the full-information bounds and the ones that
use average bond and CDS spreads only. The Figure shows that in general the average bond
and CDS spreads contain a significant amount of information about systemic risk. However,
the Figure also shows that, for some particularly important episodes, considering the full
information set – and its asymmetry – is crucial to distinguish between idiosyncratic risk and
systemic risk (for example, during the period September-November 2008).

4.3 Individual contributions to systemic risk

Next I study the evolution of the default risk of each bank and its relation with the rest of
the financial network. In particular, I study the probability systems that attain the upper
bound for P4 under the liquidity calibration to nonfinancial firms. In general, the upper bound
is attained by more than one probability system – in the Linear Programming formulation
(8) the max is attained by more than one vector p. Across different solutions that attain
the upper bound, some default probabilities are always the same (which means that they are
uniquely identified at the max, like marginal default probabilities), but some are not, like
pairwise default probabilities.

Figure 7 reports a partial snapshot of the network as of August 6th 2008, five weeks before
Lehman’s collapse. The nodes of the diagram present monthly individual probabilities of
default. The segments that connect the nodes report the joint default probability of the two
intermediaries. Since pairwise default probabilities are not uniquely identified at the upper
bound, I report the range observed within the space of solutions to the maximization problem
for P4.
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The pair at highest risk of joint default is Merrill Lynch with Lehman Brothers, followed
by Lehman Brothers and Citigroup. The prices of bonds and CDSs were consistent with
a high joint default risk of Lehman and Merrill even 5 weeks before the weekend in which
both collapsed (September 13-14, 2008). Other segments of the graph show considerable
heterogeneity in the marginal and pairwise probabilities of default. I omit from the graph
several banks for which the joint default risk with other banks is zero or close to zero, even
though their marginal default risk is relatively high – which is consistent with their defaults
being approximately independent from the other banks.

Next, for each pair of banks i and j I track the evolution of P (Ai), P (Aj) and P (Ai \Aj)

over time (for the pairwise probability, I report the midpoint of the range observed across all
solutions to the maximization problem). Figure 8 plots these probabilities for three different
pairs of banks (all combinations of Lehman, Merrill Lynch, and Citigroup). The upper panel
reports the marginal probabilities, and the lower panel reports the joint probabilities. These
graphs confirm the relatively high degree of heterogeneity and variability in marginal and
joint default probabilities across banks. Interestingly, pairwise probabilities can behave quite
differently than marginal probabilities. The data confirm that the markets anticipated the
possibility of joint collapse of Lehman Brothers and Merrill Lynch for the two months prior
to that event.

We now turn to study how each institution contributed to systemic risk. I compute the
probability that institution i is involved in a multiple default event, Pr{at least 4 default \
i defaults}. This probability is uniquely identified at the upper bound on systemic risk.
Figure 9 plots this contribution for four banks (Citigroup, Lehman, Merrill Lynch and Bank of
America) as well as the average across the other banks. The Figure shows large heterogeneity
across institutions, both in levels and in changes. While the contribution to systemic risk
increases for all banks after August 2007, the growth is faster for Lehman, Merrill Lynch
and Citigroup than for the other banks. Lehman Brothers – at least at the upper bound of
systemic risk – appears to be the most systemic institution at almost all times since March
2008, and particularly so several months before its default. After September 2008, Citigroup
and Bank of America become the most systemic institutions.

4.4 Additional Results

In this section I present two additional empirical exercises that can help clarify and interpret
the results on systemic risk. First, I show that if the liquidity component � is calibrated to be
equal to the non-financial liquidity component �

⇤ (instead of using �

⇤ only as a lower bound
for � as in Figure 4), we can obtaining a tighter lower bound (positive though still small).
Second, I compare the bounds on systemic risk with a measure of systemic risk obtained by
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calibrating a benchmark multivariate normal model.

4.4.1 Adding an upper bound on liquidity (calibrating � = �

⇤)

Throughout the main empirical results presented in the previous sections, the lower bound on
the probability that many banks default together was zero (for r > 1). This is a consequence
of two facts. First, imposing only a lower bound on liquidity means that potentially all of
the bond-CDS basis could be explained by liquidity, which in turn means that we cannot rule
out that joint default probabilities are all zero. Second, we are concerned with the probability
that many (more than 2) banks default together, and our information covers joint defaults
of at most pairs of banks. Therefore, tightening the lower bound is difficult in the present
setting (at least without imposing much stronger restrictions on the joint distribution function
of defaults, contradicting the purpose of using probability bounds in the first place).

It turns out, however, that by adding one assumption about the liquidity process, we
can indirectly tighten the lower bound. So far, I have used the proportional variation in the
liquidity process �

⇤ estimated from non-financial firms as a lower bound on financial firm
liquidity �, i.e. I imposed � � �

⇤. Instead, we could impose that the proportional variation in
the liquidity process over the crisis is actually the same for financial and nonfinancial firms,
so that � = �

⇤
. Imposing this constraint is not straightforward: in some cases, the bond-CDS

basis is relatively large; if we impose that a certain fraction of it (determined by �

⇤) has to
be explained by liquidity, the remaining part has to be due to counterparty risk. But in some
cases this is not mathematically possible, since there are restrictions between the pairwise and
marginal probabilities in the system. For the purpose of this section, in these cases I increase
the liquidity � individually for each bank to the point where the remaining part of the basis
can be explained by counterparty risk.

Figure 10 shows the results. The additional assumption on liquidity does help somewhat in
tightening the lower bound, though for the reasons discussed above it is hard to significantly
tighten the bounds without putting much stronger constraints on the probabilities that many

banks default.29

4.4.2 Calibrating a benchmark multivariate normal model

While a complete comparison of the bounds presented in this paper with the extensive num-
ber of existing measures of systemic risk is beyond the scope of this paper, it is useful to

29Note that the bounds tighten not only for P2, but also for P3 and P4. Even though the latter two
probabilities don’t directly depend on marginal and pairwise probabilities (since they involve default of at least
3 banks), constraining all marginal and pairwise probabilities does put some constraints on the probabilities
of more than 2 defaults.
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compare the results with a benchmark calibration: a model in which the returns of banks are
multivariate normal and defaults occur when returns fall below a threshold chosen to match
the marginal probabilities.

I calibrate the model by choosing (separately for each day) the return threshold of a stan-
dard multivariate normal so that the marginal probability of default for each bank corresponds
to the one obtained from bond prices. For simplicity, I impose that all the pairwise corre-
lations are the same and equal to a value ⇢. I then compute the probability that at least 4
banks default (P4) under different values for the pairwise correlation ⇢, and plot the results
in Figure 11 for values of ⇢ of 0.5, 0.7, 0.9, 0.99 (higher ⇢ corresponds to a higher line). The
Figure plots, for comparison, the bounds obtained in Figure 4.

The results highlight some interesting similarities and differences between the bounds and
the calibrated normal model. First, the order of magnitude of the measure is similar to that of
the bounds for high enough values of ⇢ (starting from 0.7). Second, for each value of ⇢, the time
series of P4 obtained from the normal model closely resembles the time series of the average
CDS spreads and the time series of P1 (reported in Figure 4). This is not surprising since the
calibration only uses information in the marginal probabilities, ignoring the constraints about
the pairwise default probabilities coming from the bond-CDS basis. In particular, notice that
the calibration predicts an increase in systemic risk before the default of Bear Stearns, which
as explained above is not compatible with the information content in the bond-CDS basis
(which is instead taken into account by the bounds). This explains why the normal model
measures a probability of systemic event higher than the upper bound until March 2008.

Third, from 2009 onward, when the basis becomes much larger, the calibrated probability
of a systemic event lies well below the estimated upper bound, for every value of ⇢: the
multivariate normal model is not able to generate levels of joint default probability as high
as the upper bound that we compute. The reason is that the multivariate normal model
(like other standard calibrated models) imposes a strong structure on the dependence of the
defaults and especially on the higher-order dependence (which involves more than 2 banks).
This highlights the advantage of looking at the bounds rather than at calibrations based on
restrictions on the distribution of defaults, since strong dependence assumptions may lead us
to miss an important component of systemic risk.

4.5 Robustness

In this Section I briefly discuss the robustness of the results with respect to several of the as-
sumptions imposed in Section 3. I verify that the evolution of systemic risk over time remains
similar to what described in Section 4: very little systemic risk before March 2008, then a
jump after Bear Stearn’s collapse and an increase until 2009; decomposition between idiosyn-
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cratic risk and systemic risk during some episodes. The full derivation and implementation is
reported in Appendix D.

With respect to recovery rates, equations (1) and (2) imply that changes in the recovery
rate of bonds, R, scale the implied default probabilities from all prices in the same direction.
Therefore, these changes scale the level of the bounds uniformly for the whole period, without
affecting the main empirical conclusions about the evolution of systemic risk. In Appendix D,
besides reporting results for different levels of R, I also show that the main conclusions hold if
R decreases during periods of high distress, as well as if R follows a simple stochastic process
that features lower recovery rates if several banks default.

More interesting is the robustness with respect to the recovery rate in case of double
default, S. Appendix D explores the results under different assumptions for S and shows that
even when the recovery rate is as high as 90% the main results hold. The effect of changes
in S depends on the liquidity-adjusted bond/CDS basis of each bank. For a subset of banks,
in some days, after adjusting for liquidity the part of the basis that can be attributed to
counterparty risk goes to zero, so that these banks do not contribute to systemic risk for these
days (unless S is 100%, in which case the CDS/bond basis becomes uninformative about
counterparty risk). For other banks, the basis is positive but small enough that it can be
completely explained by counterparty risk: an increase in S then means that the same basis
can account for higher counterparty risk. For the remaining banks, the basis is large enough
that it cannot be completely explained by counterparty risk, and a part of the basis must

be explained by liquidity: as S increases, the maximum joint default risk with other banks
must decrease. The robustness of the results to changes in S stems from the fact that the
effect of changes in S is different and opposite across banks with large and small basis, so that
the increase in systemic risk due to one bank is offset by a decrease in risk due to another.
Appendix D presents a simple example of this mechanism.

Appendix D also discusses the robustness of the results under an alternative pricing model
in which the hazard rates h

i
, h

j and h

ij are mean-reverting processes. Since we do not ob-
serve a full term structure of spreads for CDS contracts, I need to impose several additional
assumptions to be able to estimate the bounds; essentially, I impose that the term structure
of hij inherits the properties of the term structure of hi and h

j, which can be estimated from
bond prices. Given that I focus on short-horizon (one month) default rates, the estimates,
derived from the term structure of bonds up to 10 years, become less stable and more noisy.
While the level of the upper bound generally increases for all periods, the time series results
are consistent with those of Figure 4.

The Appendix also shows that the empirical results still hold when the swap rate is used as
the risk-free rate, since the difference in the risk-free curve affects at the same time the basis of
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financial firms and that of nonfinancial firms, from which the liquidity component is extracted
under the baseline calibration. In addition, the Appendix shows that the results hold when
I restrict the sample to US banks only, and when I only use bond data from large TRACE
transactions. In Appendix D I also discuss under what conditions we can use together bond
and CDS prices denominated in different currencies.

Finally, I study the possibility that the CDS quotes reported by Markit for each bank i

do not represent an equal-weighted average of the joint default risk with i’s counterparties,
but instead weigh more some counterparties and less others. This might be the case if some
counterparties are more likely to send quotes than others, or if collateral requirements vary
by counterparty. I show that the results are robust to various possible weighting schemes.

5 Conclusion

I study the role of counterparty risk in CDS markets for the measurement of systemic risk.
Because counterparty risk affects the price of a CDS but not the underlying bond, by combining
the information from bond and CDS spreads we can learn about the joint default risk of pairs
of financial institutions.

I apply this idea, using a linear programming approach, to calculate upper and lower
bounds on the probability that 3, 4 or more banks fail simultaneously, which captures our
notion of “systemic risk”. The approach allows us to learn about the joint default probability
of several banks without making any assumptions about the shape of the joint distribution
function of defaults.

The empirical analysis of Section 4 shows using this methodology that until March 2008
the probability that multiple banks default together was consistently low. At the same time,
the idiosyncratic risk of one of the banks defaulting started increasing since August 2007, and
saw a large spike in early 2008. Only after Bear Stearns’ collapse in March 2008 we see an
increase in the upper bound on systemic risk as well. In September 2008, after Lehman goes
bankrupt, the probability that at least one bank defaults spikes, while the risk of multiple
defaults does not spike as much. This seems to indicate that agents expected the government
to try not to let multiple banks fail at the same time.

The approach also allows us to estimate how much each bank contributes to systemic risk
at the bounds. Months before the weekend in which Lehman Brothers and Merrill Lynch
collapsed, the probability of joint default of the two was estimated to be much higher than
any other pair. Lehman Brothers was consistently indicated as the most systemic institution
since at least 6 months before its default.

While derived under several modeling assumptions and affected by limitations in the data,
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these bounds can be useful to complement other methodologies that make stronger assump-
tions about the joint distribution function of defaults. A standard calibration of a multivariate
normal model shows that standard functional form restrictions may lead to underestimating
systemic risk in some periods and overestimating it in others, while the bounds include all
possible levels of systemic risk compatible with observed bond and CDS prices.

It is also worth noting that these bounds reflect the beliefs of financial participants about
systemic risk. These beliefs incorporate forecasts of policy and economic events, and therefore
caution needs to be taken when using these bounds to inform policy decisions. At the same
time, since the bounds can be constructed in real time, they are a useful tool for tracking the
market’s perceptions of systemic risk and identifying the sources of distress in the financial
system.
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Tables

Avg valid bonds 2004 2005 2006 2007 2008 2009 2010
Abn Amro 3.8 1.8 2.2 4.0 4.4 3.3 5.0 7.3
Bank of America 32.6 17.6 25.5 29.4 32.9 35.7 42.8 56.8
Barclays 15.7 3.1 3.0 2.4 2.5 9.5 42.0 82.0
Bear Stearns 11.7 7.2 9.8 13.5 15.5 15.6 - -
Bnp Paribas 7.6 0.5 2.0 3.6 4.5 7.1 19.9 24.6
Citigroup 36.5 21.6 24.3 31.7 40.0 43.2 49.5 54.5
Credit Suisse 5.4 1.9 2.3 2.8 2.7 5.0 11.6 17.4
Deutsche Bank 42.8 5.3 10.4 42.3 68.9 54.6 61.8 70.9
Goldman Sachs 42.4 19.3 26.1 34.3 40.4 52.5 67.0 72.9
JP Morgan 20.4 6.6 11.1 14.0 17.4 25.9 38.4 38.9
Lehman Brothers 20.1 10.5 15.2 20.5 26.5 31.4 - -
Merrill Lynch 37.7 23.6 33.8 41.5 45.8 46.3 - -
Morgan Stanley 28.4 12.5 14.6 17.5 22.2 33.5 55.0 59.0
UBS 9.1 0.3 0.7 1.0 3.1 8.9 25.5 40.6
Wachovia 6.1 2.9 3.5 5.7 7.4 9.1 7.7 7.3

Table 1

Note: first column reports average number of bonds for each institution that are used for the 
estimation of marginal default probabilities. Columns 2-8 break this number down by year.

Avg CDS spread Std CDS spread Min spread Max spread Avg basis Std basis Min basis Max basis
Abn Amro 45.8 46.1 5.0 190.5 -43.7 43.0 -241.8 38.2
Bank of America 66.5 71.7 7.4 390.7 -69.7 63.3 -405.7 214.3
Barclays 54.2 60.0 5.5 261.9 -38.7 60.0 -318.6 113.7
Bear Stearns 54.2 69.7 18.0 736.9 -52.5 25.0 -291.6 46.6
Bnp Paribas 33.8 32.2 5.4 163.9 -52.6 48.5 -319.8 92.4
Citigroup 100.4 129.7 6.5 638.3 -74.3 87.1 -796.9 59.9
Credit Suisse 53.0 51.3 9.0 261.4 -49.2 43.4 -274.0 58.7
Deutsche Bank 49.8 45.1 8.9 190.0 -20.4 28.1 -169.8 71.2
Goldman Sachs 84.2 86.4 17.2 579.3 -76.2 90.3 -491.8 80.3
JP Morgan 53.1 42.8 10.9 227.3 -73.8 57.0 -316.3 32.3
Lehman Brothers 70.7 86.9 18.0 701.7 -60.4 43.8 -543.1 24.4
Merrill Lynch 59.9 71.9 14.4 447.7 -51.7 41.2 -202.1 26.2
Morgan Stanley 112.5 144.2 16.6 1385.6 -80.6 106.3 -1246.9 220.3
UBS 59.3 72.4 4.2 357.2 -63.7 58.3 -336.7 40.2
Wachovia 73.9 93.5 9.3 1487.7 -84.6 119.4 -2504.5 96.1

Table 2

Note: the table reports descriptive characteristics on the CDS spread and the bond yield spread for the 15 institutions in the sample, in
basis points per year. The bond yield spread is computed as the linearly interpolated yield for a 5-year maturity bond in excess of the
corresponding Treasury rate. The basis in the last four columns is computed as the CDS spread minus the bond yield spread. The sample
covers January 2004 to June 2010.
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Figure 1: Average 5-year bond yield spread and CDS spread for the 15 financial intermediaries most
active in the CDS market, and rescaled difference (basis).
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Figure 2: Example of the information content of marginal and pairwise probabilities with 3 banks.
The sets in the diagram represent default events, and their areas represent the default probabilities.

Figure 3: Construction of the Linear Programming representation (example with 3 banks).
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Figure 4: Upper and lower bounds on systemic events under the assumption that liquidity premia of
bonds issued by financial firms increased during the crisis by at least as much as those of nonfinancial
firms. Pr is the monthly probability of at least r banks defaulting, for r = 1, 2, 3, 4. Bounds are
smoothed with a 3-day moving average.
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Figure 5: Bounds on the monthly probability of at least 1 bank (top panel) and 4 banks (bottom
three panels) defaulting under different liquidity assumptions. The top panel shows P1 with liquidity
calibrated to nonfinancials. The bottom three panels show P4 under the three liquidity assumptions:
nonnegative, at least as high as 2004, and calibrated to nonfinancials.
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Figure 6: Bounds on P4 (probability that at least 4 banks default) under different information sets.
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Figure 7: Marginal and pairwise average monthly default probabilities for part of the network in
the high systemic risk scenario (max P4) as of 08/06/2008, with the liquidity process calibrated to
that of nonfinancial firms. Nodes report the marginal default probabilities of each bank, edges report
ranges for the pairwise joint default probabilities.
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Figure 8: Marginal and pairwise default probabilities for selected banks, under the calibration of
the liquidity process to that of nonfinancial firms, at the upper bound for the probability that at least
4 banks default. A 3-day moving average is plotted.
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Figure 9: Individual contributions to systemic risk for selected banks, under the calibration of the
liquidity process to that of nonfinancial firms, at the upper bound for the probability that at least 4
banks default. A 2-week moving average is plotted.
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Figure 10: Upper and lower bounds on systemic events under the assumption that liquidity premia
of bonds issued by financial firms increased during the crisis by as much as those of nonfinancial
firms. Pr is the monthly probability of at least r banks defaulting, for r = 1, 2, 3, 4. Bounds are
smoothed with a 3-day moving average.
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Figure 11: Bounds on the probability that at least 4 banks default (P4, shaded) against estimates
of P4 using a multivariate normal model calibrated to match the marginal default probabilities (solid
lines). The different solid lines correspond to different values of ⇢, the correlation parameter of the
multivariate normal distribution (assumed to be the same for all pairs). From the bottom to the top,
each solid line represents the calibrated P4 for ⇢ = 0.5, 0.7, 0.9, 0.99 respectively.
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