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Abstract

We define tail interdependence as a situation where extreme outcomes for some variables
are informative about such outcomes for other variables. We extend the concept of multi-
information to quantify tail interdependence, decompose it into systemic and residual in-
terdependence and measure the contribution of a constituent to the interdependence of a
system. Further, we devise statistical procedures to test: a) tail independence, b) whether
an empirical interdependence structure is generated by a theoretical model and ¢) symme-
try of the interdependence structure in the tails. We outline some additional extensions

and illustrate this framework by applying it to several datasets.
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1. Introduction

The recent intense interest in (tail) interdependenceveliby its importance in eco-
nomics, finance, insurance and in many other areas of applazhbility and statistics.
Research has documented that dependence has a complex isastnongly non-normal,
with a time-varying strength and shape (e.g., Patton, 20@nultaneously capturing
these characteristics has proved to date difficult.

In economics and finance, dependence is paramount for mgrortamt applications
such as portfolio decisions (e.g., Ang and Bekaert, 2008k, management (e.g., Em-
brechts et al., 2002), multidimensional options (e.g.,rGbmi and Luciano, 2002), credit
derivatives, collateralised debt obligations and inscegje.g., Hull and White 200&ale-
manova et al., 20Q7Su and Spindler, 2013), contagion, spillovers and econanses
(Bae et al., 2003Zheng, et al., 2012) and market integration (e.g., Bartraah £2006).

The literature contains several notions of dependence (8,002 Colangelo et al.,
2005 Joe, 1997). The most widely applied dependence measur@etirson’s correla-
tion coefficient, is an inadequate measure in many situsi@&snt captures only the linear
dependence between pairs of random variables (see e.greEmbet al., 2002, Longin
and Solnik, 2001). Alternatively, dependence has beeruoaghy copulas (e.g., Patton,
2009 Giacomini et al., 2009). However, while copulas have uspfoberties such as
analytic measures of dependence and the invariance of depe& under increasing and
continuous transformations, they are still based on pararessumptions that may not
hold in practice, e.g. imposing specific marginal probabdensity functions (PDFs) and
a copula on the data. (Multivariate) extreme value theohT(Ehas also been applied to
extreme interdependence (see, for example, Jansen andede 1991 Hartmann et al.,
2000). However, EVT only provides asymptotic results amdlies heavily on parametric
models (see Longin and Solnik, 2001). Ledford and Tawn (19®86pose models char-
acterizing the asymptotic dependence of distributiondaMBbles et al (1999) propose

diagnostics for such dependence. Heffernan (2001) prexad#irectory of coefficients of



tail dependence. However, these studies are typicallysidwn bivariate distributions
and it is not clear whether they can be extended easily tcehigimensions.

A difficulty in measuring dependence in financial data is asytny. In the univariate
case, the leverage or feedback effects, where the magmfuadeegative return following
bad news is larger than the magnitude of a positive retutoviihg good news of the same
nature, has motivated the asymmetric GARCH literature Segle, 2002 Bollerslev,
2009, and the references therein). Similarly, in the mailiate case, the magnitude of
co-movement in negative returns following bad news is latigan the magnitude of co-
movement in positive returns following good news of the saaieire. This phenomenon
has motivated the literature of asymmetric return depecelésee, for example, Longin
and Solnik, 2001Ang and Bekaert, 20QBae et al., 2003). As Hong et al. (2007) point
out, accounting for asymmetries is important as othervwisg tan cause severe problems
with hedging and portfolio diversification. In particuldhe standard advice to hold a
well diversified portfolio might be questionable if all sksctend to fall as the market
experiences an extreme drop. However, accounting for aggrnamependence requires
care (see, for example, Boyer et al., 1999rbes and Rigobon, 2002). Formal tests to
assess the existence of asymmetric correlations have leetoded by Ang and Chen
(2002) and Hong et al. (2007).

In this paper we focus on co-exceedances - counts of joinirogaces of extreme
outcomes. We compute for all subsets of variables theirrgbdeco-exceedances and
compare them to co-exceedances expected under a hypetheslel. Formally, we de-
fine thetall interdependencas a situation where the tail events of some random variables
are informative about such events for other variables. €maly, undeindependence
tail events in any subset of variables do not convey any médion about tail events of
other variables. Further, while we often use the terms defeendence and dependence
interchangebly, we distinguish between the two concepisliasvs. Dependence refers to

the relationship between two random variables whereaslependence refers to the rela-



tionship among: > 2 variables. Hence, the latter nests the former concept crignce
in that it is more general and encompassing. Similar to beagd Solnik (2001), Ang and
Chen (2002), Bae et al. (2003) and Hong et al. (2007) amoreysitive treat positive co-
exceedances (upper tails) separately from the negatiex@eedances (lower tails). This
separation allows for testing whether the dependence ifother and the dependence in
the upper tails are symmetric.

Our approach to measuring interdependence, similarly éo(1689), relies on the
concept of (relative) entropy or multi-information. Engsois used in many areas of natural
sciences and has recently been productively employed moacics and finance (see, Van
Nieuwerburgh and Veldkamp, 201Backus et al., 2014).

We make the following contributions. We propose a non-patammeasure of tail
interdependence, the coefficient of tail interdepende@dd)( This measure follows nat-
urally from the concept of multi-information, is genericdacan be applied to an array of
problems. Then, we decompose total interdependence istersicand residual inter-
dependence and measure the contributions of constituzgts ssets) to the interdepen-
dence of a system (e.g., portfolio). Further, we providetanahframework for statistical
tests of independence in the taigsgoodness-of-fit test assessing the compatibility of the
observed tail interdependence structure with the one geatwby a hypothesized model
and dependence symmetry between the lower and the upefaiagdny two tails). These
tests can be employed unconditionally and, importantipdaoonally to distinguish be-
tween different models of conditional dependence such dsvamiate GARCH or time-
varying copulas. Moreover, this framework can easily bdiagpo generate synthetic data
with the same tail interdependence structure as that obdéman actual dataset. This is
particularly useful in applications, where the tail intepgndence is the overriding concern
such as risk management. In the Appendix, drawing on thghitsideveloped in infor-
mation theory and the related areas of natural sciencesjseass additional interesting

extensions that arise naturally in the relative entropytirmformation framework.



To illustrate the potential and flexibility of this methodgly for providing insights into
tail interdependence, we apply it (conditionally and urdibanally) to daily returns of
equity indices of G7 countries, high-frequency returnssiarEuropean markets and daily
returns of Dow Jones Industrial Average (DJ30) index ctunestits. Our empirical findings
confirm some well-known and uncover a few new stylized factextreme returns. For
example, standard asset pricing factors account for mositeofnterdependence of the
DJ30 stock returns in the center but not in the tails of theitistion - a result of their own
high interdependence in the tails.

The paper proceeds as follows. In Section 2 we introduceoihetpils and the tail in-
terdependence structure as the fundamental tools of cuefvark. Using this concept, in
Section 3 we define the coefficient of tail interdependenddmnoduce statistical tests of
independence, goodness-of-fit and interdependence symMé illustrate the flexibility
and potential of the framework in Section 4. Section 5 sunmearthe paper and offers
some concluding remarks. In the Appendix, we prove someefdlults presented in the

paper and discuss some extensions of the tail interdepeadiemework.

2. Joint tailsand thetail interdependence structure

Let VV = {1,...,n} be afinite set and’ = Fy; a continuous joint CDF (PDF = fy)
of a vectorX = (X4,..., X,,) of n random variables with the support on a convex and
full-dimensional sef2 C R"™. For the strictly increasing marginal CDE, : € N, the
value at risk (VaR) at the nominal level € (0, 1) is thea-quantile F; *(«). Fori € N,
we define the (lower) univariate taif (o) = {z € Q : z; < F, *(a)} as a set of outcomes
in © with thei-th component below the quantilé ! («). For the tail probabilities it holds
that f(5;(«)) = «, where the notatiorf(S) stands for the probability of the sstunder
the PDFf. We define the (lower) joint tail (JT) at the nominal leveks follows: for a

subsetC' C N, a JTT¢(a) contains outcomes € Q such thaty; exceedst; ! («) for



i € C andz; does not exceedl; ' (a) fori € N\C,
Tola)={r€Q:z;< F'(a) VieC & z;>F 'a) Yie N\C} (1)
Note that the univariate tafl;(«) is the union of all JTs wher&’; exceeds its VaR,

Sl(a) = UCQN:ieC Tc(()z).

Importantly for our purposes, the joint tails-(«) and Ts(a) are disjoint ifC # B.
Therefore, the supers@t(a) = {Tx(«) : C C N} partitions the outcome spateinto 2"
(the number of all subsets @f) regions. In other words, the disjoint setsZria) cover

the entire outcome spa€e Figure 1 illustrates the partition 6f into 7 («).

Figure 1: The Partition of the Outcome Space into Joint Tails

X1
Tayla) Tola)
T{l,z}(Cr ) T{Z}(a’ )
X,
v

Notes: The figure illustrates the partition of the outcomeesinto joint tails/ - («) forn = 2.

The subsets if7 («) depicted in Figure 1 could be given interesting interpretst
For example, for a lowy, the JTTj captures the dependence in returns in the spirit of
CAPM or APT - the dependence of the expected returns of ah @sske expected return
of the market or another asset. TheDT ,; could be interpreted as dependence in risk -
the dependence of an extreme event for asset 1 on the extuemis en asset 2 and vice
versa. Similarly, the JT8},, and7y could be interpreted as return-risk dependence -

the dependence of the return of asset 2 (1) on the extremefresdset 1 (2) respectively.
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Different users may only be interested in particular subeé? («) and overlook others.
For example, a properly hedged investor may only be intedeist’7; while a regulator
may only be interested ifiy; 5. Similarly, only Ty, and T, may be relevant for the
pricing of exotic securities or insurance products.

For a partition7 («) of the outcome space and a PDFf : Q2 — R, we define theail
interdependence structu@|1S) u(f, o) = {uc(f, @) }ocn as an2™-dimensional vector,

where

uC(f> a) = f(TC(a)) = fTeTC(a)f(T)dTa (2)

is the probability mass of the JI-(«) under f. When there is no risk of confusion, we
omit the reference tg’ and« in u(f,«) and writeu instead. Clearlyy is a (discrete)
PDF as7 («) is a partition of the sample space. Generally, the inforomationtent of the

discrete PDRp defined on the domai®, is measured by its entropy (Shannon, 1948),

H(p) == =3 icppilnpi, (3)

whereln(.) is the natural logarithm and, by conventidrin0 = 0. For example, when
the marginal probability distribution of VaR exceedancegiven byp® = (a,1 — «)
(i.,e. VaR is exceeded with probability and not exceeded with probability— «) then
H(p*) = —In(a®(1 — a)'=). The entropyH (p~) depends only om and plays an
important role in the ensuing analysis.

The TISu contains all the relevant information regarding the jokxteedances in the
lower JTs, e.g., joint losses of some assets. In other c#sedpcus of the investiga-
tion may be on joint gains or, more generally, on the tailnt@endence of some linear

combinations (portfolios) of the random vectdr

Y; :A11X1++A@an, 1= 1,...,m.



For anm x n real matrix A = (A;;), we can compute the density functigty) of the
random vectoy” = (Y7, ...,Y,,) and, hence, the TI&(g, o) by the change of variables

theorem,
1

Y =AX = ¢g(y) = Aot Al

(A ).

In particular, we can use the latter formula to compute tf®ully, «) whenA is a rotation

matrix,
Y = AX = g(y) = f(ATy), as AT =A"1 & |detA|=1.

For example, by settingl = —1I, wherel is the identity matrix, we obtain the TIS for
the upper tails. Rotations will allow us to compute the TI$ aoly for the lower and
the upper tails but also for the mixed tails, i.e., among tweel univariate tails for some

variables and the upper univariate tails for others.

3. Measurement and dtatistical testing of tail inter dependence

3.1. Coefficient of tail interdependence

The interdependence of the VaR exceedancesd$crete random variables with the
joint PDFw and with marginalg® is fully defined by themulti-information(MI) (Cover
and Thomas, 2006),

I(w) = D(ul[x") = 3 ucln g—g 4)

where the probability of the JT-(«) under independence is

¢ = Pr(Te(a) = [Tiee Pr(Si) [lieanc (1 = Pr(Si) = a™(1 — )" 77,

1The matrixA can be interpreted, for example, as the exposure of thetonvessthe financial system to
each of theX;...X,, assets or financial institutions.



and #C' is the cardinality of seC. MI is non-negative and equals zero in case of in-
dependence only, i.e., if and onlydf = 7. In statistics,D(u||7*) is known as the
Kullback-Leibler (KL) divergence between the PDEsand 7*. MI quantifies thetotal
amount of interdependence among random variables thasdrsm pairwise, triplet or
more complex interactions. It is widely used in, for exampleysics (Schneidman et al.,
2003) and biosciences (Wennekers and Ay, 2@hneidman et al., 2006). In particular,
it allows for the study of the global statistical structufeacsystem as a whole, the total
dependence between subsystems, and the temporal stdssticture of each subsystem
(Chicharro and Ledberg, 2012). Importantly, Ml can alsodygesented as the difference
between the sums of individual (marginal) entropies angdime entropy (Schneidman et

al., 2003),

I(u) = D(u||7®) = 32y H(p") — H(u). ()

Intuitively, H (u) is a measure of uncertainty in the joint distributioof the exceedances.

Thus, the lower the uncertain®/ (u) the higher the MIZ(u). This interpretation reveals

an important inverse relationship between interdepereland uncertainty (entropy).
We use the MI (4) to measure tail interdependence. Spedtyfieat define thecoeffi-

cient of tail interdependend€T]I) as,

D(uf|x*)  nH(p") — H(u)

wlen ) = (n—1H(p*) nH(p*) - Hpe)

(6)

The CTI has many desirable properties. In the Appendix, vegvghat the CTI lies in the
unit interval. In particulars (o, u) = 0 when all exceedances are mutually independent
andx(a,u) = 1 in case of perfect dependence, i.e., whemalhariables always exceed
together their respective threshofdsSecondly, the CTI is scale invariant under strictly

increasing transformations of the underlying variableX(inSpecifically, if eack,(X;)

2Perfect dependence occurs whidt) = H(p®), i.e., when the TIS; carries the same information as
one marginap®.



Is an increasing and continuous function, then the CTI cdethérom the transformed

variablest(X) = (£;(X;))i=1

,,,,, » 1S the same as that computed froh This property
follows by the construction of the TIS from the quantilestué variables inX as the same
events fall into a JT/(«) underX and undei(X). Further, by the construction of the
TIS (2), the CTl is robust to outliers and is invariant under permutation of the random
variables inX. The CTI can also be decomposed into a systemic and a resmiuglonent
(see subsection 3.2) and it can be used as a test statiststttail independence (see
subsections 3.3 and 3.4). It is important to note that thed®Eks not measure the overall
interdependence among random variables. Instead, it ifjearthe interdependence of
extreme events, where the parametedefines the severity of the extreme events and a
rotation matrix specifies their directions. Although thelpability u4 of the no-exceedance
event7y is used in the computation the CTI, this probability is fullgtermined by the
probabilities of the other joint tails (because all tail lpabilities sum up to one). In this
senseyy does not contain any independent information and the caatipatof the CTI
relies exclusively on the information in the probabilities“genuine” joint tails with at
least one exceedance.

Interestingly, the CTI allows for interpreting joint exckzaces of the variables inX
as joint exceedances of a smaller number of mutually inddgratri'factors”. Specifically,
writing (6) as

H(u) = (n—nk+ r)H(p*)

makes it obvious that the TIsconveys the same information as- nx + x independent
marginalsp® = (a,1 — «). In particular, forc = 1 (x = 0) the information inu is
equivalent to that il (n) marginal(s). We can think then of the exceedances in thee dat
generating proces¥ as being driven by, — nx + « independent binary "factors”, each
having the same distributigit as the exceedances.®f. Moreover, as the CTI effectively
relates the information in the TI&to the information in the: marginalsp®, it allows for

comparing the strength of interdependence for differeveleof . An examination of
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the numbern — nk + k of factors over time may be informative regarding the sttierng
the interdependence of assets or financial institutionshande, may shed light into the

dynamics of the diversification benefits or the financialifrgg

3.2. Interdependence Decomposition

MI (4) is equal to theotal KL divergenceD (u||m*) between the TIS = {uc}ocn
and the PDF* = {7&}ccn that holds under tail independence. In some applications
however, it is optimal to focus on the aggregate or systeraioponent ofD(u||7?).
Specifically, we define thaggregate TI&s the(n + 1)—dimensional vectoti = {u}}_,

where,

U = ZC’QN’:#C:k uc,

and the correspondin@ + 1)—dimensional vector of JT probabilities under independence
ast” = {7, }7_,» Where,

~a @
T = ch\f:#czk Tc-

Hence,u and 7* are discrete probability distributions of observikg= 0,...,n ex-
ceedances under the PDFand under the tail independence, respectively. From the
TIS u, we compute the conditional probabilit” = (uc/ux)ccao=r given thatk
exceedances have ocurredSimilarly, we compute the conditional probability** =

(& /7y )ocn-#o—k from the PDFr® for eachk = 0, ..., n. In the Appendix, we show that

the total KL divergence)(u||7®) can be decomposed as follows,

D(ul|7*) = D(l[7*) + 35 trD(u"||7*). (7)

The measuré (u||7*) quantifies thesystemiwr aggregatetail interdependence, i.e., the

divergence between the distributions of the observed amaxpected (under tail inde-

3For example, in the bivariate casg} = uoy /U1 = ug2y/(ugy +ug2y) is the conditional probability
of X, exceeding whek = 1, i.e., when exactly one exceedance has occurred.
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pendence) number of exceedances. On the other hand, eaclvéthethceD (u”||7**)
quantifies the conditional interdependence among sub$ew@riables, given thak ex-
ceedances have occurred. Thus, wiilg:||7*) measures the dependence that is jointly
generated by all constituents, the weighted total on ths.r.bf (7) sums up the intra-
systemic dependence among subsets of constituents. D limited importance of the
latter to the interdependence of the system, we refer torgsidual interdependence.

In analogy to the CTI (6), we define tisgstemiandresidual CTlsas, respectively,

D(ul[7)
(n—1)H(p*)’

D(u||m**)

(n— DHG)’ (8)

F(a,u) = k¥ (o, 1) =

and show in the Appendix that

kloyu) = Rla,u) + Yo Uk (o, u),

0

IN

F(a,u) < kla,u) <1,

with ¥(a, u) = k(a,u) = 0 in the case of tail independence afi@y, u) = x(a,u) = 1
for perfect dependence (i.e., when all exceedances alvaays together).

In high dimensions, the total divergenbéu||7“), and thus the aggregate CHlla, u),
may not be estimated accurately when there are no suffidisetreations in all joint tails.
However, this is not a problem for the systemic interdepandaneasuré (u||7*) and
the systemic CTk(a, u), Therefore, a practical advantage of the decompositions(7)
that it efficiently addresses the curse of dimensionalitgrédver, our extensive empirical
analysis suggests that conclusions drawn frdm, ) andx(«, v) are almost identical in
most applications.

The left panel of Figure 2 shows the CTI (6) of a standardized 6 dimensional
multinormal X with corr(X;, X;) = pforall i,k =1,...,6, i # k. In particular, we
observe that fop = 0.9 the joint exceedances iXi are driven byn —nxk+r = 6—6-0.52+

0.52 ~ 3 independent binary "factors". In other words, they cargygame information as
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approximately3 marginal distributions ofX;-exceedances. Note the striking feature that
the tail interdependence from multinormal samples (withkadicorrelation for all pairs
of variables) is constant across the entire range.dflence, the interdependence in this
case neither increases nor decreases as the tails becomextreme. Moreover, the total
and the systemic CTls are identical for allimplying that the residual CTI is close to
zero in this case. The right panel of Figure 2 shows the restiien the correlation is the
same for three pairs but zero for the remaining paits( X, X2) = corr(Xs, Xy) =
corr(Xs, Xg) = 0.7 and zero for all other pairs). In this case, while the pagterhthe
total and the systemic CTls are similar for all x(«, u) is about three times larger than
k(a, w) confirming that interdependence originates primarily tetiactions within subsets

of variables.

Figure 2: Coefficient of Talil Interdependence
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Notes: The left panel of this figure shows the tota{, «)) and systemicH(a, u)) CTls
computed for a sample df), 000 obs. from a standardized = 6 dimensional multinormaX
with corr(X;, Xy) = pforalli,k =1,...,6,7 # k. The right panel shows the totala, u)
and systemic:(«, u) CTls computed for a sample d@f), 000 obs. from a standardized = 6
dimensional multinormak’ with corr (X, Xs) = corr(Xs, X4) = corr(Xs, Xg) = pandall

other correlations equal to zero.
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3.3. Goodness-of-Fit and Independence Tests

Recall that7 («) is a partition of the sample space of the-dimensional random
variable X = (X3, ..., X,,) into 2" joint tails. We compute the empirical Tlﬁf, a) =
{ﬁc(f, a)}ecn by formula (2), where the difference is that we employ an eitedi PDF
frather than the theoretical PDF The vectorﬁ(f, «) contains, then, the relative fre-
quencies of observations that fall into the Jts«) € 7 («). When there is no risk of
confusion, we omit the reference foand« in @(f, «). We useic to test whether the
observed interdependence structure comes from a hypo#igeBDF f, which produces

uc. For this purpose, we compute the KL divergei@i||u),

~

. .
D(tl|u) = Y ccplicIn i 9)

If exceedances are mutually independent unfjahis procedure boils down to a test of
tail independence. In the case of independence, the hygpdaeTIS is7® and (9) is

proportional to the CTI (6),
D(ullr®; a) = (n — 1) H (p®) (e, w). (10)

Our goodness-of-fit test with the mutual independence test special case, is condi-
tional on sufficient statistics estimated from the data.(eng the estimates of quantiles
in the sample). For the conditional test, the asymptotitridigion of the test statistic
2-T - D(u]lu), whereT is the sample size, follows the’-distribution withd degrees of
freedom (e.g., McCullagh, 1986). For the degrees of freedemobserve that we ha?g
outcomes (JTs) and + 1 restrictions on probabilities or frequencies of these ounies:

these probabilities must sum up to one and, moreover,

ch\f:iec uc = ZCQN:@'GC uc =o, Vi=1,..n.

14



Therefore, we apply = 2" — n — 1 degrees of freedom in our goodness-of-fit tests.

Similarly, we can use the systemic CTI to compute the siatist
D(@||x"; @) = (n — ) H(p")&(a, W), (11)

for testing the systemic independence. In this case, thistat& - 7' - D(|u; ) is distrib-
uted approximatly ag2-variable withd degrees of freedom. As there are- 1 outcomes
(total number of exceedances) and two restrictions on ibties or frequencies of these

outcomes,

Yoot =1, and > }_ kup =na,
we applyd = n — 1 degrees of freedom in tests based on the systemic CTI.

3.4. Interdependence Symmetry Test

Another interesting question is whether two tail interdegence structures (e.g., lower
and upper tails) are symmetric. Specifically,detandu~ be two empirical (aggregate)
TISs with the same cardinalitit’ < 2". Our objective is to test wheth@r- andu~ were
generated by a process with an identical tail interdeper&lstiucture. In order to test the

null ™ = u~, we apply the Kullback-Leibler test statistic,

~1 o~
KL* =YK e m = 4+ YK 7, In=k |
Uk U,
(Truf +T-ay,)
TH+T- 7

where, U =

andT* (T7) is the size of the sample from whiah™ (z~) have been computed. The
asymptotic distribution o? - K L* follows they?-distribution with X — 1 degrees of free-
dom (e.g., Quine and Robinson, 1985). We refer to this prnaeeds the interdependence

symmetry test.
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3.5. Modeling an empirical TIS

Modeling multidimensional dependence of random variald@sherently difficult. A
standard approach is the multivariate GARCH class of mo@els Engle, 20Q2oller-
slev, 2009 and the references therein) or copulas (e.gn,2087 Giacomini et al., 2009
Patton, 2009). Here, we address the simpler task of replgttie observed TIS. Clearly,
this approach is only appropriate when the overriding comcgthe tail interdependence
and the user overlooks other characteristics such as coemsn8pecifically, we construct
a PDF that replicates the TiBestimated from a sample of multidimensional data. First,
we estimate from a given sample a multidimensional FfDﬁith a simple yet flexible

parametric form (such as multinormal or multivariate-then, the mixture,

~

m(z) = cey o - f(#[To(a), v e, (12)

assigns the desired probability mags to each JTI-(«). Intuitively, the mixture (12)
selects first the JT¢(a) with probabilityuz- and then, draws an observatiore T («)
from the conditional PDy?(x|TC(a)). Although (12) will have, in general, different co-
moments and marginals than those estimated from the sathel&ct that it draws (after
selecting the tail) each observation frq?(tr\.) suggests that the synthetic data will be

close to the samplé.

4. Empirical Illustrations

There are many interesting issues on which the tail intesdépnce framework can
shed light. As an example and illustration of the ideas thiced above, we now present
an array of short empirical studies. In all statisticalgdbat follow, we say that the null

is strongly rejected (or rejected with a high significanéefe p-value of the relevant test

4We compared the performance of this technique relative titivatiate GARCH and copulas and find
that it performs significantly better than them in modeliag) tependence. To preserve space, we do not
present the results. They are available upon request.
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does not exceed.01. A simple rejection occurs with a p-value beléwi. If we (do
not) reject the null for all tail probabilities, this implies that we tested the null far €

{0.1,0.15, ...,0.85,0.9}.

4.1. Daily Returns in G7 Equity Markets

This subsection illustrates the tail interdependence dwaonk in the context of the
daily returns of the equity indices for G7 countries (Itaanada, France, Germany,
Japan, UK and US). We compute the daily returns between 2a8ai973 and 26 July
2013 (V = 10, 584 synchronized observations obtained from Datastream)lé/dhpwer
frequency would account better for different opening tiraesoss G7 countries and for
microstructure effects, it would result in a dramatic loBslaservations. Summary statis-
tics are reported in Table 1. In particular, we observe tatéturns are highly leptokurtic

and negatively skewed.

Table 1: Summary Statistics for G7 Equity Index Daily Return

Italy | Canadal France| Germany| Japan| UK USA

Mean 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000| 0.000

SD 1.357 | 0.984 | 1.187 1.069 | 1.129| 1.086| 1.09

Skewnesg -0.232| -0.824 | -0.251| 0.053 | -0.404| -0.273| -1.045

Kurtosis | 7.9 16.56 | 8.459 | 20.22 | 14.94| 11.7 | 28.84
Notes: The table reports the mean, standard deviationr&ssiykurtosis for the synchronized

daily log returns for G7 equity indices (ltaly, Canada, F&rGermany, Japan, UK and US) for the
sample period from 2 January 1973 to 26 July 2013. The samgseobtained from Datastream

and contains 10,584 synchronized daily observations.

SHowever, we conducted the analysis accounting for thereiffieopening times of the G7 equity indices.
To preserve space, we do not present the results. They aladeaipon request.
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4.1.1. Goodness-of-fit test

Multivariate normal, or more generally, multivariate éigal distributions are essential
assumptions in many financial applications such as partédlocations and risk manage-
ment. However, the empirical evidence in support of suchragsions is mixed and the
tail interdependence framework can easily be applied tonex@whether such assump-
tions are appropriate for the application at hand. The kefitgh of Figure 3 shows the total
(k(«)) and systemicH(«)) CTIs computed in the lower and the upper JTs for the empir-
ical distribution. The results are shown ferranging betweeid.1 and0.9. The values
a € [0.1,0.5] correspond to the lower joint tails i («) and the values: € [0.5,0.9]
to the upper joint tails i/ (1 — «). For example, the CTI for the upper JTs7r{0.4)
is computed forx = 0.6. There is a strong asymmetry between the lower and the upper
tails in the sample. In particular, the interdependencéénlower tails is higher relative
to the upper tails for both CTIs. This is confirmed by our ideggendence symmetry test
that strongly rejects the null of the same interdependetiaetare, at both the total and
systemic level, forv < 0.35 but not for higher. Therefore, negative extreme returns are
indeed more interdependent than their positive countexpddoreover, the total CTI is
clearly larger than the systemic CTI, which indicates a prorted tail interdependence

among groups of countries.

Figure 3: Tail Interdependence for G7 Equity Index returns
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Notes: The left panel of the figure shows the totdk{, «)) and systemic(«, u)) CTls com-

puted in the lower T~ («)) and the upperX ™ («)) joint tails for the empirical distribution. The
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right panel shows the total CTk(c«, u)) computed in the lower{~ («)) and the upperl{ ™ («))

joint tails for the empirical distribution, the simulateculiinormal, the simulated multivariate-t
and the t-mixture (12) witlw = 0.2 and parameters estimated from the sample. The results are
shown fora ranging betweefl.1 and0.9. The valuesy € [0.1, 0.5] correspond to the lower joint

tails in7~ () and the values: € [0.5,0.9] to the upper joint tails i (1 — «).

The right panel of Figure 3 shows the total Cdlkv) for the the empirical distribu-
tion, the simulated multinormal and the simulated mulist&-t with parameters estimated
from the sample. The panel depicts also the total CTI geaeta the mixture (12) where
the estimated multivariate-t plays the role of the param&bF f(az) and the empirical
TIS w is computed from the data far = 0.2 (lower tails). The figure shows that the
empirical interdependence exceeds the interdependeneeaged by the multinormal and
by the multivariate-t in the lower tails (fer < 0.35) while in the upper tails the empirical
CTl is below the multivariate-t and, fdr— o < 0.82, below the multinormal. Tests of
mutual independence and of compatibility of the observestdependence structure with
the multinormal and multivariate-t are strongly rejecteddll «. Identical inferences are
made from the systemic CTIl. We observe the significantly owed fit of the mixture for
a € (0.15,0.5). The goodness-of-fit test does not reject the null that thgpahas been

generated from this mixture far's in this interval. Therefore, the mixture successfully

replicates the TIS of the sample locally.

4.1.2. Integration of G7 equity markets

Christoffersen et al. (2012) find that the interdependemserg the equity market
returns in G7 countries has increased substantially owepé#st. In this subsection, we
address questions pertaining to market integration by axagithe evolution of their tail
interdependence over time. We compute the CTI (6) in the evirsdt — 2500, | for
t = 2501,2601,...,7 anda € {0.15,0.5,0.85}. The right panel of Figure 4 shows that

the tail interdependence among the G7 countries has iredesignificantly over time.

19



Interestingly, the figure indicates that while the depedest the extreme positive returns
(o = 0.85) has considerably increased, it remains consistentlyb#le dependence of
the extreme negative returns & 0.15). Moreover, it appears that the gap between the
two CTIs has increased somewhat suggesting the asymmedrgdiastronger. This is
further confirmed by the systemic interdependemge) for « = 0.15 which has got even

stronger over time relative to the dependencexfes 0.85 as shown in the left panel.

Figure 4: Evolution of the CTl in G7 Returns over Time
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Notes: The left and right panels of this figure show the evoiuof the systemicK(a, u)) and
total (x(cv, u)) CTls respectively in G7 equity index returns from 2 Januedy3 to 26 July 2013
in the windows[t — 2500, ¢] for ¢ = 2501, 2601, ..., N anda € {0.15,0.5, .85}.

4.1.3. Persistence of intertemporal dependence

There is a large literature that goes back to Mandelbrot3l86cumenting persistence
in volatility (see Bollerslev, 2009). It is therefore naduto enquire whether intertemporal
dependence displays any features of persistence. In thpesbivariate setting, we trans-
form T' = 10,584 unidimensional returngr,}~, of the US equity index S&P500 into
T — d two-dimensional observations;_4,:};_,., and compute the CTI for the latter
series. The results are presented in Figure 5, where theniaek thel% critical values
for the test statistic (10) in the test of intertemporal ipeledence. All values of(«)
above the line lead to the strong rejection of the null of pefedence. Faf = 1 in the left

panel, we note a stark asymmetry between the left and thetdaghwhich indicates that
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the violation of the intertemporal independence is morelyikor (extreme) negative re-
turns. Hence, the intertemporal independence in the USeharkejected fory < 0.4 and

a > 0.87. This finding is reminiscent of the well-documented voigtitlustering as it re-
sults from the tendency of extreme (negative) returns tmbe@wsed by such returns in the
next period. It may be that the failure to reject intertenghdependence is due to GARCH
effects but once these effects are taken into account, taeseare intertemporally inde-
pendent. To address this concern, we estimate the CTI foe#RCH(1,1)- and GJR-
GARCH(1,1)-standardized returns. Although GARCH effextsount for a large amount
of intertemporal dependence, the latter is not complet@tyirated for the GARCH(1,1)
standardization in the negative tails. The intertempoeglshdence for GARCH(1,1)- and
GJR-GARCH(1,1)-standardized returns is even more prorexiand strongly significant
for the other G7 indices.

The right panel in Figure 5 reports the CTI at level= 0.1 as a function of the
lag d. Specifically, we compute the CTI for each time sefies s, r;}/_s.,, whered &
{d,...,20 + d}, and report the average of these CTlIs for edch 1,...,400. As the
figure indicates, if we applied our test to these averagesutd robustly reject the null of
intertemporal independence for roughly 180 days. Thus, the return generating process

appears to have a long memory for returns in the lowest decile

Figure 5: Intertemporal dependence in S&P 500
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Notes: This figure shows the persistence of intertempona¢nidence in S&P 500 index re-

turns. We transform th&/ = 10, 584 unidimensional daily returnér; }¥; of the S&P 500 index
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into N — d two-dimensional observatiods,;_4, 7}, ; and compute the total CTk(«)) for
the latter series. The lines mark thé& critical values for the test statistic (10) in the test of
intertemporal independence. Left panék 1): The CTl as a function of the tail. The intertem-
poral dependence is computed for returns as well as thensestaeindardized by GARCH(1,1) and
GJR-GARCH(1,1) models. Right panel (= 0.1): The CTI as a function of the lag. We
compute a CTI for each time seri¢s;_s, r:}1* 5. ;, whered € {d, ...,20 + d}, and report the
average of these CTls for eadh= 1, ..., 400. Our test robustly rejects the null of intertemporal

independence for roughty < 180 days.

4.2. High Frequency Returns in European Equity Markets

In this section, we illustrate the tail interdependencenfravork with a dataset of high
frequency returns on six European equity markets coverikg$Wwitzerland, Italy, Ger-
many, France and Spain. The sample contains returns at Sarirequency and spans the
period from 2 January 2004, 8:00 AM through 15 May 2006, 12650532 synchronized
observations obtained from the Bank of America). Summaissics are reported in Ta-

ble 2. For all six indices, 5-minute log returns are zero atiegly skewed and leptokurtic.

Table 2: Summary Statistics for 6 European Equity Index Higdguency Returns

UK | Switzerland| Italy | Germany| France| Spain

Mean 0.000 0.000 0.000 | 0.000 | 0.000 | 0.000

SD 0.055 0.065 0.063 | 0.085 | 0.073 | 0.065

Skewnesg -0.113 -0.504 -0.873| -0.737 | -0.585| -2.199

Kurtosis | 50.681 77.527 73.003| 74.706 | 74.937| 113.194
Notes: The table reports the mean, standard deviation,messiykurtosis for the synchronized

5-minute log returns for 6 European equity indices (UK, Saitand, Italy, Germany, France and
Spain) for the sample period from 2 January 2004 (08:00) tMa$ 2006 (12:10). The sample

was obtained from Bank of America and contains 65,532 symihed 5-minute observations.
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4.2.1. Interdependence dynamics across return measutdragonency

First, we illustrate how the tail interdependence framdwauld be employed to ex-
amine dependence dynamics across frequencies. Figurevs ghe CTIls computed from
the returns at different frequencies and from the simulatalfinormal, multivariate-t and
the t-mixture (12) withoe = 0.3. The parameters of all three distributions are estimated
from the sample. The results are showndaanging betweef.1 and0.9 where, as before,
the valuesy € [0.1,0.5] correspond to the lower joint tails and the valaes [0.5,0.9] to
the upper joint tails.

In the left panel, we observe that the interdependence asesein frequency. This
effect is particularly pronounced when the frequency iases from 30 to 5 minutes. Our
symmetry test rejects the null of the same interdependéngeisre for 30- and 60-minute
returns atl0% confidence level, while the same null for 5- and 30-minuterret is re-
jected with1% confidence. We interpret this finding as a manifestation @B&pps effect
(Epps, 1979) that reflects the information aggregationgsecAt high frequencies, idio-
synchratic or market-specific news drive returns and tteadime lag before the informa-
tion spreads to related markets. As frequency decreasedl{e time available to gather
and process information increases), then returns aretadfetwt only by their market-
specific news but also by news in other markets thereby isorgdheir interdependence.

In contrast to the daily returns of the G7 countries, we cangject the null of sym-
metry of the lower and upper tails for the frequencies 5, 3@ &M minutes and for all
a. Thus, whereas low-frequency dependence is rotated J-straped, high frequency
dependence seems to be U-shaped. Further, the total amngy€ETIs have identical
patterns for all frequencies and allbut the latter is very marginally lower. Therefore, it
appears that the residual interdependence is insignifacahit does not vary witl for
high frequency returns.

Turning to the right panel, there is apparently a good fit ef nhultivariate-t in the

extreme tails of the data. Indeed, for< 0.15 anda > 0.85 we cannot reject the null
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that the corresponding tails have been generated from igtrgbdition. The good approx-
imation in both tails comes as a result of the symmetry of ddpece in the tails for high
frequency returns. Thus, a user interested only in the saité as a regulator or creditor
could overlook the failure of the multivariate-t distriburt to approximate the central part
of the distribution and exploit the good fit in the tails. Hoxeg a user interested in mod-
eling the entire distribution may use the mixture (12) whitse estimated multivariate-t
plays the role of the parametric PD‘AFEJ:) and the empirical TI1S is computed from the
data fora = 0.3. The mixture approximates the data well for all As high frequency
return interdependence is symmetric, good fit around 0.3 implies similarly good fit

arounda = 0.7, thus leading to a good approximation overall.

Figure 6: CTI for Different Frequencies and Parametric fihstions
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Notes: The left panel of this figure shows the totald)) and systemici(«)) CTls for returns
at different frequencies. The right panel shows the totdl (GT«)) computed from the sample,
the simulated multinormal, multivariate-t, and the migti2) withae = 0.3 and parameters
estimated from the sample. The results are showmvfaainging betweef.1 and0.9 where the
valuesa € [0.1, 0.5] correspond to the lower joint tails and the valees [0.5, 0.9] to the upper

joint tails.

4.2.2. Seasonality in interdependence

Andersen and Bollerslev (1998) find a strong seasonaligcefh volatility and there-

fore it is natural to ask whether dependence is strongenguifferent times of the day or
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week. In Figure 7, we investigate the impact of the daytinteafrthe weekday employing
the systemic CTI. The left panel suggests that the intertigrece is lowest between 10:00
and 14:00. Before 10:00 and after 14:00 it increases signitig for all o. A possible ex-
planation of this phenomenon could be related to the impaéts@an and US markets
on European markets. The latter start each trading dayasignihfluenced by the shared
information revealed in the Asian markets and, hence, aysplrelatively high level of
interdependence. Gradually, idiosyncratic shocks adiwing the day pulling European
markets apart resulting in a lower interdependence. In tteen@on, the six European
markets react similarly to the shared information revealgthe opening of the focal US
markets, which again leads to a higher interdependence.

The right panel, on the other hand, suggests that the imjeradlence increases dur-
ing the week. A possible explanation could be related to thgightion of information.
Since the interdependence of the six markets is the invditbe anformation revealed in
these markets (cf. 5), we observe that the latter decreadbe aveek progresses. At the
beginning of each week, a relatively large amount of idiasgtic news arrives which is
progressively (and partially) incorporated into the mageces resulting in more similar-
ities in market movements i.e., in less joint uncertaintyeguivalently, in higher interde-
pendence. Moreover, systemic CTlIs in both time-of-the-glag day-of-the-week cases
have identical U-shaped patterns to those of the total OTdsaae only marginally lower.
This implies that the size of the residual interdependescgiite small and flat for atk.

Therefore, seasonality affects only the systemic intezddpnce.

Figure 7: CTI across Different Trading Hours and Days
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Notes: This figure shows the systemic C&[{)) of 5-minute returns across different trading
hours (left panel) and trading days (right panel). The tesaile shown forx ranging between
0.1 and 0.9 where the valuesr € [0.1,0.5] correspond to the lower joint tails and the values

a € [0.5,0.9] to the upper joint tails.

4.2.3. Contribution to interdependence in European equidykets

It is important for the study of spillovers and contagiondolate the impact or contri-
bution of an individual institution or country to the ovdralterdependence of the system
(see, Bank of England, 201Biebold and Yilmaz, 2014). The interdependence contribu-
tion may be computed by different measures such as the Shaglles, an idea which we
discuss further in the Appendix. However, here we simply pota the interdependence
contribution of a variable as the ratio of the CTIs that inldand exclude that particular
variable. This measure is intuitively appealing and corapomnally efficient.

Figure 8 depicts the systemic interdependence contrib@hioUK, Switzerland, Italy
and Germany for 5- and 60-minute returns computed@agr ze\; Wherei € {UK,CH,
I,GER}. We observe that Switzerland (Germany) has the lowest ésigylcontribution
to interdependence. This would suggest that the Swissyemuieéx may be an effective
diversification asset in European equity portfolios.We also apply our interdependence
symmetry test to assess the significance of the exclusioart€plar countries. For exam-
ple, the symmetry tests strongly reject for the 5-minutarret the null that the CTI after

excluding Germany is the same as the CTI after excludingzgwénd. For 60 minute re-
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turns the null is also rejected (except toe= 0.1) with a lower significance. Similar results
are obtained when testing for the exclusion of Germany andreépectively. Finally, the
contributions to the total CTls are almost identical in bsilape and size suggesting that
the contributions to the residual interdependence argnifgiant and flat for alkv at the

high frequency (not shown but available upon request).

Figure 8: Interdependence Contribution
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Notes: The figure shows the percentage contributions toytstersic interdependence com-
puted for UK, Switzerland, Italy and Germany computediag/ pe\; Wherei € {UK,CH,

I, GER} at the one-hour frequency.

4.3. Stock and Factor Interdependence

In this section, we illustrate the tail interdependencengevork with a dataset of daily
frequency returns on 30 constituent stocks of Dow JonessindbAverage (DJ30) equity
index and relate their returns to the Fama-French-CarkR&€) factors. The data spans
the period 1 January 1990 - 21 November 20327 () synchronized observations obtained
from Datastream, while the FFC factors for the same perioc wbtained from Keneth
French’s website. Summary statistics are reported in Tabler all four factors (and the
DJ index constituents, which are not shown) daily log refuare zero, negatively skewed

and leptokurtic.
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Table 3: Summary Statistics for the Fama-French-CarhatoF&eturns
RP, | SMB | HML | MOM

Mean | 0.000 | 0.000 | 0.000| 0.000

SD 0.012 | 0.006 | 0.006 | 0.009

Skewnesg -0.105| -0.268| 0.108 | -0.956

Kurtosis | 10.99 | 7.163 | 9.337 | 14.69
Notes: The table reports the mean, standard deviation nassykurtosis for the Fama-French-

Carhart (Market Risk Premim, Small minus Big, High minus L.&ementum) factor returns. The
data spans the period from 1 January 1990 through 21 Nove2t@rb770 observations obtained

from Keneth French’s website.

Due to the curse of dimensionality, total CTI is unreliabézause of the high num-
ber of JTs containing no observations. Thus, in the ensusgudsion we focus on the
systemic CTI which is robust to the curse of dimensionalltige right panel of Figure 9
shows that the DJ30 returns are highly interdependent ymdrastric. While the FFC fac-
tors account for a high degree of this interdependence ioghtal part of the distribution,
the factors are unable to account for the strong dependénice BJ30 returns in the tails
of the distribution. Moreover, comparing the interdeperweof the residuals(1) of a
regression of the DJ30 index constituent returns on theHi€t factor returns (market risk
premium) with the interdependence of the residugly of the same dependent variables
on all four FFC factor returns, it appears that most of thergependence is accounted
for by the market risk premium. This comparison makes itrcieat the remaining three
FFC factors (SMB, HML and MOM) account for very little of theterdependence of the
residuals. The inability of the FFC factors to account faritiderdependence of the DJ30
returns in the tails is a direct manifestation of the intpefedence of the factors them-
selves. The systemic CTI depicted in the left panel of Fi@ureveals that the FFC factors

are highly interdependent far < 0.2 anda > 0.8 but not fora € [0.2,0.8].

Figure 9: Interdependence of Fama-French-Carhart faata$J30 index constituent stocks
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Notes: The left panel of this figure shows the systemic ireethdence for the Fama-French-
Carhart (FFC) factors. The line marks th# critical values for the test statistic (10) in the test
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first FFC factor (the market risk premium), the residuald) of a regression of the DJ30 returns
on all FFC factors and the residual$b) of a regression of the DJ30 returns on all FFC factors

plus an additional multiplicative factor, the market dispen F,.

As a potential additional factor that accounts for the gjrorterdependence of the
residuals in the tails, we explorearket dispersiorf;. We estimater,; by computing the
standard deviation of the DJ30 constituents for every déygrsample. Then, we compute

the residuals:(5) by normalizingu(4) with these estimates,

As the systemic CTI ofi(5) shows in the right panel of Figure 9, accounts for a large
part of the interdependence in the JTsdoK 0.3 anda > 0.7. Although the residuals

u;(5) are not independent, their interdependence is overwhglyniaduced.

5. Conclusion

In this paper, we present a new and flexible framework focosedtie interdependence

of extreme events. This framework aims to address sevexadssthat have recently at-
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tracted significant attention such as the testing of thegaddence of extreme events, the
symmetry of (extreme) positive and negative outcomes amdnibdeling of the dynamics
of the tail interdependence. In particular, we develop a dependence measure, which
captures the magnitude of the departure from independemt@rapose a technique to
generate synthetic data that exactly match the tail inpedéence structure of a particular
dataset. The framework also allows for computing the cbations of individual vari-
ables to tail interdependence and can be adapted to exathi@eextreme event-related
guestions.

A complementary consideration to our non-parameteric@ggr is the modelling of
the observed dependence structure in the data. The literatidresses this issue mainly
via VAR-(multivariate) GARCH models with the innovationgllbwing a particular dis-
tribution such as multivariate normal or t and, more regentia copulas (see Boller-
slev, 2009 Chen, 2007 Patton, 2009 and the references therein). However, mriltiva
ate models suffer from model misspecification, thus netas®y goodness-of-fit testing.
A number of tests exist for this purpose such as Cramer-vaesjiAnderson-Darling
and Kolmogorov-Smirnov tests which are based on compahn@gumulative distribution
function (CDF) of the hypothesized model to the empirica¢ avhile independence is
typically tested with Pearson’s chi-square test. We disthis related issue of parameter
estimation uncertainty and its relevance for our study é@Appendix.

In the empirical part, we illustrate the tail interdepenceframework with an array of
applications and confirm some known stylized facts and ugrca¥ew new and intriguing
features of multidimensional extreme events. Our finardash shows, in particular, that
the tail interdependence increases for more extreme ewaantss stronger in the lower
than in the upper tails (except at high frequencies). Wektkiat these are important
findings with vital practical implications (e.qg., for syst& risk monitoring and hedging).
The CTI captures these phenomena in a clear and precise waguld be interesting to

investigate the potential of the CTI, e.g. in portfolio ctvastion, hedging and derivative-
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based trading strategies. We intend to pursue these averiuggre research.
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7. Appendix: Proofs

In order to prove the decomposition (7), we calculate,

7= uc ~ Uk
D(u||m®) = D@||7*) = Yecpteln— — S5 otkln =
C e =

uc ~ ﬂk

= ZZ:O ch\/;#czk uc In o ZZ:O ug In =a

c k

~ Uc , Uco Uk

= Dk (Zeoeren (1035) -0

~ Uc Uuc Uuc ﬂk
= ZZ:O Uk <ZC§N:#C:k (~_ hl_a ——=—n ~_oz)) )

where the last equality follows from the fact thel, ..o, uc/u, = 1. We can write
now the last expression as,

~ Uuc uc/ﬂk ~ ~a,k
ST S enpot (~— In ) = S D),

uy T[T

which completes the proof of (7). Dividing both sides of (¥) (@ — 1)H (p*) > 0 for
0 < a < 1yields the decomposition of the CTI,

K(OL, u) = %(av u> + ZZ:O ﬂk’%k(oﬁ u)? (13)

We note thats(a,u) > k(a,u) > 0 follows from the non-negativity of(«,u) and
x¥(a, u) as the KL divergence and entropy are always non-negativeeiCand Thomas,
2006). Finally, Cover and Thomas (2006) show thdp®) < H(u) < nH(p*), which
implies that

nH(p*) —H(u) _ D(u||r*)

(n—1)H(p*)  (n—1)H(p")
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8. Appendix: Extensions of the TIS framewor k

In this section, we present some extensions and generafigahat arise naturally
from the tail interdependence framework.

8.1. Directional CTI

The CTI measures the strength of interdependence amorglheftrandom variables
but it does not specify its direction. The latter can be qifiadtby the expected number
of exceedances under the distributiom excess of the expected number of exceedances
under mutual independence, given that at least an excestias®ccurred,

u a#C(1 — o )n—#C
60 = Sper (#0) - (72 - C U2

Generally speaking, whep(«,u) > 0 (positive interdependence) exceedances tend to
occur together and are more likely than under mutual indegece whilep(o, u) < 0
(negative interdependence) means that joint exceedaretssa likely than under mutual
independence. It is important to note thdi, «) itself is not a good measure of tail
interdependence as, for example, it can take the value ofdeens(a, u) > 0, i.e., when
variables are actually tail interdependent. Thereforedefenedirectional coefficients of
tail interdependences,

R(a,u) = sign(p(a,u)) - k(a, u), (14)

wheresign(x) = 1 whenz > 0 andsign(z) = —1 whenz < 0. In the context of financial
data, in particular the data in our empirical part, the tatierdependence turns out to be
strongly positive.

8.2. Interdependence Contribution Measure

For the TISu calculated from theoretical or empirical exceedances @ndom vari-
ables by (2), we can obtain the overall contributipy{u) of the variablei € N =
{1,...,n} to the JT interdependendéu) as a (weighted) average of marginal contribu-
tions of this variable to the interdependence in subsetshafrvariables. Specifically, we
computeyp; (u) by the game-theoretical concept of Shapley value (Shap853),

(#O)(n —#C 1) (1€ — T(uC)}, (15)

p;(u) = ch\/\{i} !

whereu® is the marginal of the TS for random variables with indices in the g&tC .
The Shapley value has many desirable properties. For egammling (1985) shows that
Shapley value is the unique efficient and symmetric meakataed a function of marginal
contributions only. Here, efficiency requires thatallx) sum up to the total interdepen-
dencel (u) while symmetry demands thaf(u) = ¢, (u) whenever two variables, indexed
by i andk, make the same contribution f@u®) for any subseC C N\{i,k}. More-
over, each contributiop, (v) is non-negative as(u““*) > I(u®) for eachC andi by the
properties of the MI (Chicharro and Ledberg, 2012). Estintgathe contribution of an
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asset to the interdependence of a portfolio or a system ea@alrthe main contributor to
interdependence and risk. This is particularly useful ut&s of crises and contagion as
well as market integration.

8.3. Measuring the direction of information flow

Multi-information (4) in its standard format cannot inforom the direction of infor-
mation flow. However, a simple modification to the CTI framekvoan be employed to
reveal the dynamics in information flow between markets stitutions. For a stationary
Markov process of ordef, the probability of observing the proces statei,; at time
n + 1is independent of statég ;, i, 1, ... Thus,

Pl coos ety byt int-1s o) = Plingalig, ooy in—ti1) = Plins1]il).

Schreiber (2000) proposes to measure the direction ofrirdtion between processés
and.J by the deviation from the Markov propermin+1|z'$f)) = p(z,ﬁL1|z77 ,jn ) wherek

Is the order of the stationary Markov procegsWhen there is no information flow from
J to I, the previous: observations off have no impact on the transition probabilities of
I, which can be measured with a modified KL divergence as

: (t) (k)
PUnpt1itn 5 )
TJ—»I t k Zp Z’I7+17 77 7]77 )) : ln ( 77+.1| K ,(t)n )7 (16)
pligtalin’)

where natural choices férarek = t ork = 1. Thereforel’;__,; measures the information
flow from process/ to I. T;__.;, the information flow from/ to J, can be measured in
an analogue way. Note that measure (16) is asymmetric. Héyceomparingl';__.;
to 77—, ; we can infer the dominant direction of the information flowsetul in studies
of price discovery and market linkages or in examining howtagion spreads through
markets.

8.4. A finer partition of the outcome space

In the discussion above, the TIS is defined for a partitiorhefdutcome space into
2" regions (i.e., for a bi-partition of the outcome space oheariableX;). This partition
may be particularly relevant for a regulator or a creditoowsinterested in the downside
vulnerability of the system or debtor company but has lititerest in its upside potential.
A typical investor, on the other hand, is not just interestetthe downside exposure of his
portfolio but its upside potential too. In this case, we copértition the outcome space
Q2 into 3" regions, such that for each variablg the two tail regions capture extreme
losses and gains while the central part captures the avatagdo-day performance when
little of importance happens. More generally, the pamittould be made arbitrarily fine.
In particular, for an infinitely fine partition, the Ml (4) wéditake the form of the total
correlation for continuous variables,

i@
fxeﬂf(m) In f(z1)...f(zp)

dr, == (x1,...,2,).
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For a finite partition, the construction of the CTI and theeigince based on it would then
simply generalize the bi-partition case.

8.5. Parameter Estimation Uncertainty

The tail interdependence framework is particularly suttetheasure and test interde-
pendence by applying it directly to the data. In this casejsbue of parameter estimation
uncertainty would not arise. However, the flexibility of ttaal interdependence frame-
work means that it can be applied to an estimated model. Fonpbe, the focus of the
investigation may be such that a researcher must imposeamp#ic density function e.g.
multivariate t-distribution for the purpose of forecastor hypothesis testing. In this case,
the mean, variance and degrees of freedom parameters mestitoated. However, the
presence of estimated parameters may complicate teseémder For example, the Kol-
mogorov test can be difficult to apply in the presence of estiah parameters, particularly
for multivariate data with many parameters (see, for exantphi and Chen, 2008).

Following other scholars (Diebold and Mariano, 19@%iristoffersen, 1998Diebold
et al. 1998, 1999Clements and Smith, 2000, 2002), when required to estinaatapetric
densities, we consider them as primitives and ignore thbodezmployed to obtain them.
In many situations this may be an acceptable practice.lfzinsany densities are not based
on estimated models. For example, the large-scale madtetrrodels at many financial
institutions combine estimated parameters, calibratednpeters and ad-hoc modifica-
tions that reflect the judgment of management. Another el@ishe density forecasts
of inflation of the Survey of Professional Forecasters (seb®@d et al., 1998). Moreover,
previous research suggests that parameter estimatiomtaintg is of second-order im-
portance when compared to other sources of inaccuraciésasuniodel misspecification
(Chatfield, 1993). Further, Diebold et al. (1998) find that #ifects of parameter esti-
mation uncertainty are immaterial in simulation studieargd toward the relatively large
sample sizes employed in financial studies such as the prasen

When parameter estimation cannot be ignored, the problerbeapproached as fol-
lows. Firstly, for time-invariant multidimensional deties, suitable estimators can often
be found that lead to pivotal test statistics e.g., the "seffecient” estimators (see Wat-
son, 1958Birch, 1964). Secondly, an important class of models cosejsra time-varying
hypothesised distribution with a well-defined structurdtmnco-evolution of the variables
e.g. VAR and GARCH models. In this case, one way of accouriingarameter estima-
tion uncertainty is to apply the K-transformation (Khmaad1981), which allows for the
construction of a distribution-free test statistic. Innmiple, the K-transformation can be
applied in the tail interdependence framework along thesliof the V-test in Bai (2003)
and Bai and Chen (2008). Its computation, however, may béewsome for non-standard
multidimensional densities. Finally, in the case of adigirtime-varying multidimensional
densities parameter estimation is infeasible as only oserohtion is drawn from the mul-
tidimensional density at each date. As such, the only malcsiolution is to assume that
the hypothesised model is correct under the null.
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