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Abstract

I examine the relevance of contagion in explaining financial distress in the US 
banking system by identifying the component of bank level probabilities that is 
due to contagion. Identification is achieved after controlling for macrofinancial 
and bank specific shocks that have similar consequences to contagion. I use a 
Bayesian spatial autoregressive model that allows for time-dependent network 
interactions, and find that bank default likelihoods depend, to a large extent, 
on peer effects that account on average for approximately 35 per cent of total 
distress. Furthermore, I find evidence of significant heterogeneity amongst 
banks and some institutions to be systemically more important that others, in 
terms of peer effects.

JEL classification: E44, G01, C11, G21.
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1 Introduction

Financial crises tend to occur in waves and in each of these waves there are regional

clusters, suggesting that contagion effects play a major role in triggering these events

(see Reinhart and Rogoff (2009) and Peydro et al. (2015)). The mechanisms of

transferring risk from individual institutions to the financial markets at large lie at

the heart of the financial system. Various important faults related to this process are

highlighted by Acharya et al. (2012) that explain how the US sub-prime mortgage

crisis, a small piece of the overall system, turned into a worldwide phenomenon.

Contagion is a central element for understanding the events leading up to the Great

Financial Crisis. It is defined by Peydro et al. (2015) as ” (...) a domino effect that

a failure of one bank has on other banks and financial intermediaries”, adding that

” (...) contagion either precipitates the failure or increases the probability of failure,

and, more generally, increases the fragility of the banking system. ”. Starting from

this definition, this paper proposes a new framework to think about contagion in

the banking system that addresses three main statistical challenges identified in the

literature and outlined below.

The empirical study of spillovers and contagion is one of the most demanding

questions not yet fully understood in the literature. The difficulty in pinning down

contagion stems from three key analytical challenges emphasized by Rigobon (2016).

First, because contagion operates indirectly, working through feedback loops that

amplify initial shocks to banks’ fundamentals, whereby a bank’s distress depends on

its peers financial condition, it is essential to treat probabilities of failure as endoge-

nous variables as noted by Danielsson et al. (2013), connected through banking links

that vary over time. Second, measuring contagion relies on proper identification. Al-

though contagion results in multiple financial institutions experiencing distress, this

might also be caused by banks’ exposure to common shocks such as imprudent lend-

ing standards. In this case, the consequent write-offs of non-performing loans (and

not contagion) could be the source of a crisis. Therefore, disentangling both effects

is tricky as the borders between contagion and macrofinancial fragility are blurred.

Since in practice contagion and macrofinancial shocks hit the economy simultane-

ously, identifying contagion in data is not trivial. Failing to account for these factors

results in omitted variable bias and thus wrong answers. Thirdly, heteroskedastic-

ity and outliers are ubiquitous in financial data. As noted by Forbes and Rigobon

(2002), failing to account for these features will result in misspecification and biased

results that lead the misinterpretation of the magnitude of contagion.

Following the seminal contributions of Allen and Gale (2000) and Freixas et al.

(2000) on the subject, much of the empirical literature on measuring contagion
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has focused on the question of whether contagion actually occurred during major

episodes of crisis1. The apparently simple question is complicated by several statis-

tical hurdles that are outlined above and should be addressed to provide unbiased

answers. One strand of the literature focuses on cross-market correlations and tests

for contagion by checking if correlations in equity returns increase significantly after

a crisis. Forbes and Rigobon (2002), however show that the increase in volatility

in crisis episodes induces an upward bias in correlation coefficients. The author

highlights heteroskedasticity as the source of the bias, a feature of the data that

non-parametric approaches are ill suited to deal with. Another approach resorts to

parametric models based on linear regressions. Vector autoregressive models em-

ployed by Constâncio (2012) examine evidence of contagion by jointly modelling

time series in an endogenous setting, while controlling for global and idiosyncratic

factors. Contagion is measured through impulse responses and regarded as the

impact of a surprise to one series on others. This approach is plagued by the diffi-

culty of identifying the structural parameters of the model. The standard Cholesky

identification scheme is not suitable in this context because it involves establishing

an order of exogeneity amongst variables in the model. An alternative approach

is however proposed by Rigobon (2016) and consists in identifying the structural

parameters by using the time-varying nature of the variance-covariance matrix of

the residuals. Along the same lines, latent factor and GARCH models are used to

capture contagion in an attempt to model heteroskedasticity, a common problem of

previous methods (see Celik (2012); Dungey et al. (2015)). The main critique to

these methods is that they are not designed to deal with endogeneity and omitted

variable problems.

This paper proposes a different approach to measure contagion. I use a Bayesian

spatial autoregressive (SAR) model, working on panel data, that takes into account

the endogenous nature and spatial structure of banks’ probabilities of default and

controls for omitted variable bias by including time and bank fixed effects, while

treating heteroskedasticity and outliers in the data, which are common concerns

in the literature. The idea underlying this approach is to model distress of each

individual bank in the system as a function of the financial conditions of all other

banks and its own fundamentals, while controlling for unobserved macrofinancial

shocks and bank specific shocks. Estimation is carried out with Bayesian techniques,

whereby the panel of default probabilities, observed since 1990 for up to 1311 US

banks available, are explained by regressing these on the likelihood of default of

1Forbes (2012) and Peydro et al. (2015) provide a thorough review of the literature. Earlier
literature is summarized by Dornbusch et al. (2000) and Rigobon (2002).

2



other institutions, connected by an exogenous time dependent weights matrix and

a set of control variables that describe banks’ fundamentals and also unobserved

macrofinancial and idiosyncratic shocks to banks, mitigating omitted variable bias.

Contagion is identified by decomposing banks’ probabilities of default into a com-

ponent due to peer effects - given by spillovers of distress from other institutions

- which I label contagion, from another component due to bank’s fundamentals,

including its liquidity position, solvency, leverage and non-performing loans.

This approach has several advantages that make it particularly suitable to exam-

ine contagion of financial distress. First, studying contagion in a spatial econometric

setting is appealing because it allows one to think about (and model) contagion as

resulting from two main forces - i) interdependence, which is taken as exogenous in

the model and ii) propagation, which is endogenous. It is the combination of these

two forces that define the magnitude of contagion. Second, it provides a straightfor-

ward way of testing for the presence of contagion. Since the magnitude of contagion

is determined by the spatial autoregressive coefficient in our model, testing the hy-

pothesis that this parameter is statistically indifferent from zero can inform of the

presence of contagion. Third, by using panel data it exploits the information of

both the cross-section and time-series dimension of the data. Hence, the model can

examine how contagion evolves across time and also inform about the heterogeneity

stemming from the different banks in the sample. Moreover, its panel structure

allows us to specify time and bank fixed effects that capture unobserved macrofi-

nancial shocks and bank specific shocks, mitigating omitted variable bias. Fourth,

Bayesian estimation provides flexibility to the model in dealing with outliers and

heteroskedasticity, without having to specify a functional form for the former. It

is also known to deal well with over-parametrization that arises when modelling

variances and introducing time and bank fixed effects.

I find statistically significant and economically powerful spillovers of default prob-

abilities within the banking system. Evidence suggests a banks’ probability of de-

fault depends to a large extent on peer effects, stemming from the banking network

vis-à-vis its own fundamentals. It is estimated that, on average an 100bps increase

in probabilities of default across the banking system will lead to an increase of in-

stitution level distress by 39 bps. Amongst the principal characteristics of banks,

non-performing loans (NPLs) stand out as the most important covariate driving

financial distress. Everything else equal, an increase of 100bps in NPLs across the

banking system induces a hike of 79 bps in likelihood of default of each institution

on average.

Overall, evidence suggests that contagion accounts for about 35 per cent of the
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probability of default of banks. This result stems from the identification of the part

of the default probability of each bank that is due to the behaviour of the banking

system taken together. This component is disentangled from the remainder that

can be interpreted as resulting from bank specific characteristics reflecting its busi-

ness model and balance sheet. I calculate the spillover resulting from idiosyncratic

shocks to banks fundamentals, showing its consequences for financial stability. I

also find significant heterogeneity amongst banks, revealing that some institutions

are systemically more important than others. On average, an increase of 100bps in

the probability of default of the most systemically important bank has a spillover

of 87bps on the remaining banks’ probability of default. Consistent but parallel to

the results of Gupta et al. (2017) that study the importance of interconnectivity

in the banking system and its consequences for credit markets, I find that ρ, the

amplifying parameter in our model, changes significantly when adding sequentially

year fixed effects during the Great Recession. This suggests that the density of the

banking network after the crisis decreased and that systemic risk due to contagion

diminished.

The remainder of the paper proceeds as follows. Section 2 explains the econo-

metric framework and provides the definitions and propositions that support the

empirical results. Section 3 describes the data and estimation technique while sec-

tion 4 discusses the main results and findings. Section 5 concludes.

2 Econometric Framework

I use a spatial autoregressive model to describe the dynamics of default probabilities

between banks and in particular how financial stress can spillover from one institu-

tion to become systemically relevant. The first step to this exercise is to calculate

the default probabilities that are unobserved in practice and should be estimated a

priori with appropriate techniques. For this purpose I use Merton (1974) structural

model and include an explanation of this approach in Appendix A 2.

The main idea underpinning the spatial panel model setup is that financial con-

ditions of banks with strong economic relations are not independent but spatially

correlated. In this context, three different types of interaction effects may explain

the interdependence of default likelihoods of different banks: i) endogenous interac-

tion effects, where financial conditions of a bank depend on the state of the banking

system; ii) exogenous interaction effects, where the likelihood of default depends on

2It should be stressed that such default probabilities are available through financial data
providers albeit only for the largest financial institutions.
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the bank’s fundamentals such as its liquidity, solvency position and profitability;

iii) correlated effects, where similar unobserved common macrofinancial shocks hit

banks at the same time resulting in a similar behaviour of their default probabilities.

The model can be written as follows

yit = ρ

Nt∑
j=1,j 6=i

wij,tyjt +Xitβ + µt + φi + εit. (1)

Where yit denotes the probability of default observed across banks i = {1, ..., N}
at time t = {1, ..., T} ,

∑Nt

j=1,j 6=iwij,tyjt the spatially lagged dependent variable sum-

marizing the endogenous interaction effects, where the interaction between banks

is defined by a time-dependent spatial weights matrix Wt, with a generic element

wij,t, whose construction is explained in the next section. Note that for each time

period, a set of Nt probabilities of default are added to the regression. Nt represents

the number of banks observed for each time period t that vary across time because

some banks leave and others enter the panel. Since spatial panel models can only

be estimated on a balanced panel (see Data and Estimation section for more de-

tails), the banks whose dependent or independent variables include missing values

are dropped for that specific time period t. Xit denotes the matrix of K indepen-

dent variables, characterizing banks’ fundamentals considered and εit stands for the

disturbance terms of the different spatial units. ρ is known as the spatial autoregres-

sive coefficient, and is at centre stage in our exercise. It is endogenously determined

and reflects the dependence between the default likelihood of a given bank with the

set of default probabilities of all other banks. Hence, a higher ρ suggests greater

amplification effects of financial stress from the network, hitting individual banks.

β represents a K × 1 vector of parameters deemed random in a Bayesian setting

and µt and φi control for time and bank fixed effects. The last terms µt and φi are

key in ensuring that identification of actual contagion is archived. They certify that

contagion is not being confused with macrofinancial and bank idiosyncratic shocks

that have the same result as contagion but are conceptually independent from it.

Time fixed effects µt control for macrofinancial shocks that hit the hole banking

system at large and may cause default probabilities to jointly rise. Whereas, bank

fixed effects φi control for isolated events that hit a single bank, at a time, that may

lead to its default likelihood peaking for reasons lateral to contagion.

2.0.1 Direct and spillover effects of financial distress

One of the main advantages of using spatial panel models is that they offer the

possibility of measuring direct and indirect (spillover) effects of the various explana-
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tory variables on distress probabilities across banks. It is clear from the analytical

expression 1 that a change in any of the covariates included in Xit will have a di-

rect effect on bank i and potentially all other banks j 6= i indirectly, since financial

distress of a bank explicitly depends on the likelihood of default of other banks. To

measure the direct and indirect effects it becomes necessary to find the matrix of

partial derivatives of the expected value of yit wrt. the k-th explanatory variable

Xk. By writting model 1 in its reduced form as

yit = (I − ρWt)
−1(Xitβ + µt + φi) + (I − ρWt)

−1εit, (2)

It is clear that

∂E(y)

∂Xk

= (I − ρWt)
−1βk. (3)

Equation 3 measures the impact of a change in the k-th explanatory variable on the

dependent variable (ie, probability of default) in the short term. Thus, summarizing

the direct and indirect effects or externalities of a change to any covariate on financial

stress. Analytically the direct effect is captured by the principal diagonal elements

of expression 3, while the indirect effect is captured by off diagonal elements.

At this point, we are in condition to establish what exactly is meant by contagion

in this framework.

DEFINITION 1 Consider a financial network of size N described at time t by the

spatial weight matrix Wt. Then financial contagion is given by

N∑
i6=k

(I − ρWt)
−1
ij (4)

Where I stands for the identity matrix of order N and ρ is the spatial autore-

gressive parameter, measuring amplification.

Hence, financial contagion is capturing the strength whereby a shock to banks

fundamentals is propagated through the system and generating an externality that

is unrelated with fundamentals. It is helpful to notice that the quantity described

in 4 is a square matrix with ones on its principal diagonal. These reflect the direct

effects of a shock to any covariate. Whereas, off diagonal elements of 4 reflect the

impact of the bank represented row-wise by the node j on its counterpart depicted

in column i. Furthermore, from the definition above, one can observe that if ρ = 0

or Wt is diagonal then contagion is non-existent. Thus, contagion may be viewed
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as a product of diversification or interconnection in the system and an amplifying

mechanism ρ.

PROPOSITION 1 Let ρ be the spatial autoregressive parameter, endogenously

given by the spatial econometric model 1 measuring amplification. Then,

under H0, contagion does not exist.

H0 : ρ = 0. (5)

Proposition 1 provides a straightforward assessment of the presence of contagion.

This can be easily done in a frequencist setting by looking at the t-test for ρ or in

a Bayesian framework by examining the posterior distribution of ρ.

COROLLARY 1 Suppose the Data Generating Process of {y1, y2, ..., yN} is de-

scribed by model 1 with ρ = 0. Then financial contagion is not present and

the model becomes a standard panel regression.

It should be stressed however, that more interesting than assessing the existence

of peer effects is to examine their magnitude. This can only be done by fully esti-

mating the model. Before proceeding to estimation the following subsections explain

how the financial network is characterized.

2.0.2 Charactering the network of US Banks Wt

Our approach relies on finding an appropriate measure of distance between banks

that reflect their relationship and interconnectivity. This measure should ideally

depict how intertwined the balance sheet of all banks are. Hence, banks with strong

commercial relationships or exposed to the same risks will be close, whereas banks

with weak connections ought to be distant.

Proximity is therefore not a measure of physical distance in our framework and

takes the form of a social distance. As a first step in describing the financial net-

works, I calculate a Trailing Twelve Months (TTM) correlation matrix of stock

prices for banks in our sample. I use daily frequency with a view of capturing quick

co-movements in the market that may reflect changes in value of the underlying

banks. Moreover, I only consider institutions whose stocks are active in the sec-

ondary market as an attempt to make sure that prices are an accurate measure

of value. A second step consists in converting this set of correlation matrices into

weight matrices that provide the measure of social distance we need to estimate the

model. To allow interconnections to vary over time in our sample, we use a block
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matrix that stores the weight matrix at each point in time in the principal diagonal.

W ∗
t =


ω∗1 0 0 . . . 0

0 ω∗2 0 . . . 0
...

...
. . . 0

0 0 0 . . . ω∗t

 (6)

The weight matrix W ∗
t describes the relationship between each bank in our panel,

at each period of time t = 1, ..., T . It is worth highlighting that ω∗t that compose the

full fledged matrix W ∗
t need not to have the same dimensions for each t. In fact, our

dataset includes banks that are effectively ’dead’, meaning that they were included

in some time periods and disregarded in others. Hence, the generic element wij,t in

matrix ω∗t characterizes the distance between bank i and bank j at time period t.

It results from the correlation between the market prices of both banks, normalized

to take values between 0 - no relationship; and 1 - strong relationship, as described

below.

DEFINITION 2 Let Γt equal a transform of the correlation matrix Ωt, where each

generic element Γij = max(Ωij, 0). Then the spatial weights matrix for time t

is given by

ω∗t = Γt − Ik, (7)

Where k equals the number of banks present in the sample at time t.

DEFINITION 3 Let W ∗
t be a diagonal block matrix, where each matrix in the

principal diagonal ωt stands for the spatial weights matrix describing the fi-

nancial network at time t, as defined above. Then, the matrix resulting from

the row-normalization of W ∗
t is denoted Wt.

Definition 2 guarantees that the principal diagonal of the spatial weights matrix

is in fact a vector of zeros, consistent with the literature on spatial econometrics

(see LeSage (1999); Elhorst (2014)). Whereas, Definition 3 ensures that the weight

matrix Wt, a key input to the model, assumes values between 0 and 1 and that its

row-wise sum adds to 1.

An alternative to measure distances between financial institutions broadly used

in the literature ( see Gupta et al. (2017); Iyer and Peydró (2011)) consists in looking

into the network of interbank market claims amongst institutions using detailed data

on banks’ counterpart risks. This approaches’ merits are highlighted by Peydro

et al. (2015) that also notes the main criticism to such an exercise. It ignores the
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channels of contagion other than those working through money market counterpart

risks. In an efficient markets framework, prices are better devices for capturing

all information on the connection between institutions, reflecting potential losses

deriving from counterpart risk but also liquidity dry-ups and common exposures.

3 Data and Estimation

A panel of 1311 banks’ are observed from 1990 until 2018, including those that

have been de-listed to avoid exposure to survival bias. Daily data on stock market

returns is used to construct the financial network, from a first stage calculation of

correlation matrices of all quoted banks for each time period, using a rolling window

of one year historical returns. Probabilities of default are also calculated for a one

year horizon, using daily data on stock market returns, market capitalization and

total balance sheet liabilities.

The spatial panel regression specified in equation 1 relies on a set of measures

of bank fundamentals meant to purge from the probabilities of default the effect

of bank specific factors that describe a banks’ financial condition. These include

market value of each institution as a measure of size, loan to deposit ratio as a mea-

sure of liquidity. Earnings per share (EPS) and Return on Equity (ROE) figures

are included to account for profitability, whereas leverage, Market-to-Book values

(Tobin’s Q) and Non-performing loans’ figures account for risk. The criteria un-

derpinning the choice of the specific regressors to include with a view of depicting

bank’s fundamentals was a compromise between including the most important in-

dicators of a bank’s financial position and not loosing too many observations due

to missing values. This is mainly due to the fact that spatial panel models rely on

balanced datasets to be estimated3.

The general model used throughout the paper is known in the literature as spatial

autoregressive - SAR model. It can be written in stacked matrix form as

y = ρWty +X∗β + ε, (8)

ε ∼ N(0, σ2V ) (9)

Where X∗ includes all K+2 regressors capturing bank fundamentals plus time and

bank fixed effects . The potential heteroskedasticity is captured by V , a diagonal

matrix modelling the dynamics of the variance - Vii = vi, i = 1, ..., n, Vij = 0, i 6= j.

3As noted by Elhorst (2014) in the event of missing observations, the accuracy of estimators is
not guaranteed although there is some literature dealing with this problem (see Pfaffermayr (2009);
Wang and fei Lee (2013)), a general approach is not available.
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Estimating specification 8 in a Bayesian setting has the advantage of allowing

the study of the full posterior distribution of the amplification parameter ρ, key

to understand contagion dynamics and moreover, the quantity that allow us to

gauge the spillover effect of a shift in each specific bank’s fundamentals, given by

(I − ρWt)
−1. Estimation through Bayesian methods also adds value by extending

the basic spatial regression model to accommodate outliers and heteroskedasticity.

The likelihood of the SAR model specified above may be written as

p(Ψ|β, σ, ρ) = (2πσ2)−n/2|A|exp
[
− 1

2σ2
(Ay −Xβ)′(Ay −Xβ)

]
. (10)

Where Ψ = {y,X,W} the data ; A = (In − ρW ), thus |A| is the determinant of A

and n the number of observations. Bayesian estimation proceeds in the conventional

way by specifying a prior p(θ) for each parameter included in θ = {β, σ2, ρ, V } which

is combined with the likelihood specified above to produce the posterior p(θ|Ψ) that

may be found from a straightforward application of the Bayes’ rule

p(θ|Ψ) ∝ p(Ψ|θ)p(θ). (11)

Hence, a first step to solve the model is to specify a set of priors for the parameters

at hand. I set an independent normal, inverse-gamma - NIG prior for β and σ2, a

uniform prior for ρ and a Chi-square for the n variance scalars vi that give form to

V .

p(β) ∼ N(c, T ), (12)

p(σ2) ∼ IG(a, b), (13)

p(ρ) ∼ U(λ−1min, λ
−1
max), (14)

p(r/vi) ∼ iid χ2(r). (15)

The choice of a NIG prior is motivated by its widespread use in the Bayesian Econo-

metrics literature (see Koop (2003); Koop and Korobilis (2009)). I set a=b=c=0

and assign a very large prior variance for β (large T) and thus our priors are unin-

formative. This is due to the fact that I do not wish to include any prior information

about our parameters and rather remain agnostic.

The uniform prior for ρ is adopted by LeSage (1999) and is the sensible op-

tion given that I want also to remain agnostic a priori about what values should

the dependence parameter take. It is possible and straightforward however in this

framework to restrict ρ to a given interval such as [−1, 1] or [0, 1]. This option might

be tempting given that a negative ρ in this exercise might seem counter-intuitive.
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However, since this parameter plays an important role in our model, adopting a dif-

fuse prior whereby the upper and lower limits of ρ are defined by {λmin, λmax}, which

represent the minimum and maximum eigenvalues of the spatial weights matrix is

more prudent and leaves the data to speak for itself.

The modelling strategy to extend the SAR model to allow for heteroscedasticity

was introduced by Geweke (1993). The set of scalars vi are included to capture

dynamics of the variance of the errors ε of unknown form. The prior for these is

controlled by one single parameter r, representing the degrees of freedom of the χ2

distribution. This allows us to estimate n variance terms vi, by adding one single

hyperparameter r to the model. The idea underlying such an approach is that

changes to the key hyperparameter r can exert a significant impact on the prior of

the parameters that it controls. This features gives the model more flexibility and

can also boil down to the homoskedastic case where V = In that happens if the

hyperparameter r is assigned very high values.

Estimation proceeds in the standard way in a Bayesian setting by applying Bayes

Theorem and combining the priors and likelihood following expression 11 to get the

posterior

p(β, σ2, ρ, V |Ψ) ∝ (σ2V )a
∗+(k+2)/2+1|A|exp

[
− 1

2σ2V
[2b∗ + (β − c∗)′(T ∗)−1(β − c∗)]

]
,

(16)

c∗ = (X ′X + T−1(X ′Ay + T−1c),

(17)

T ∗ = (X ′X + T−1)−1,

(18)

a∗ = a+ n/2,

(19)

b∗ = b+ (c′T−1c+ y′A′Ay − c∗(T ∗)−1c∗)/2.
(20)

An important remark concerning the posterior is that, unlike standard normal linear

models discussed in Koop (2003) that have conjugate NIG priors (ie, where the priors

integrate with the likelihood to produce a posterior of the same family of distribution

as the prior), the NIG priors in a spatial econometric framework do not result in

a posterior of known form. Hence, the need to use a Markov Chain Monte Carlo

(MCMC) sampler to find its distribution. The next section outlines the details of

the MCMC used to estimate the model at hand.
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3.0.1 The MCMC sampler for the heteroskedastic SAR model

Using an MCMC sampler is a common approach to deal with the hurdle of analysing

complicated posteriors of unknown form. The main idea is to breakdown the prob-

lem of finding the full posterior density p(θ|Ψ) into smaller problems consisting of

analysing the conditional distribution of each single parameter in θ. By sampling

sequentially from these conditional distributions and bringing them together, one

may approximate the full posterior.

I adopt the MCMC algorithm known as Metropolis-Hastings, named after the

original authors seminal contribution. Hasting (1970) shows that given an initial

value for the parameters θ0 it is possible to construct a Markov-Chain up to state

t with the correct equilibrium distribution, by sequentially drawing candidates θ∗,

spanning the space of the parameter set, in such a way that a large number of

samples of the posterior p(θ|Ψ) are generated. This algorithm is thus capable of

sampling from conditional distributions for which the distribution form is unknown

while the Gibbs sampler, an alternative MCMC routine, can only solve problems

where the conditional distributions of the parameters are of a known form.

The SAR model specified in 8-9 and 12-15 I wish to estimate, is a hybrid

case since it involves conditional distributions of known form for the parameters

{β, σ2, V } whereas the distribution of ρ is not known. I will adopt the approach

suggested by LeSage (1997) known as Metropolis within Gibbs sampling. Overall,

this approach involves sampling for the parameter ρ through a Metropolis-Hastings

routine, while using a Gibbs sampler for the normal and inverse gamma distribu-

tions for the parameters β and σ that result from the NIG priors used. To make

this clear, I summarize the algorithm procedure step by step below. Starting from

a set of arbitrary values β0 σ
2
0, V0 and ρ0, I sample from the following conditional

distributions

1 Sample p(β|σ2
0, V0, ρ0) from N(c∗, T ∗), where the hyperparameters are calcu-

lated from

c∗ = (X ′V −1X + σ2T−1)−1(X ′V −1(In − ρW )y + σ2T−1c), (21)

T ∗ = σ2(X ′V −1X + σ2T−1)−1 (22)

Keep the sampled draws β1 and replace the existing β0.

2 Sample p(σ2|β1, V0, ρ0) from IG(a∗, b∗), with hyperparameters calculated as

shown below

a∗ = a+ n/2; b∗ = (2b+ e′V −1e)/2; e = Ay −Xβ. (23)
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Keep the sampled draws σ2
1 and replace the existing σ2

0.

3 Sample for each diagonal element of V ( vi ) conditional on all others, vj with

i 6= j. p(
e2i + r

vi
|β1, σ2

1, vj) from χ2(r + 1), where ei represents the ith element

of vector e = Ay −Xβ.

Keep the sampled draws V1 and replace the existing V0.

4 Sample ρ from its unknown distributional form found in LeSage (1997)

p(ρ|β1, σ2
1, V1) = |A|exp

[
− 1

2σ2V
e′V −1e

]
(24)

Some final remarks regarding the estimation approach are in order. First, steps

[1-4] entail one pass-through our MCMC algorithm. While the conditional distri-

butions for the parameters sampled in [1-3] are known, the distribution in equation

24 is unknown and thus the need to recur to the M-H for sampling within an other-

wise straightforward Gibbs sampler. To find a way around the unknown conditional

distribution of ρ, I follow LeSage and Pace (2009) that, based on the proposal of

Holloway et al. (2002), suggests the use of a tuned random walk procedure to gen-

erate a candidate value for the parameter ρ. In each pass-through h of the MCMC

routine, a candidate ρc is drawn from the following distribution

ρc = ρh−1 + c×N(0, 1). (25)

This candidate value can be seen as random deviate from the previously accepted

value ρh−1 adjusted by a tuning parameter c.

The candidate drawn ρc is then used as an input to a standard M-H algorithm

whereby an acceptance probability is calculated by evaluating both the candidate

draw and the draw accepted in the previous pass-through in the conditional distri-

bution of ρ given in 24. The acceptance probability is given by

ψ(ρc, ρh−1) = min
[
1,
p(ρh−1|β, σ)

p(ρc|β, σ)

]
. (26)

The tuning parameter c is adjusted based on this acceptance probability. When ψ(.)

falls below 0.4 it is modified such that the new parameter c∗ = c/1.1 whereas, if it

increases above 0.6, c∗ = c × 1.1. The purpose of this technique is to ensure that

the draws of ρ span the entire space of the conditional distribution.

It can be seen from Figure 8 that the acceptance probability fluctuates between

0.4 and 0.6 for the first 3000 replicas, converging to 0.5 thereafter. This also provides

a diagnostic tool to monitor our MCMC routine.
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4 Discussion of the results

This section discusses empirical results focusing on the following questions. First,

is there any evidence of contagion and if so, does its magnitude vary over time ? In

particular, how much of the likelihood of default of banks is on average explained by

contagion ? Second, is there evidence of heterogeneity between banks with respect

to their spillover effect on other banks distress ? and third, what is the direct and

indirect effect of a shock to a bank’s fundamentals on other bank’s distress ?

Before addressing the former questions, a brief description of bank level prob-

abilities of default and the banking network calculated a priori is in order. The

likelihood of default of each financial institution is given by the probability of the

firm’s asset value falling below its total liabilities within one year. Figure 5 describes

the individual dynamics of these quantities since 1990 for the 9 largest institutions

in the US as of 2018, measured by market capitalization. I see that literally every

major financial institution suffered, to some extent, from financial distress during

the Great Recession. This point is more obvious in Figure 6, which plots the joint

behaviour of the probabilities of default for all 1311 US banks included in our sam-

ple. Unsurprisingly, the probability of default of a significant amount of institutions

peaked in the run-up and unfolding US recessions since the 1990. The three main

events that can be picked up in the data are the savings and loans crisis in the be-

ginning of the 1990s, the dot.com bubble in the early 2000s and more significantly

the US subprime mortgage crisis that resulted in the Great Recession. Figure 7

depicts the network of banks before and during the crisis. It can be seen that

interconnectivity fell as institutions decoupled from each other.

4.1 Baseline results

The starting point for any spatial econometric analysis is to question the assump-

tion that regression errors are iid4, needed to derive OLS estimates with desirable

properties. Hence, a natural first step is to test whether the spatial dynamics of

bank probabilities of default are statistically meaningful. To do so, I estimate a

simple panel regression, reported in Table 1, column I and compare it with Maxi-

mum Likelihood SAR model estimates in column II. As I mentioned earlier, if the

data does not have a spatial structure then the SAR will boil down to the simple

panel regression model estimated with a Pooled OLS. From a statistical viewpoint ρ,

the spatial autoregressive coefficient, is significantly different from zero. Moreover,

Moran (1948) I statistic, another measure of spatial autocorrelation is also statisti-

4independent and identically distributed
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cally significant, pointing towards the conjecture that the data generating process

is better described by a model that allows for a spatial structure.

The Bayesian spatial autoregressive model that accounts for heteroskedastic-

ity, estimated with time and bank fixed effects is the benchmark regression and our

workhorse throughout the paper. The results of this baseline regression are reported

in the column IV. It is important to emphasize that ρ, the parameter that measures

contagion of distress between institutions, is significantly different from zero across

specifications, suggesting that contagion is an important factor to take into consid-

eration when thinking about the likelihood of default of each bank. Moreover, its

magnitude varies across specifications but in all cases it is economically meaningful.

In the baseline specification IV, ρ equals 0.39, meaning that on average, 100bps in-

crease in probabilities of default across banks will increase the likelihood of default

of each institution, taken individually by approximately 39 bps.

Another important aspect to highlight refers to the covariates included to account

for bank fundamentals. I include leverage, that is estimated to increase a banks’

likelihood of default by 24 bps. per unit. Profitability, measured by Return on

Equity figures, that decreases distress by 18 bps, while size is estimated to discretely

decrease the likelihood of default, everything else constant. Non-performing loans,

measured as a percentage of total loans, are found to relate closely with bank level

distress. Everything else equal, it is found that an increase of 100bps in this figure

is estimated to lead to a 80 bps. increment of the likelihood of the default of a

given institution. This result highlights the importance of loan delinquencies for

the solvency of the banking system which was in the origin of the systemic banking

crisis leading to the Great Recession.

Non-performing loans (NPL) are found to play a central role in determining

banking distress. To examine this point further, I estimate a spatial Durbin model

that differs from the SAR since it allows NPLs of banks to affect each other dy-

namically. This is achieved by pre-multiplying non-performing loans by the spatial

weight matrix, giving it a spatial structure, and including the new covariate in the

regression. Results are reported in column V of Table 1. I find that, by allowing

NPL to exhibit a spatial structure, the regressor becomes statistically more signifi-

cant and the magnitude of the coefficient increases when compared to the baseline

regression. Everything else equal, an average increase of 100bps in NPLs across the

banking system induces a hike of 118 bps. in the probability of default of a bank,

taken individually. I also observe that the coefficients of other explanatory variables

change significantly. In particular, the importance of leverage decreases while the

significance of the Tobin’s Q or the Book-to-Market value of a bank, increases in
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explaining distress.

As mentioned previously, the empirical literature on contagion emphasises the

importance of taking into account heteroskedasticity when measuring contagion and

spillovers. Our baseline model explicitly account for heteroskedasticity of unknown

form by allowing the variance covariance matrix to vary, while remaining agnostic

about its functional form.
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Figure 1: Full sample estimates of the posterior distribution of ρ

Figure 1 shows that, consistent with what is found in the literature, failing to

account for heteroskedasticity induces a bias that leads to an overstatement of the

magnitude of contagion. In our framework, the values for ρ decrease significantly.

Nevertheless, it should be stressed that even accounting for this feature of the data,

there is still strong evidence for the presence of contagion. Albeit, it can also be

seen in table 1 that t-statistics for the coefficients of regressors reduce significantly

when heteroskedasticity is controlled for.

4.2 Contagion across time

I now focus on answering the main question of how much of the probabilities of

default of banks does contagion account for, on average. To address this point,

I decompose the probabilities of default into two components. The parcel due to

contagion, that reflects peer effects and spillovers of distress from other institutions

is isolated from the component due to own fundamentals that include profitability,
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solvency, valuation, size, liquidity and risk. To mitigate omitted variable bias, esti-

mation controls for time and bank fixed effects. These additional regressors ensure

that macrofinancial shocks and bank idiosyncratic shocks do not bias our estimates

of contagion.
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Figure 2: Decomposition of probabilities of default for US banks, 1990-2018. Red

stacked line represents the proportion of the total observed probability of default

due to contagion.

Figure 3 shows that contagion accounts for a significant part of the likelihood of

the default of banks, on average 35 per cent throughout the full sample. This value

increased during the Great Recession where bank probabilities of default surpassed

40 per cent on average.

I have discussed that contagion in our model is a product of two distinct forces.

One one hand, interconnection between banks that is exogenous and defined by

banking links. On the other hand, dependence measured by ρ, endogenously defined.

I now examine how this parameter changes over time, considering the models with

and without heteroskedasticity.
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(a) Time-varying posterior distribution of ρ - Homoskedastic

(b) Time-varying posterior distribution of ρ - Heteroskedastic

Figure 3: Posterior density of the parameter ρ estimated adding sequentially year

fixed effects to the baseline Bayesian SAR with and without heteroskedastic errors.

Colour bands highlight the posterior percentiles of the MCMC sampled draws.

Figure 3 shows that spatial dependence between banks decreases sharply in the

aftermath of the crisis. Notwithstanding, ρ is still statistically significant throughout

the sample, except for a brief period during the Great Recession. The hypothesis

that heteroskedasticity biases estimates of the magnitude of contagion can also be

confirmed. The average upward bias throughout time of ρ varies between 0.10 and

0.25.
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4.3 Contagion across banks

Beyond its time dynamics, the cross-sectional dimension of contagion matters be-

cause the domino effect that characterizes it may be triggered by a single chip. One

of the advantages of using panel data is the possibility of exploring both time and

cross-section to study the problem at hand. In this section I examine the significance

of each bank in our sample in driving other banks distress.

Table 2 investigates the contribution of each bank in inducing system wide dis-

tress and the vulnerability of each bank in the event of a shock to other institution.

It reports the average probability of default for each of the 50 largest institutions in

the US banking system, measured by market value as of January, 2018 in column 1.

Institutions in the table are sorted from largest to smallest in size. Column 2 quan-

tifies the first term in our baseline regression 1, which I interpret as the probability

of default of each bank due to contagion. Thus, this parcel indicates the vulnera-

bility of each institution to external shocks to other banks. It is worth noting that,

given that column 1 reports observed probabilities of default and column 2 presents

the parcel of fitted probabilities due to contagion, as implied by the model, it is

possible to observe higher levels of contagion contributions than actual probabilities

of default. This will happen when financial fragility, as proxied by a bank’s funda-

mentals, is actually contributing negatively to its probability of default. In other

words, such a bank will exhibit above average levels of fundamentals. The following

columns (3-5) express the direct, indirect or spillover and total effects of a shock

to a given banks’ fundamentals. These quantities give an idea of the externality or

importance of each bank for overall financial stability.

I find significant heterogeneity amongst banks with respect to their peer effects.

In particular, it is estimated that a shock to the least systemically important bank

that causes its own probability of default to rise by 100bps. will cause a system-

wide increase in the probabilities of default of 17 bps. Whereas, a shock resulting

in a 100bps hike of the probability of default of the most systemically significant

bank will increase the probabilities of default across the board by a total of 107bps.

Furthermore, evidence suggests that vulnerability to external shocks and systemic

importance are not directly related to size. For instance, the bank showing the

greatest knock-on effect on the system, and thus larger impact on financial stability,

doesn’t belong to the top 10 largest institutions within those considered in the table.

On the other hand, the bank presenting greater vulnerability (ie, largest contagion

component) is also not in the top 10 club of largest institutions. Overall, results

show a significant heterogeneity of banks with respect to their systemic importance

and vulnerability.
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4.4 Spillover of shocks to banks fundamentals

How is financial stability compromised by a deterioration or improvement in the

fundamentals of banks ? This is the question I look into through the lens of the

two spatial econometric models that I have estimated in previous sections. Table

3 reports the main results estimated for the baseline specification - the Bayesian

SAR model with time and bank fixed effects. The same variables are estimated

with a Bayesian spatial Durbin model, that differs from the first in that it allows for

network effects of non-performing loans, the covariate that is found to play the most

important role in driving financial distress. The reader may also find the values for

the credibility set around these estimates (ie, the relevant percentiles of the posterior

distribution of these variables).

I find that the most relevant bank characteristics that influence their likelihood

of default are non-performing loans and profitability as measured by Return on

Equity. In particular, an increase in 1 unit in the Return on Equity of a bank is

found to reduce distress by approximately 30bps, of which 18bps are accounted for

positive spillovers from the system. Whereas, an increase in 1 percentage point

in delinquency rates, as measured by NPLs, are estimated to increase financial

distress by 134bps. on average. Estimates from the spatial Durbin model are more

significant. According to this specification, 1 percentage point increase in NPLs

of a given bank will increase its likelihood of defaulting by as much as 173bps, of

which 55bps are due to network effects. The Tobin’s Q as measured by the book-

to-value ratio of an individual bank is only significant for the spatial Durbin model

specification. The same is true for liquidity, proxied by the Loan-to-Deposit ratio

and size. A change of 1 unit in the Book-to-value ratio results in an improvement in

financial conditions of 66bps of which 21bps are due to peer effects, while liquidity

and size have statistically significant but very modest and economically uninteresting

effects on the likelihood of default.

Figure 4 summarizes the magnitude of the multiplying effect through which a one

unit shock to the k-th explanatory variable gets amplified, resulting in a spillover

that equals such multipliers times βk. The distribution of the multiplying effect

is left skewed and concentrated between 0 and 1.2, yielding a total effect that lies

between 1 and 2.4, suggesting that shocks to bank fundamentals have powerful peer

effects.
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Figure 4: Posterior distribution of the direct, indirect and spillover effects estimated

with from the heteroskedastic Bayesian spatial autoregressive model.

5 Conclusion

We have examined the evidence on contagion within the US banking system by

studying a panel of default probabilities for a large number of banks observed from

1990 to 2018. The panel structure of the data allow us to explore the dynamics of

contagion across time, shedding light on the importance of contagion to the build up

of financial distress throughout the business cycle. Moreover, it offers the possibility

of looking into the cross-sectional heterogeneities within the banking system. Conta-

gion is captured by a spatial econometric model that is estimated through Bayesian

techniques. Several reasons make these models particularly insightful to study con-

tagion. First, and most importantly, they allow for feedback effects between default

likelihoods amongst banks, providing an analytical framework consistent with the

definition of contagion put forward in the literature. Second, they handle panel data

thus offering the possibility of purging unobserved bank specific and macrofinancial

shocks that hit the economy together with contagion and yet are independent of it,

mitigating omitted variable bias. Third, Bayesian techniques permit adequate mod-
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elling of stochastic volatility, a major hurdle in the empirical literature in measuring

contagion and to correct for the underlying bias.

The main contribution of this paper is to propose an alternative framework to

study contagion that deals with the major analytical challenges identified in the

literature. Results suggest contagion substantially contributes to the build up of

distress in the banking system, accounting for a statistically powerful and econom-

ically meaningful portion of default probabilities of banks. The significant hetero-

geneity with respect to institution level spillovers suggests that some institutions

are systemically more relevant that other and such importance is not proportional

to size.
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Appendix A: Estimating Banks Probabilities of De-

fault

To understand the importance of contagion it is necessary to establish a benchmark

that can serve the purpose of reflecting the level of stress in the financial system at

each point in time.

I adopt the methodology proposed by Merton (1974)5 for assessing the default

probability of an entity. Robert Merton proposed a structural credit risk model that

models a firm’s equity as a call option on its assets. This method allows for a firm’s

equity to be valued with the option pricing formulae of Black and Scholes (1973).

From an accounting viewpoint, the book value of a firm’s assets is forcedly equal to

the value of its equity plus liabilities.

A = E + L (27)

Although the book value of assets and liabilities are observable, as they are reported

periodically by firms, their market values are not. One only observes market prices

that reflect a firms’ equity at a high frequency basis. There are no market value for

assets and liabilities. Merton uses the Black and Scholes option pricing formulae to

relate the market value of equity to assets and liabilities in a common framework and

estimates the market value and volatility of a firm’s assets. Under the assumption

that the value of liabilities are fixed a priori for a given horizon T , a firm’s total

equity value can be regarded as the payoff of a call option given below

Et = max{0, At − L} (28)

Note that the firm defaults when the market value of assets falls below a non stochas-

tic default threshold defined by the value of the firm’s liabilities at a given horizon.

One obvious shortcoming of this approach is that it ignores the structure and ma-

turity of liabilities. To address this issue this paper follows the rule of thumb and

estimates this input by assuming that total liabilities equal total short-term liabili-

ties plus one half of long term liabilities. The value of L is sometimes referred to as

the default threshold.

5Some popular alternatives in the literature include Altman (1968) Z-Score, that has been
applied to banks by Cihak et al. (2012) and is published regularly by the World Bank. In a
different context, Jiménez et al. (2013) uses the log odds ratio of a bank’s NPL ratio. However,
this measure only captures credit risk. Another approach adopted by Giglio (2011) and others
consists in gauging the default likelihood of large institutions implicit in Bond yields and CDS
instruments.
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Hence, the value of equity may be written, for a given horizon T, as a function

of assets A, liabilities L and a risk free interest rate r as follows

E = AN(d1)− Le−rTN(d2), (29)

where

d1 =
ln(A/L) + (r + 0.5σ2

A)T

σA
√
T

and d2 = d1 − σA
√
T . (30)

This expression results from a straightforward application of the Black and Scholes

formulae. It assumes that assets follow a Geometric Brownian Motion described by

the stochastic differential equation below

dA

A
= µAdt+ σAε

√
t (31)

where µ stands for average asset return, σA is equal to the standard deviation of the

asset return, and ε is a random variable following a standard normal distribution.

The probability of default arises from the likelihood that the value of the asset falls

below the default threshold, given by the value of debt payments Lt, at a given time

horizon. Formally, the likelihood of default occurrence is given by

P (At < L) (32)

Thus, uncertainty associated to the value of the assets relative to promised payments

is what drives defaults. In other words, as noted by Gray et al. (2007) ”Balance sheet

risk is the key to understanding credit risk and crisis probabilities ”. Plugging into

Equation 32 Itô’s general solution for the Stochastic Differential Equations written

in equation 31 one gets

P (A0exp{(µA −
σA
2

)t+ σAε
√
t} ≤ L) = P (ε ≤ −d1). (33)

Thus, the probability of default of each institution is found simply by evaluating

PD = 1−N(d1), (34)

Where N(.) is the cumulative Normal distribution function and d1 is commonly

referred to as distance to default.

This approach is superior to other alternatives in two important ways. First, it

is broadly applicable to any institution, provided that its market price is a reliable
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measure of intrinsic value. Thus, a larger number of institutions can be considered

without having to restrict our sample to those that issue CDS. Second, by relying

on market variables, the measure of stress obtained reflects all available information

on a given entity, rather than over-relying on balance sheet data solely that is not

accurate in producing real time signals of financial stress. Adopting this approach

relies however on the working assumption that the markets are efficient and thus

prices reflect all available and relevant information of a given entity.

Like any other enterprise, banks fund their assets by resorting to debt or issuing

equity. Although the market value of a bank’s assets is an important measure of its

financial health, this quantity is not observable. The merit of the Merton model 6

consists in estimating the market value of assets of a firm, therefore inferring how

far each firm is from default.

6Also known as Moody’s KMV model due to its widespread use in developing ratings of financial
securities (see Gupton et al. (2007) for more details.)
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Bank id. PD ρWy Direct effect Spillover Total effect

JP MORGAN CHASE & CO. 2.20 0.40 1.00 0.61 1.61
BANK OF AMERICA 3.12 0.61 1.00 0.75 1.75
WELLS FARGO & CO 1.68 1.39 1.00 0.65 1.65
CITIGROUP 5.56 1.38 1.00 0.82 1.82
US BANCORP 1.59 1.76 1.00 0.86 1.86
PNC FINL.SVS.GP. 1.43 0.75 1.00 0.83 1.83
BB&T 1.26 0.60 1.00 0.77 1.78
SUNTRUST BANKS 2.46 0.84 1.00 0.43 1.43
M&T BANK 0.82 0.40 1.00 0.66 1.66
KEYCORP 3.37 0.39 1.00 0.67 1.67
FIFTH THIRD BANCORP 3.18 0.83 1.00 0.68 1.69
CITIZENS FINANCIAL GROUP 0.03 1.12 1.00 0.47 1.47
REGIONS FINL.NEW 4.36 0.77 1.00 0.80 1.80
CREDICORP 0.52 0.99 1.00 0.67 1.68
HUNTINGTON BCSH. 3.84 0.40 1.00 0.66 1.66
COMERICA 1.63 0.78 1.00 0.75 1.75
FIRST REPUBLIC BANK 0.03 0.69 1.00 0.79 1.79
SVB FINANCIAL GROUP 2.79 1.61 1.00 0.68 1.68
ZIONS BANCORP. 2.90 1.23 1.00 0.50 1.50
EAST WEST BANCORP 3.57 1.14 1.00 0.75 1.75
SIGNATURE BANK 0.93 0.64 1.00 0.54 1.55
FIRST HORIZON NATIONAL 2.16 0.91 1.00 0.64 1.64
PACWEST BANCORP 3.75 0.79 1.00 0.80 1.80
PEOPLES UNITED FINANCIAL 4.24 0.77 1.00 0.71 1.71
NEW YORK COMMUNITY BANC. 1.15 0.76 1.00 0.67 1.67
BANK OF THE OZARKS 0.62 0.63 1.00 0.80 1.80
BOK FINL. 2.65 1.16 1.00 0.64 1.64
CULLEN FO.BANKERS 0.59 1.32 1.00 0.50 1.50
WESTERN ALL.BANCORP. 8.16 1.17 1.00 0.59 1.59
COMMERCE BCSH. 0.28 1.32 1.00 0.24 1.25
SYNOVUS FINANCIAL 4.72 1.67 1.00 0.87 1.87
STERLING BANCORP 1.05 2.09 1.00 0.17 1.17
WEBSTER FINANCIAL 2.24 1.62 1.00 0.67 1.67
PINNACLE FINANCIAL PTNS. 3.40 0.70 1.00 0.71 1.71
SLM 4.09 1.75 1.00 0.87 1.87
PROSPERITY BCSH. 0.67 0.81 1.00 0.70 1.70
WINTRUST FINANCIAL 1.84 1.71 1.00 0.84 1.84
UMPQUA HOLDINGS 6.13 1.53 1.00 0.36 1.37
FNB 7.13 0.68 1.00 0.72 1.73
FIRST CTZN.BCSH.A 0.39 0.91 1.00 0.68 1.69
TEXAS CAPITAL BANCSHARES 1.05 0.80 1.00 0.52 1.52
BANKUNITED 0.02 0.66 1.00 0.69 1.70
INVESTORS BANCORP 6.02 0.40 1.00 0.72 1.72
HANCOCK HOLDING 1.65 0.65 1.00 0.81 1.81
TFS FINANCIAL 0.03 1.61 1.00 0.65 1.65
IBERIABANK 0.38 0.38 1.00 0.64 1.64
HOME BANCSHARES 0.83 0.46 1.00 0.65 1.65
ASSOCIATED BANC-CORP 1.79 5.68 1.00 0.62 1.66
CHEMICAL FINL. 0.84 1.32 1.00 0.77 1.77
MB FINANCIAL 2.63 0.41 1.00 0.41 1.42

Table 2: System-wide Direct and Spillover effect of a shock to the 50
largest banks probability of default. Where ρ ∗ y measure the dependence
between each bank and the banking system and the Direct/Indirect/Total effects
are estimated performing the calculation of (I − ρW )−1 (see methodology section )
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BSAR FE 95% credibility set BSDM FE 95% credibility set

Direct effect
Leverage 24** -1 50 6 -8 23
Earnings per Share 0 0 0 0 0 1
Tobin’s Q 2 -24 30 -45*** -75 -14
Return on Equity -18*** -22 -11 -18*** -30 -8
NPL 79*** 44 107
W*NPL 0 0 119*** 69 149
Loan to Deposit ratio 0 -1 2 1* 0 2
size (market value) 0 -1 0 -1*** -2 0

Indirect effect
Leverage 17 2 42 3 -2 10
Earnings per Share 0 0 0 0 0 0
Tobin’s Q 1 -16 15 -21** -46 -6
Return on Equity -12*** -22 -5 -9* -20 -2
NPL 54** 22 108
W*NPL 0 0 55** 21 105
Loan to Deposit ratio 0 0 1 0 0 1
size (market value) 0 -1 0 0* -1 0

Total effect
Leverage 41 -1 100 9 -11 36
Earnings per Share 0 0 1 0 0 1
Tobin’s Q 4 -50 50 -66 -125 -19
Return on Equity -30 -47 -17 -27 -52 -10
NPL 134 72 229
W*NPL 0 0 173 101 258
Loan to Deposit ratio 0 -1 3 1 0 3
size (market value) -1 -3 1 -1 -3 0

Table 3: Direct and Spillover effects of the different covariates included
in the model. Figures show the variation of the probability of default in basis
points, given an increase in 1 unit of each covariate taken individually. Once again,
p-values are computed by dividing the mean by the standard deviation of posterior
estimates found via MCMC routine. *, **, *** denote coefficients significant at 10
%, 5 % and 1 % levels according to their t-statistics.
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Figure 8: Model Estimation Diagnostics. Posterior distributions for the variance

parameter and Metropolis Hastings algorithm acceptance rate.
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