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Abstract

We use a factor model and elastic net shrinkage to model a high-dimensional network

of European CDS spreads. Our empirical approach allows us to assess the joint trans-

mission of bank and sovereign risk to the non-financial corporate sector. Our findings

identify a sectoral clustering in the CDS network, where financial institutions are in the

center and non-financial entities as well as sovereigns are grouped around the financial

center. The network has a geographical component reflected in different patterns of

real-sector risk transmission across countries. Our framework also provides dynamic

estimates of risk transmission, a useful tool for systemic risk monitoring.
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1 Introduction

As a consequence of the European sovereign debt crisis that followed the 2007-08 finan-

cial crisis, the sovereign-bank nexus attracted considerable attention in the literature (e.g.,

Acharya et al. 2014; Alter and Beyer 2014; De Bruyckere et al. 2013). In contrast, little

empirical evidence exists on the degree to which the non-financial corporate sector (real sec-

tor) in Europe has been affected by the rise in sovereign and bank credit risk. There are two

empirical studies that investigate the impact of sovereign credit risk on the non-financial

corporate sector based on European credit default swap (CDS) data (Bedendo and Colla

2015; Augustin et al. 2018). Both studies find significant risk spillovers from sovereigns

to corporations in Europe. However, there is only scant evidence on the transmission of

credit risk from financial institutions to non-financial corporations during the crisis events.

In addition, little attention has been paid to the simultaneous measurement of interactions

between all three sectors of the economy (financial, sovereign, and non-financial). Given

that a fundamental component in the concept of systemic risk is the notion of negative ex-

ternalities for the real economy,1 incorporating these negative real effects in any quantitative

measurement of systemic risk should be given greater emphasis.

In order to fill this gap in the literature, this paper conducts a network analysis that

captures the linkages among 152 CDS series for European sovereigns, financial institutions

and non-financial corporations over the period 2006-2017. Our unified empirical framework

incorporates recent techniques to measure systemic risk by quantifying connectedness in high-

dimensional networks, similar to the approaches adopted by Barigozzi and Hallin (2017) and

Demirer et al. (2018). Specifically, we employ elastic net shrinkage in a vector autoregressive

(VAR) setup to overcome the dimensionality problem in large datasets. We also control for

common shocks using a dynamic factor model. We derive static and dynamic measures of

connectedness to characterize the network of CDS spreads over the sample period. The

empirical evidence presented in this paper contributes to a better understanding of the

financial and real economic effects of the crisis events in the past decade. To the best of

our knowledge, we are the first to provide evidence on the joint transmission of bank and

sovereign risk to the European non-financial sector.

1Following the report prepared by the International Monetary Fund (IMF), the Financial Stability Board
(FSB) and the Bank for International Settlements (BIS) for the G20, systemic risk can be defined as “a risk
of disruption to financial services that is (i) caused by an impairment of all or parts of the financial system
and (ii) has the potential to have serious negative consequences for the real economy”(IMF/FSB/BIS 2009,
p. 2).
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Our empirical approach has close ties to recent theoretical work that emphasizes network

connectedness in financial or economic contexts. For example, there is a growing body of

theoretical studies that illustrate how increasing interconnectedness can pose a serious threat

to the stability of the financial system due to contagion and amplification effects (Acemoglu

et al. 2015; Elliott et al. 2014; Glasserman and Young 2015, 2016). From a real-sector

perspective, Acemoglu et al. (2012) show that intersectoral input-output linkages between

firms can give rise to aggregate (or economy-wide) fluctuations when idiosyncratic or sectoral

shocks propagate, thus leading to network effects that impact the aggregate economy.

The adverse interactions between banks, corporates and sovereigns played a prominent role

in the eurozone crisis (IMF 2013). One transmission channel making corporations vulnerable

to changes in sovereign creditworthiness is the so-called “transfer-risk” channel. It implies

that distressed governments may be forced to shift some parts of the debt burden to the

corporate sector; for example, by raising corporate taxes. An increase in sovereign risk may

therefore lead to lower current and future profitability in the corporate sector (Acharya et

al. 2014). Another reason to expect a sovereign-corporate link is the joint influence of

rating agencies. Borensztein et al. (2013) provide evidence for “sovereign ceilings” that

prevent corporations from being rated above the sovereign. Deteriorations in credit ratings

of sovereigns thus lead to lower ratings for corporations located in the respective country,

translating into higher costs of debt capital for the corporate sector (Almeida et al. 2017).

Besides the sovereign-corporate link, there are reasons to assume a relationship between

banks and the non-financial corporate sector. Since banks in financial distress need to

reduce their credit exposure and/or increase interest rates, corporations are likely to face

higher bank funding costs. This can erode the financial health of these firms and increase

the probability of default. Abildgren et al. (2013) provide evidence for such a relationship

based on micro data for banks and firms in Denmark. Minamihashi (2011) identifies a credit

crunch effect resulting from bank failures in Japan, which leads to a substantial decrease in

the investment activity of client firms.

There is, of course, a very large literature that deals with the transmission of financial risks

of various kinds that cannot be reviewed due to space limitations. Moreover, a rich variety

of channels exist that explain the propagation of financial risks both across types of financial

assets as well as across countries. A considerable portion of the literature has focused on

generating empirical results. Betz et al. (2016) investigate the network for the sovereign-bank

nexus in Europe. They find that, during the eurozone sovereign debt crisis, financial markets
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fragmented along national borders. Moreover, connectedness is found to peak around 2008-

10 and again around 2011-13 which is compatible with our findings. An important difference

between their study and ours, however, is that we explicitly evaluate the transmission of risks

beyond the banking sector, using a sample of CDS spreads that includes a large number of

non-financial corporations. For a comprehensive review on risk spillovers we refer the reader

to two related literature surveys by Hasman (2013) and Chinazzi and Fagiolo (2015). One

feature of the literature is the overwhelming emphasis on the transmission of risks between

banks and sovereigns.2 Augustin et. al. (2018) and Bedendo and Colla (2015) are exceptions.

Nevertheless, in common with our study and the literature more generally, there is also a

preference to relying on CDS spreads (e.g., Acharya et al. 2014; Bedendo and Colla 2015;

Betz et al. 2016; Breckenfelder and Schwaab 2018).

Our goal is to quantify the joint transmission of bank and sovereign credit risk to the non-

financial corporate sector in Europe by making use of recent advances in the econometrics of

large-dimensional networks. We estimate and visualize our corporate-financial-sovereign net-

work both statically (full-sample period) and dynamically (rolling-window). For the static

case we find that our network is characterized by a dominant financial sector located in the

center of the network, while non-financial corporations and sovereigns are grouped in sectoral

clusters around the financial center. Aggregating contagion effects to the non-financial sec-

tor at the country-level reveals a strong geographical component in the network, reflected in

sizeable differences in the pattern of real-sector risk transmission between peripheral coun-

tries and countries located in the geographical center of Europe. Based on the dynamic

estimation framework we identify an increase in the transmission of financial and sovereign

credit risk to the non-financial sector during the global financial crisis and the European

debt crisis. By contrast, we find that the transmission of risk within the non-financial sector

remained largely unchanged during crisis events. We conclude that financial and sovereign

risk were main drivers of European corporate credit risk in the period considered.

Viewed in isolation some of our findings are not surprising. After all, the onset and spread

of the financial crisis in Europe clearly possessed a strong geographic element even if some

countries felt the impact more strongly than others. However, we demonstrate that there

is significant time variation in both the cross-sectoral transmission of risk and in the degree

2Also notable according to the surveys cited above is that theoretical models have yet to catch-up in
explaining the extant empirical evidence about how and why connectivity between financial assets evolves
in the manner reported by several studies.
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of system-wide risk transmission. This yields new insights into how the nexus of credit risk

between banks, sovereigns and non-financial firms evolved over time. To our knowledge we

are the first to generate such results within a unified empirical framework. Moreover, our

framework is a useful tool for policy institutions as it allows for a quasi real-time monitoring

of systemic risks in the financial sector and beyond.

The remainder of this paper is organized as follows. Section 2 outlines the econometric

methodology for estimating and visualizing the networks. Section 3 describes the data used

in our analysis. In Section 4 we present and discuss our results. Finally, we provide a brief

conclusion and an outlook in Section 5.

2 Econometric methodology

We use variance decompositions in VAR models to assess the interconnectedness of CDS

returns. Diebold and Yilmaz (2014) show that the classical VAR framework can be used

to model the network structure for a panel of time series by defining the weight associated

with edge (i, j) in the network as the proportion of the h-step-ahead forecast error variance

of variable i that is accounted for by the innovations in variable j. While this methodology

is in principle applicable to a wide range of different settings, it is constrained by curse-of-

dimensionality problems as classical VAR estimation becomes unstable in high-dimensional

networks. Demirer et al. (2018) tackle the dimensionality problem of the Diebold-Yilmaz

approach by estimating the network using the LASSO (“least absolute shrinkage and selec-

tion operator”), a penalized regression method that allows to select and shrink the VAR

parameters in optimal ways. Barigozzi and Hallin (2017) propose to remove the effect of

common shocks before applying LASSO or related penalized regression techniques, as the

presence of collinearity badly affects estimation stability.

Following these recent developments in the econometric modelling of networks, we apply

a ‘factor plus sparse VAR’ approach in our analysis of credit risk transmission. That is, we

first implement a factor model to remove common shocks and then, using the idiosyncratic

returns, estimate a large-dimensional VAR that considers elastic net shrinkage, a variant

of LASSO methods, to tackle dimensionality issues. Given the large number of time series

under investigation in our study it becomes imperative to find ways of adapting the Diebold-

Yilmaz approach, now widely used in the literature, but combine their methodology with

tests that provide the means to economize on the considerable demands on the data.
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Other approaches using shrinkage methods such as LASSO to characterize financial net-

works may be found in the literature. One example is the study by Betz et al. (2016)

which constructs generalized tail-risk networks for the European bank-sovereign system. In

their approach the network link between entities i and j is defined by their degree of tail

dependence using LASSO quantile regressions, i.e., how much a change in j’s conditional

Value-at-Risk (VaR) impacts the VaR of i. Our approach instead relies on quantifying con-

nectedness based on mean estimates of variance decompositions and using elastic net for

shrinking and selecting the parameters. In addition, while Betz et al. (2016) use observ-

able variables (macro-financial state variables) to control for common shocks, our framework

considers a latent factor structure.

2.1 Removing common shocks

Similar to Barigozzi and Hallin (2017), we use dynamic factor methods to separate common

shocks from idiosyncratic shocks before estimating the network structure. For our n × T

panel of logarithmic CDS returns Y = (Y1t, Y2t, ..., Ynt)
′, we consider the generalized dynamic

factor model representation by Forni et al. (2000, 2015, 2017) and Forni and Lippi (2001),

which admits the decomposition of Y := Yit, for all i and t, into a common component Xit

and an idiosyncratic component Zit:

Yit = Xit + Zit. (1)

It is further assumed that the common component is driven by q factors defined as an

orthonormal unobservable white noise vector ut = (u1t, u2t, ..., uqt)
′, such that Xit can be ex-

pressed as an auto-regressive representation Xit =
∑q

k=1 bik(L)ukt, where the filters bik(L) are

one-sided and square summable. Using frequency-domain principal components (Brillinger

1981), Forni et al. (2015, 2017) show how to recover the common and idiosyncratic compo-

nents based on an estimator for the spectral density of Xnt.

To determine the number of factors q, we apply the Hallin and Lǐska (2007) criterion which

favors q = 1.3 Consequently, we choose to conduct our analysis with one common factor.4

3Section A in the Online Appendix provides a detailed discussion of the methodology to determine the
number of common factors in the sample and describes some characteristics of the estimated common factor.

4This is in line with Berndt and Obreja (2010) who show for the period 1994-2008 that the common
dynamics in European CDS spreads are captured by a single common factor (first principal component) ac-
counting for about half of the variation in their sample, while the second factor (second principal component)
explains only 8 percent.
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From a conceptual perspective, a key motivation underlying our approach of disentangling

idiosyncratic from common drivers of variation in our dataset of CDS returns is that we are

interested in measuring the “pure” contagion risk component of systemic risk. Contagion risk

can be defined as “an initially idiosyncratic problem that becomes more widespread in the

cross-section, often in a sequential fashion” (ECB 2011, p. 141). Our empirical framework

thus separates contagion risk from a second form of systemic risk: the common exposure

to shocks in financial markets or the macroeconomy (De Bandt et al. 2009; ECB 2011).

Moreover, by focusing on idiosyncratic dependencies of CDS returns, our empirical strategy

is closer to the theoretical concept of financial networks in which the origin of contagion is

a shock to an individual institution that is subsequently transmitted to other institutions

through the web of obligations (Glasserman and Young 2016).5

An alternative framework to the latent factor model is to use a structural model approach

in which credit spreads are determined by a number of structural factors suggested by theory

such as interest rates, leverage and asset volatility (Collin-Dufresne and Goldstein 2001;

Leland and Toft 1996; Longstaff and Schwartz 1995). Structural models are widely used

in credit risk modelling; yet empirical tests suggest that structural models typically cannot

accurately explain credit spreads (Eom et al. 2004; Huang and Zhou 2019).6 Relatedly,

the empirical literature finds that changes in credit spreads are even harder to explain by

structural factors than levels (Collin-Dufresne et al. 2001; Zhang et al. 2009). Hence, while

structural models provide important insights on underlying theoretical pricing mechanisms,

we employ a more practical reduced-form approach to explain interdependencies between

CDS spreads, while remaining silent on the economic (structural) determinants of spreads.

2.2 Characterizing networks via variance decompositions

To obtain empirical measures that help to characterize the network of CDS returns, we build

on the econometric framework proposed by Diebold and Yilmaz (2014) and Demirer et al.

5Another approach to control for common shocks is to include observable market variables as exogenous
regressors in the econometric model. However, the drawback of this strategy is that these relevant market
variables need to be identified a priori by the researcher with the consequence that the results might depend
on the particular set of chosen market variables.

6Eom et al. (2004) analyse five different structural models empirically and conclude that the accuracy of
structural models is an issue. They find that most structural models overestimate the credit spread of riskier
firms and underestimate the credit risk of safer firms. Similarly, Huang and Zhou (2019) test five structural
models for empirical accuracy and reject three of the models. However, the other two models still fail to
predict CDS spreads accurately.
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(2018), which is based on variance decompositions in large-dimensional VAR models.7

Specifically, we write the following covariance stationary VAR with n endogenous variables,

representing the n estimated idiosyncratic components Zt = (Z1t, Z2t, ..., Znt)
′ as defined in

Eq. (1):

Zt =

p∑
k=1

ΦkZt−k + εt, (2)

where εt ∼ (0,
∑

), Φk is a parameter matrix of dimension n × n and the lag length is two

(p = 2).

The model in Eq. (2) can be expressed in its moving average representation as follows:

Zt =
∞∑
k=0

Akεt−k, (3)

where Ak is the matrix of moving average coefficients at lag k. These moving average

coefficients are crucial for assessing the dynamics of the system. Using forecast error variance

decompositions for h steps ahead enables to determine how much of the variance of each

variable Zi, for i = 1, 2, ..., n, is due to shocks to another variable included in the system. In

calculating variance decompositions we adopt the generalized impulse-response framework

of Koop et al. (1996) and Pesaran and Shin (1998), using a forecast horizon of h = 10

days.8 This approach accounts for correlated shocks across markets by using the historically

observed distribution of the shocks. As a consequence, all estimation results are invariant

to the ordering of variables in the VAR. The invariance to ordering can also be seen as a

disadvantage as it circumvents a direct role for economic theory in providing guidance about

the ordering of the variables. While a sensible approach might be to rank variables from, say,

most to least systemically important this is very challenging when there are 152 variables to

consider. Moreover, history also suggests that it need not always be the most systemically

important country or firm that triggers a crisis (i.e., the so-called ’black swan’). If that is

the case any ordering of the VAR is likely to be viewed as being arbitrary.

Defining θij as the h-step-ahead error variance in forecasting variable Zi that is due to

shocks to variable Zj, where i, j = 1, 2, ...n, we can obtain the relative contribution (in

percent) of each variable Zj to the forecast error of variable Zi by normalizing by the sum

7An earlier but less general version of this methodology is outlined in Diebold and Yilmaz (2009, 2012).
8The results are robust to changing the forecast horizon (see robustness checks in Section 4.3.3).
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of all row entries in the variance decomposition matrix:

γij =
θij∑n
j=1 θij

× 100. (4)

Each element γij has a value between 0 and 100 and provides a quantitative measure for the

pairwise directional connectedness from CDS entity j to CDS entity i. Based on the esti-

mates for pairwise directional connectedness it is possible to construct a range of informative

connectedness measures by summing the elements γij at different levels of aggregation, from

individual (firm- or sovereign-level) to aggregate connectedness (system-wide).

At the individual level, total directional connectedness to entity i “from” all other entities

j is defined as:

γi←• =

∑n
j=1j 6=i γij∑n
i,j=1 γij

=

∑n
j=1j 6=i γij

n
. (5)

Conversely, total directional connectedness from entity i “to” all other entities j can be

constructed as follows:

γ•←i =

∑n
j=1j 6=i γji∑n
i,j=1 γji

=

∑n
j=1j 6=i γji

n
. (6)

Note that the individual measures can also be restricted to a subset of entities j. For example,

we will be interested in the total directional connectedness from (to) entity i to (from) all

sovereign/financial/non-financial entities j.

The most aggregate measure of connectedness (system-wide connectedness or overall net-

work connectedness) is obtained by summing all individual measures of total directional

connectedness:

γTotal =

∑n
i,j=1i6=j γij∑n
i,j=1 γij

=

∑n
i,j=1i6=j γij

n
. (7)

Moreover, we can construct additional aggregate measures such as sectoral connectedness by

aggregating pairwise connectedness measures at the sector-level and geographical connected-

ness by aggregating pairwise connectedness at the country-level. We use several indicators

in order to provide a comprehensive overview of the composition of connectedness.

2.3 Elastic net shrinkage

Since our VAR needs to be estimated in very high dimensions (152 variables), it is essential

to reduce the number of parameters to be estimated in order to circumvent the “curse of

dimensionality”. In our network analysis we use elastic net shrinkage (Zou and Hastie 2005),
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which is a variant of LASSO methods, to shrink, select and estimate our VAR model.9 While

there are few comparisons of the properties of different forms of LASSO shrinkage (these are

more common in the medical literature), the elastic net penalty has the advantage of being

relatively less aggressive in reducing the number of selected variables. It also tends to group

predictors that are more strongly correlated. Hence, the likelihood of incorrectly omitting a

variable is reduced. Simulation studies and real world applications show that the elastic net

estimator often outperforms the pure LASSO, particularly when the number of predictors is

large relative to the number of observations (Zou and Hastie 2005). Consequently, the ben-

efits of the elastic net estimator materialize especially well in our dynamic (rolling-window)

estimation of the CDS network as here the sample size becomes small but the number of

variables remains large.

Elastic net solves the following least-square estimation problem:

β̂ = argmin
β

(
T∑
t=1

(Zit −
p∑

k=1

β
′

k,iZt−k)2 + λ

p∑
k=1

[
(1− α)|βk,i|+ α|βk,i|2

])
, (8)

where i = 1, ..., n, and Z is the matrix of idiosyncratic returns. Zou and Hastie (2005) define

the function (1−α)|βk,i|+α|βk,i|2 as the elastic net penalty, which is a combination of the

“LASSO penalty” and the “ridge penalty”. The elastic net penalty is controlled by α that

takes a value between 0 and 1. For α = 1, the elastic net becomes simple ridge regression,

and for α = 0, we obtain the LASSO penalty. The tuning parameter λ controls the overall

strength of the penalty with the number of penalized (zero) regressors increasing in λ. Hence,

for λ = 0 we obtain the standard OLS estimator with no penalization and no selection. We

select α and λ jointly for each equation by 10-fold cross validation over a grid of possible

values, using the values for α and λ that produce the lowest in-sample mean squared error for

the model. While selecting both α and λ by cross validation is computationally very costly,

particularly when it comes to rolling-window regressions where the procedure is repeated for

each window, this approach ensures that we pick the set of regressors with the best in-sample

model fit. By contrast, fixing α and choosing only λ would be computationally less costly,

but would result in a worse in-sample model fit as shown by our out-of sample forecasting

exercise reported in Section 4.3.1.

9See Tibshirani (1996) for an introduction to LASSO.
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2.4 Network visualization

Due to the high-dimensional nature of our network, consisting of 152 nodes and 152×151 =

22, 952 links, presenting the results in an informative manner is challenging. In what follows,

we characterize the estimated networks by means of graphical representations that visualize

the results according to data characteristics and estimated connectedness measures.

Node names and colors: Each node represents one variable abbreviated by a three-digit

name code (see Table A.2 in the Online Appendix for a detailed list of all name codes). Node

color is defined by the sectoral affiliation of each entity: Financial Institutions are yellow,

Sovereigns are red, Autos & Industrials are blue, Consumers are green, Energy corporations

are purple, and TMT (Technology, Media & Telecommunications) firms are light salmon.

Node size: Node size is a linear function of total directional connectedness “to others”

(Eq. 6). Hence, entities that contribute relatively more credit risk to other entities are

represented by bigger nodes in the network. Node size can be interpreted as a direct visual

measure of systemic importance of the respective firm or sovereign.

Node location: We use the force-directed algorithm of Fruchterman and Reingold (1991)

to determine node location. The algorithm positions the nodes in the two-dimensional space

in such a way that repelling and attracting forces among the nodes exactly balance. The

force of repulsion and attraction between two nodes is determined by pairwise directional

connectedness “to” and “from”. CDS entities that are linked through high pairwise direc-

tional connectedness are thus positioned close to each other, while CDS entities that are

linked through low pairwise directional connectedness are drawn further apart. As a result,

CDS entities with many strong links to other entities will be located in the network’s center

(i.e., these entities are more systemically important), while nodes for CDS entities with weak

links to others will be located in the network’s periphery (less systemically important).

Link thickness: Each link is a linear function of pairwise directional connectedness such

that a relatively thicker link between two nodes indicates strong pairwise connectedness.

3 Data

Our data set comprises 152 daily CDS series of European sovereigns, financial institutions,

and non-financial corporations. CDS spreads provide a more accurate measure of credit risk

(i.e., the risk of an entity defaulting on its debt) than bond yields for three main reasons.
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First, CDS contracts are standardized products with pre-specified and fully documented

credit derivatives agreements (Augustin et al. 2014), whereas bond terms and conditions are

heterogeneous and depend on various features, including maturity, issue amount and coupon

structure. Second, CDS markets are typically less influenced by liquidity effects relative to

bond markets. Longstaff et al. (2005), for example, find that a large proportion of bond

spreads is related to measures of bond-specific illiquidity such as bid-ask differentials.10

Third, CDS spreads provide a timelier market-based indicator of credit risk, as documented

by empirical studies showing that CDS markets lead bond markets in the price discovery

process (Blanco et al. 2005; Palladini and Portes 2011).

We consider CDS spreads with a maturity of five years, which is typically the contract

specification with the highest liquidity. We choose CDS quotes for euro-denominated senior

unsecured debt with the modified-modified restructuring clause for firms and the cumulative

restructuring clause for sovereigns. These types of contracts represent the conventional terms

for CDS contracts in Europe. The sample period runs from October 23, 2006 to July 28,

2017, thus covering both the global financial crisis and the European sovereign debt crisis.11

We source our data through Datastream and Bloomberg.12

Our sample includes sovereign CDS quotes from the following 10 countries: Austria, Bel-

gium, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain and the UK.13 To ensure

that our sample comprises the most relevant European corporate CDS entities, we consider

only data from financial and non-financial corporations that were part of the Markit iTraxx

Europe index over the sample period.14 The Markit iTraxx Europe refers to the 125 most

10While recent theoretical and empirical evidence suggests that CDS prices are influenced by liquidity
effects too (Bongaerts et al. 2011; Corò et al. 2013), the magnitude of these effects is likely to be greater for
bond markets than for CDS markets. Comparing the magnitude of the liquidity premium across CDS and
bond markets, Bühler and Trapp (2009) estimate that 35 percent of bond spreads is attributable to liquidity,
whereas in CDS markets the liquidity component is only 4 percent.

11The starting date of our sample is dictated by data availability. Using an earlier starting date would
result in a substantially smaller sample of CDS series due to missing data.

12Our procedure in collecting the data is as follows: we first check data availability for a specific CDS
entity in Datastream; if the data are available, we include them in our sample; if the data are not available
in Datastream, we check data availability in Bloomberg and add the series to our sample if the data are
available.

13Data for Greece are not available for the full-sample period, because trading of Greek CDS contracts
was suspended from March 9, 2012, when a so-called “credit event” was declared by the International Swaps
and Derivatives Association as a consequence of the Greek debt restructuring agreement. We therefore omit
Greek CDS from our analysis.

14The constituents of the iTraxx Europe are revised twice a year, such that there are frequent changes in
the composition of the index. We decide to consider a company for inclusion in our sample if it was at least
once part of the iTraxx Europe index during our sample period.
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actively traded European corporate entities with investment grade credit ratings. The index

contains corporate CDS from five different sectors: Autos & Industrials, Consumers, Energy,

TMT (Technology, Media & Telecommunications) and Financials. The group of financial

CDS entities includes both banks and insurance companies. Our analysis thus addresses the

need expressed by regulators to include insurance companies in systemic risk assessments

(ESRB 2015).15

After excluding all corporate CDS series for which more than 15 percent of the observations

are stale values, our final sample consists of CDS spreads for 109 non-financial corporations,

33 financial institutions, and 10 sovereigns. Table A.2 in the Online Appendix provides a full

list of all companies and countries included in our analysis and Table A.3 reports summary

statistics (by country).

4 Empirical results

We characterize the CDS network both statically (full-sample) and dynamically (rolling-

window) based on variance decompositions of the idiosyncratic CDS returns in a large-

dimensional VAR. Providing time-varying estimates for contagion effects to the non-financial

sector is one of the principal contributions of this study as this is essential for generating

useful policy implications.

4.1 Static estimation of the CDS network

4.1.1 Full-sample individual CDS network

Figure 1 shows the full-sample CDS network using the force-directed algorithm by Fruchter-

man and Reingold (1991) to determine node locations. We observe a strong sectoral cluster-

ing of corporates and sovereigns, as nodes of CDS entities from the same sector tend to bunch

together. Financial institutions are all located in the center of the network, whereas non-

financials and sovereigns are located around the center, indicating the systemic importance

of the financial sector in Europe. The central role of the financial sector is also evidenced

15Insurance companies can be important for financial stability because they are major investors in financial
markets, insurers and banks are increasingly interconnected and insurance companies insure the (financial)
risks of households and firms (ECB 2009; ESRB 2015). G20 governments reacted to the growing importance
of insurers for financial stability by asking the Basel Financial Stability Board (FSB) to consider insurers
alongside banks in the development of a policy framework to specifically address the systemic risks associated
with systemically important financial institutions (FSB 2011).
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by the large node size of financial institutions relative to non-financial corporations and

sovereigns.16 Non-financial companies in the sectors Consumers, Autos & Industrials and

TMT show the strongest links to the financial sector, while Energy corporations are located

closer to the sovereign sector.

[Figure 1 about here]

To provide a more detailed account of the most important individual transmitters of credit

risk to the non-financial sector, we present a ranking of the largest senders in Table 1. The

ranking is based on aggregating all pairwise directional connectedness measures “to” non-

financial corporations for each individual financial institution and sovereign, respectively.

The ranking can be interpreted as a quantitative indicator for the systemic importance of

each financial and sovereign entity to the real economy. Conversely, we also present a ranking

for the largest receivers of risk from sovereigns and financials in Table 1. It is shown that

the ranking for the senders of financial risk is headed by two major European banks, namely

Santander and Crédit Agricole, followed by a major insurance company (Swiss RE). All banks

in the top 10 ranking (Santander, Crédit Agricole, Société Générale, BBVA and Unicredit)

are designated by the FSB as “global systemically important banks” that are subject to

additional capital and other regulatory requirements under the Basel III framework (see

FSB (2014) for a complete list of all identified banks).17 The presence of five insurance

companies in the top 10 of financial risk senders underscores the importance of including

insurers into systemic risk assessments as proposed by regulators (ECB 2009; ESRB 2015).

[Table 1 about here]

An interesting feature of the financial institutions in our network is that their link size to

non-financial firms is positively correlated with their link size to other financial institutions.

Figure 2 depicts this relationship by plotting average directional connectedness of individual

financial institutions to all non-financial firms (this corresponds to the observations in the

ranking of senders in Table 1(a)) on the horizontal axis against average directional connect-

edness of individual financials to all other financial institutions on the vertical axis. The

16As explained above, node size is a function of “to” connectedness. Hence, entities that are more important
to the system in terms of credit risk transmission have larger nodes.

17In addition, the insurance company Allianz (rank 9 in Table 1) is designated as a “global systemically
important insurer (G-SII)” by the FSB (see FSB (2016) for the separate list of all G-SIIs).
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structure of the estimated network hence reveals that financial institutions generating the

largest contagion effects within the financial system are also the most important transmitters

of contagion effects to the real economy.

[Figure 2 about here]

Turning to the largest non-financial receivers of contagion effects from financial institutions

(second panel in Table 1(a)), we observe that the top 10 is dominated by corporations from

the sectors Autos & Industrials (Air Liquide, Svenska Cellulosa, Bayer, Akzo Nobel) and

Consumers (Henkel, Ahold Delhaize, Carrefour, Accor, Casino Guichard). A look at the

bottom of the ranking indicates that energy corporations, such as RWE, BP and Iberdrola,

are less affected by financial risk shocks.

As for the links between sovereigns and the non-financial sector (Table 1(b)), we find

that the southern European countries Italy, Portugal and Spain, which were among the

most severely stressed countries during the debt crisis, are by far the largest transmitters of

credit risk. Sovereigns from the “core” of the eurozone (Austria, Germany, France, Belgium,

Netherlands) as well as the UK are much less important in terms of credit risk transmission.18

Finally, on the receiving end of the sovereign risk channel (second panel in Table 1(b)), we

see that there are mainly energy companies at the top of the ranking. The only exceptions

are the TMT companies Telefonica and Hellenic Telecom.

4.1.2 Cross-sectoral network connectedness

Building on the findings from the individual CDS network, which already highlighted some

sectoral patterns in credit risk transmission, we next move to an aggregate perspective on

cross-sectoral connectedness. Our aim is to identify sectoral heterogeneity in the magnitude

of contagion effects. Figure 3 shows the sectoral decomposition of directional connectedness

from financials and sovereigns to non-financial firms. We observe that the financial sector is a

more important contributor of credit risk to the non-financial sector than the sovereign sector.

For the non-financial sectors Autos & Industrials, Consumers and TMT the magnitude of

contagion shocks from financial institutions is roughly two to four times stronger relative

to sovereigns. Only energy companies are comparatively more affected by contagion shocks

18Surprisingly, Ireland is the least important sender despite its central role in the eurozone crisis. This
may be explained by Ireland’s fast recovery from the crisis in comparison with southern European countries.
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from sovereigns (by a factor of roughly 1.5). At the same time, compared with other non-

financial sectors, the energy sector is less affected by contagion from financial institutions.

[Figure 3 about here]

An important factor that can explain both the relatively stronger sensitivity of the energy

sector to sovereign risk shocks and the lower sensitivity to financial risk shocks is the own-

ership structure of energy corporations. The energy sector is of great strategic importance

to the public sector, which is why sovereigns are often major shareholders in energy firms

to retain influence on corporate decisions.19 Firms with government ties often receive state-

guaranteed loans and are more likely to be bailed out than firms without government ties

(Faccio et al. 2006). Our results are consistent with the notion that the energy sector’s large

proportion of (partially) government-controlled firms, and the superior financing conditions

associated with government control, is responsible for the relatively lower exposure of the

energy sector to financial risk shocks. At the same time, the prevailing degree of government

control in the energy sector creates a stronger link to variations in sovereign risk, as rising

concerns about the solvency of sovereigns erodes the credibility of state-guaranteed loans

and decreases the likelihood for bailouts.

4.1.3 Geographical network connectedness

Despite the common market there exist regional differences across European countries, rang-

ing from cultural differences (including language) to purely economic differences related to

e.g., macroeconomic fundamentals, credit ratings and the size of national banking sectors.

All of these country-specific factors may give rise to a link between the geographical location

of firms and sovereigns and the size/direction of credit risk transmission.20

[Figure 4 about here]

To provide more detailed insights into the geographical component of the CDS network,

19Among the 18 energy firms in our sample, 9 are characterized by a substantial public ownership, i.e.,
the government share in the company is more than 5 percent based on publicly available sources (corporate
websites, annual reports, etc.). By contrast, among the remaining non-energy firms in the non-financial
sector only 12 percent are characterized by a substantial public ownership.

20See Ang and Longstaff (2013) and De Santis (2012) for evidence on country-specific risk factors in
European sovereign CDS spreads.
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we conduct a country-level decomposition of credit risk contagion in Figure 4. We observe in

Figure 4(a) that Spain, France, Germany and Switzerland are the main senders of financial

risk, as indicated by the size of their financial sector nodes. The main receivers of financial

risk (indicated by color-level) are the non-financial sectors of countries located in the core

of Europe (Belgium, France, Germany, Netherlands, Sweden, UK), while the non-financial

sectors of countries in the southern periphery (Portugal, Spain, Italy, Greece) are less affected

by financial risk shocks. Our findings of a strong cross-border component in the transmission

of bank risk in Europe is consistent with the findings of Breckenfelder and Schwaab (2018)

with regards to bank-sovereign spillovers. They document that bank risk in stressed eurozone

countries spilled over to non-stressed eurozone sovereigns during the sovereign debt crisis.

Turning to the transmission of risk from sovereigns to non-financial firms in Figure 4(b)

reveals a different geographical pattern. Here, the major senders of risk are the southern

European countries Portugal, Spain and Italy, while the contribution of core European coun-

tries is much less. In addition, the geographical dispersion of sovereign risk shocks is mainly

limited to the periphery, which is the main receiver of shocks as indicated by the magnitude

of sovereign-corporate connectedness and the link size between peripheral countries. Conse-

quently, our results suggest that real-sector contagion of sovereign risk does not spread from

the periphery to the center, but remains predominantly a regional phenomenon.

We next assess whether cross-country contagion effects can be explained by the degree of

financial linkages between countries. Theoretical work on financial contagion effects suggests

that geographically interrelated claims and liabilities in the banking system can facilitate

cross-country transmissions of financial shocks (Allen and Gale 2000). We test whether

stronger financial linkages through claims and liabilities between European countries lead

to stronger contagion of financial and sovereign risk to the non-financial sector by using

data on bilateral bank claims provided by the Bank for International Settlements (BIS) to

proxy financial linkages. We distinguish between two aggregates of bilateral bank claims:

(i) bilateral bank claims of country i to all sectors of country j, and (ii) bilateral bank

claims of country i to the non-bank private sector of country j. To assess the influence

of these two measures of financial linkages on the cross-country dimension of contagion

to the non-financial sector, we then run OLS regressions with the country-level pairwise

connectedness measures as the dependent variable and one of the financial linkages proxies

as the independent variable.
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[Table 2 about here]

The results in Table 2 suggest a clear positive relationship between cross-country conta-

gion effects from the financial sector and financial linkages (first column). Countries that

share stronger financial linkages experience stronger cross-border contagion between their

financial and non-financial sectors than countries with weaker financial linkages. Our results

complement empirical findings from studies focusing exclusively on contagion effects within

the banking sector. For example, Tonzer (2015) shows that international linkages in inter-

bank markets contribute to the channeling of financial distress across borders. However, our

results do not suggest an influence of financial linkages on the magnitude of cross-border

contagion effects for sovereign credit risk (second column in Table 2), which highlights again

the rather regional nature of the sovereign-real sector risk channel.

4.2 Dynamic estimation of the CDS network

To assess the time-varying nature of the CDS network, we next move to a dynamic frame-

work based on rolling-window (200 days) estimations, with repeated cross validation of the

penalty parameter λ and the elastic net mixing parameter α in each window.21 Looking

at the evolution of connectedness across time allows us to assess whether the propagation

of shocks intensified during crisis events, which is consistent with the concept of “shift-

contagion” (Rigobon 2016). Naturally, our emphasis is on the evolution of the network

structure following the global financial crisis and the European sovereign debt crisis.

4.2.1 Global financial crisis

The critical event in the global financial crisis was Lehman Brother’s bankruptcy on Septem-

ber 15, 2008. In Figure 5 we show the CDS network at two different stages for comparison.

In (a) the network is depicted for the period before Lehman Brother’s bankruptcy (the 200

days window ends on September 1, 2008), while in (b) the network is shown for the period

after the Lehman collapse (the 200 days window ends on November 6, 2008).

[Figure 5 about here]

21We also estimate the idiosyncratic components for each window separately.
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The key pattern that emerges after comparing the two plots is that a large cluster of

financial institutions moves from the periphery to the center of the network after Lehman’s

collapse, reflecting an increase in connectedness of the financial sector to others. An increase

in overall transmission of credit risk to others, i.e., the systemic risk component of the finan-

cial sector, can be further deduced from the large node size of many financial institutions,

such as UBS, Société Générale (SOG) and Deutsche Bank (DBA). As for Lehman’s effect on

the non-financial sector, we observe that Autos & Industrials and TMT corporations cluster

very close to the financial sector, while the energy sector and most consumer corporations

are relatively farther away from the financial center after Lehman’s bankruptcy.

4.2.2 European sovereign debt crisis

To visualize how the CDS network was transformed following the European sovereign debt

crisis, we analyze the network graph before and after the onset of the crisis in Figure 6. We

clearly see that connectedness is rather low before the crisis (late-2009), particularly with

regards to sovereigns which form their own cluster in the periphery of the network. After

the onset of the eurozone crisis in May 2010 (following the first bailout package for Greece),

connectedness increases drastically, thereby fundamentally altering the network’s structure.

Now we observe that the nodes for sovereign entities moved to the network’s center and

that the stressed countries Italy, Spain, Ireland and Portugal have very large nodes, which

highlights their central role in the crisis. In addition, the sovereign CDS nodes attract

a large number of both financial and non-financial corporations that are grouped closely

around them. Hence, Figure 6(b) does not only reveal a strong sovereign-financial nexus

but it also shows pronounced contagion effects from sovereigns to non-financial corporations

during the European debt crisis.

[Figure 6 about here]

4.2.3 System-wide connectedness

Moving from the individual to the aggregate perspective, we depict in Figure 7 the evolution

of overall network connectedness, i.e., the degree to which all idiosyncratic CDS returns

co-move with each other over time. We observe wide fluctuations in connectedness over the

sample period. While system-wide connectedness is at less than 70% at the beginning of

the sample, it shows an increasing trend until the Lehman collapse in late-2008. After a
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downward trend in 2009, network connectedness jumps substantially following the outbreak

of the European debt crisis in early-2010. Throughout 2010 system-wide connectedness

remains elevated with several pronounced spikes, reflecting the high degree of financial stress

and uncertainty in the eurozone during this period. The culmination is reached in October

and November 2010 when the level exceeds 90 percent, suggesting that markets reacted with

a fear of more contagion in CDS spreads.22

[Figure 7 about here]

In early-2011 overall contagion risk decreases noticeably as a result of the agreement of euro

area leaders on March 11, 2011 to allow the European Financial Stability Facility and the

European Stability Mechanism to directly intervene in primary markets for sovereign debt.23

Over the remainder of the sample period, system-wide connectedness fluctuates persistently,

albeit with smaller swings. There is a mild upward trend in connectedness from mid-2012

until early-2017, reflecting that even after the most severe crisis events came to an end, CDS

spreads remained tightly linked to each other across all sectors. This indicates that market

participants continued to closely monitor conditions in all CDS markets simultaneously.

4.2.4 Cross-sectoral network connectedness

With the goal of focusing specifically on temporal fluctuations in credit risk transmission to

the non-financial sector, we conduct a sectoral decomposition of connectedness in Figure 8.

The results suggest a large degree of heterogeneity in dynamic connectedness across sectors.

As for the credit risk shocks from the financial sector, we observe several spikes throughout

the sample period. Financial-real sector connectedness is particularly high during the 07/08

global financial crisis and the 2010-12 European debt crisis, providing evidence for contagion

effects to the non-financial corporate sector. Interestingly, both the level and the fluctuations

of connectedness between financial and non-financial corporations increase towards the end

22This was a crucial stage in the European debt crisis, as concerns about the fiscal strength of Ireland
and Portugal prompted markets to expect that a Greek-style program would be extended to these two
countries. On October 18, 2010 Angela Merkel and Nicolas Sarkozy surprised markets by announcing that
future sovereign bailouts would require ‘haircuts’ on sovereign bond holdings (also, see Brunnermeier et al.
2016).

23Moreover, the resignation of Axel Weber from the Bundesbank presidency in February 2011 may also
have contributed to the decrease in contagion risk because markets may have interpreted this event as
signalling that after the departure of a major opponent of the ECB’s current policy stance at that time, the
ECB would further expand its Securities Markets Programme (SMP) in the future.
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of the sample period (2015-2017).

[Figure 8 about here]

With regards to sovereign risk (second plot), the dynamic connectedness measure reflects a

clear pattern. Following the start of the European debt crisis, connectedness rises drastically

and then remains at this high level during the most stressing stages of the crisis. In early-

2011 we observe a considerable decline in the magnitude of sovereign risk transmission.

The downward trend continues until early-2014, fluctuations thereafter remain modest. The

findings can be interpreted in favor of the ECB’s monetary policy stance, as they suggest

that the ECB was successful in curbing the contagion effects to the non-financial sector.

For comparison, we also present intra-sectoral connectedness of non-financial corporations

(last plot in Figure 8). It shows almost no fluctuations over time, reflecting that crisis events

influenced only the transmission of credit risk from the financial and sovereign sector, but

not the transmission of risk within the non-financial sector.

To control for a potential feedback channel running from the non-financial sector to finan-

cial institutions and sovereigns, respectively, we also consider the pure net contribution of the

financial and sovereign sectors.24 Yet, the dynamic evolution of cross-sectoral connectedness

remains almost unaffected by this modification. Finally, we break down dynamic connect-

edness by sub-sectors of corporates which shows that each sub-sector displays somewhat

different dynamics, suggesting a role for sector-specific drivers in risk transmission.25

4.2.5 Geographical network connectedness

The static network analysis already revealed a strong geographical component in the mag-

nitude and direction of credit risk transmission to the non-financial sector. To further inves-

tigate geographical patterns in a dynamic framework, we differentiate between two groups

of risk senders at the country-level and calculate the evolution of risk transmission for each

group separately. We form a group of GIIPS banks, i.e., financial institutions headquartered

in the so-called “GIIPS” countries (Greece, Ireland, Italy, Portugal, Spain) and a group

of non-GIIPS banks, i.e., financial corporations headquartered in “non-GIIPS”, or “core”,

countries (Belgium, France, Germany, Netherlands, Switzerland, UK). We adopt the same

24This is achieved by subtracting the spillover effects originating in the non-financial sector from those
operating in the opposite direction. The results are presented in the Online Appendix (Figure A.3).

25See Figure A.4 in the Online Appendix.
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grouping procedure for “GIIPS” and “non-GIIPS” sovereigns.

[Figure 9 about here]

Figure 9 shows each country group’s contribution to financial and sovereign risk trans-

mission over time. As for the risk transmission from the financial sector to non-financial

corporations (first plot), the difference between the two country groups appears to be small.

For most of the sample period the two connectedness measures move in tandem. In 2010,

we observe a relatively stronger contribution from banks in GIIPS countries. In the second

half of the sample financial shocks from non-GIIPS banks are stronger relative to GIIPS

banks. Regarding risk transmission from the sovereign sector, the difference in contributions

between GIIPS and non-GIIPS is sizeable, as visible in the second plot of Figure 9. With the

beginning of the sovereign debt crisis in early-2010, risk shocks from GIIPS sovereigns in-

creased relatively more than risk shocks from non-GIIPS sovereigns. In terms of magnitude,

our estimates suggest that at the height of the sovereign debt crisis in 2010, sovereign risk

shocks transmitted from GIIPS sovereigns to non-financial corporations are roughly twice

as strong as risk shocks transmitted from non-GIIPS sovereigns. Connectedness decreases

for both country groups in 2011, but continues to fluctuate for GIIPS sovereigns throughout

the remainder of the sample period.26

4.3 Model evaluation and comparison

In this section we carry out a number of exercises to evaluate our methodology and to

compare our approach to alternative model specifications and modelling approaches.

4.3.1 Performance and properties of elastic net estimator

By design the elastic net estimator chooses the best model (lowest error) in-sample by jointly

selecting the elastic net mixing parameter α and the penalty tuning parameter λ. To evaluate

the out-of-sample performance of our methodology we conduct a forecasting exercise in which

26While the intensity of sovereign risk transmission from GIIPS sovereigns decreases considerably in 2011,
the level remains substantially higher relative to non-GIIPS. Only in the first half of 2012 the level of
sovereign risk transmission from GIIPS sovereigns converges back to that of non-GIIPS countries, possibly
as an outcome of the more aggressive ECB policy stance under the new president Mario Draghi. From mid-
2012 onwards, sovereign connectedness remains fairly stable, with both country groups contributing about
the same amount of credit risk. This changes in 2015, where we observe another increase in contagion from
GIIPS-sovereigns due to the uncertainties regarding the newly elected Syriza-government in Greece.
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we split our sample into an in-sample-period from 23/10/2006 to 31/12/2014 and an out-

of-sample period from 02/01/2015 to 28/07/2017. We first estimate our elastic net model

in-sample using the methodology described in previous sections and then use the fitted values

to evaluate the model in the out-of-sample period. We compare the elastic net model to the

following competitor models: (i) the constant mean model which uses the in-sample mean

of each variable as forecasts, (ii) the AR(1) model which conducts forecasts based on the

fitted values from a persistent process, (iii) the ridge estimator which applies shrinkage in

the VAR with α = 1, and (iv) the constant elastic net estimator which uses a fixed elastic

net mixing parameter of α = 0.5 and chooses only the optimal λ in the penalty function.

Table 3 shows the results of the forecasting exercise for our elastic net estimator (first row)

and the competitor models (rows 2-5). It is shown that the elastic net model performs best

out-of-sample relative to the competing models, since it produces on average the lowest MSE

for the total sample.

[Table 3 about here]

Furthermore, Section D in the Online Appendix reports findings on the properties of the

elastic net parameters α and λ for varying window sizes in the dynamic model framework.

4.3.2 Comparison with Granger-causality network

The econometric approach used in this paper uses variance decompositions to characterize

the network. An alternative approach is to focus on the short-term VAR coefficient matrices

as e.g. in Billio et al. (2012) who use pairwise Granger-causality to characterize the network.

The Granger-causality approach is less granular than the variance-decomposition approach

as it only tests whether coefficients are zero or non-zero without taking into account the

magnitude of non-zero coefficients. Nevertheless, to provide a comparison to our approach,

which should be viewed rather as a complement than a substitute, we implement the Granger-

causality approach to a large-dimensional setting. The results are presented and discussed

in Section E of the Online Appendix.

4.3.3 Robustness checks

Section F in the Online Appendix contains several robustness checks for both the static and

the full-sample framework. For the static (full-sample) framework we conduct robustness
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checks for (i) different forecast horizons and (ii) a 2-factor specification. For the time-varying

framework we focus on the sensitivity of results to different window sizes. The results suggest

that the findings do not change substantially if alternative model specifications are chosen.

5 Conclusions

Motivated by the scant empirical evidence on the propagation of credit risk shocks from

financial institutions and sovereigns to the non-financial sector of the economy, we conduct

a network analysis using 152 CDS series for European financial institutions, sovereigns and

non-financial corporations over the period from October 2006 to July 2017. Our methodol-

ogy relies on recent techniques to measure and visualize connectedness in large-dimensional

systems of financial variables. Our main findings suggest a sectoral clustering in the CDS net-

work, where financial institutions are located in the center of the network and non-financial

as well as sovereign CDS are grouped around the financial center, reflecting the systemic

importance of the financial sector in Europe. We also detect a geographical component in

the network, as evidenced by differences in risk transmission across countries.

Our methodological framework is flexible enough to provide time-varying estimates of the

CDS network, which can be a useful tool for systemic risk monitoring. We show that both the

Lehman bankruptcy and the European debt crisis fundamentally transformed the network

structure. By contrast, we find that the transmission of risk within the non-financial sector

remained largely unchanged during the crisis events. Taken together, our results indicate

that bank and sovereign risk are important drivers of corporate credit risk. Out-of-sample

evaluations and comparisons with alternative approaches show that our estimator performs

relatively better and provides more granular estimates of connectedness.

Our network analysis identified the source, direction and relative size of credit risk shocks

to the non-financial sector in Europe. Future research could further include the sign of

the shocks’ impact as additional information in the characterization of the network, as in

Dungey et al. (2017). A signed network would reflect whether a shock to one entity has an

amplifying or dampening effect on each of the other entities in the system. This approach

would take into account that contagion is more likely between nodes that are linked through

positive weights rather than negative weights.
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Figure 1: CDS network graph for full-sample period (2006-2017)

Note: The network pictured above is estimated using forecast error variance decompositions
in a ‘factor plus sparse’ VAR. The position of links and nodes is determined by the force-
directed algorithm of Fruchterman and Reingold (1991).

Figure 2: Individual senders of financial risk
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Note: The plot shows the relationship between financial institutions’ total connected-
ness to other financial institutions and financial institutions’ total connectedness to non-
financial firms for the full-sample period (2006-2017).
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Table 1: Ranking of largest senders and receivers of credit risk

(a) Financial → Non-Financial
Sender

Rank Name Connectedness “To”

1 Santander 0.58
2 Crédit Agricole 0.54
3 Swiss RE 0.52
4 Société Générale 0.49
5 BBVA 0.49
6 Hannover Rueck 0.47
7 Zurich Insurance 0.46
8 Munich RE 0.45
9 Allianz 0.44
10 Unicredit 0.43

.

.

.

.

.

.

.

.

.

29 Standard Chartered 0.17
30 Rabobank 0.14
31 Dexia 0.13
32 Mediobanca 0.11
33 Bank of Ireland 0.08

Receiver

Rank Name Connectedness “From”

1 Air Liquide 0.81
2 Henkel 0.77
3 Ahold Delhaize 0.73
4 Svenska Cellulosa 0.73
5 Bayer 0.66
6 Akzo Nobel 0.65
7 Carrefour 0.64
8 Accor 0.63
9 Relx 0.63
10 Casino Guichard 0.62

.

.

.

.

.

.

.

.

.

105 Hellenic Telecom 0.07
106 RWE 0.07
107 BP 0.07
108 Iberdrola 0.06
109 Nokia 0.04

(b) Sovereign → Non-Financial
Sender

Rank Name Connectedness “To”

1 Italy 0.28
2 Portugal 0.22
3 Spain 0.21
4 UK 0.12
5 Austria 0.12
6 Germany 0.11
7 France 0.11
8 Belgium 0.11
9 Netherlands 0.11
10 Ireland 0.09

Note: The connectedness measures in all tables above are
normalized by the number of entities so that the results represent
the average value per entity.

Receiver

Rank Name Connectedness “From”

1 Energias de Portugal 0.56
2 ENEL 0.47
3 Telefonica 0.43
4 National Grid 0.39

5 Électricité de France 0.39
6 Iberdrola 0.36
7 EON 0.35
8 Hellenic Telecom 0.34
9 ENBW 0.34
10 ENGIE 0.32

.

.

.

.

.

.

.

.

.

105 Michelin 0.03
106 Glencore 0.03
107 Metro 0.03
108 Volvo 0.02
109 Alliance Boots 0.01

Figure 3: Aggregate cross-sectoral connectedness
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Note: The plot shows directional connectedness from financials and sovereigns,
respectively, to non-financial firms, aggregated by sector type for the full-sample
period (2006-2017). To ensure comparability, the aggregate measures are nor-
malized by the number of entities so that the measures reported above represent
average connectedness per entity of each sector.
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Table 2: Geographical connectedness and financial linkages

(1) (2)
Financial → Non-Financial Sovereign → Non-Financial

Bilateral bank claims
(i) All sectors 0.244∗∗∗ 0.034

(0.065) (0.086)

(ii) Non-bank private sector 0.341∗∗∗ 0.124
(0.113) (0.155)

Note: The table reports the results of regressing the pairwise cross-country connectedness measures on bilateral bank
claims from the consolidated banking statistics database of the Bank for International Settlements (BIS). We differentiate
between (i) bilateral bank claims of country i to all sectors of country j, and (ii) bilateral bank claims of country i to the
non-bank private sector of country j. We divide bilateral bank claims by country j’s GDP to control for economy size.
The BIS consolidated banking statistics measure banks’ country risk exposures by capturing the claims of banks’ foreign
affiliates (ultimate risk basis). This consolidation approach is consistent with our strategy of aggregating the connectedness
measures by the geographical location of a bank’s headquarter. Each OLS regression includes a constant and country
dummies. Standard errors are in parentheses. ∗∗∗ denotes significance at the 1% level.

Table 3: Out-of-sample forecast results

Autos &
Industrials

Consumers Energy TMT Financial Sovereign Total

Optimal
Elastic Net

4.2726 2.5729 2.7713 2.8523 8.2922 5.8820 4.5380

Constant
mean

4.2926 2.5783 2.7243 2.8725 8.3319 5.7668 4.5424

AR(1) 4.3141 2.5795 2.8296 2.8735 8.2759 5.8282 4.5528

Ridge 4.2950 2.5853 2.7799 2.8611 8.3120 5.9312 4.5561

Constant
Elastic Net

4.2826 2.5799 2.7806 2.8610 8.3226 5.8725 4.5503

Note: The in-sample period is 23/10/2006 - 31/12/2014, the out-of-sample period corresponds to 02/01/2015-28/07/2017.
The table shows the mean squared error (MSE) of our baseline elastic net model (first row) by sector and compares it to a
number of competitor models. Our optimal elastic net model (first row) chooses optimal α and λ jointly in the shrinkage
and selection process. The constant mean model uses the in-sample mean of each variable as forecasts. The AR(1) model
conducts forecasts based on the fitted values from a persistent process. Ridge regression applies shrinkage in the VAR with
α = 1 and constant elastic net uses a fixed elastic net mixing parameter of α = 0.5 and chooses only the optimal λ in the
penalty function.
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Figure 5: CDS network before and after Lehman Brother’s bankruptcy

(a) Before: September 1, 2008

(b) After: November 6, 2008
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Figure 6: CDS network before and after the onset of the sovereign debt crisis

(a) Before: December 30, 2009

(b) After: May 5, 2010
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Figure 7: Dynamic system-wide connectedness
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Note: The above figure shows the results from calculating time-varying parameters
of the overall connectedness measure written in Eq. (7), using a rolling-window of
200 days.

Figure 8: Dynamic cross-sectoral connectedness
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Note: The above figure shows the results from calculating time-varying parame-
ters of the connectedness measure aggregated by sector, using a rolling-window
of 200 days. Each measure is normalized by the number of entities so that the
graph shows the average impact for each sector.
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Figure 9: Dynamic network connectedness across country groups
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Note: The above figure shows the results from calculating time-varying parame-
ters of the connectedness measure aggregated by country group, using a rolling-
window of 200 days. (G)IIPS countries are Ireland, Italy, Portugal and Spain
(Greece is excluded due to data availability). Each measure is normalized by the
number of entities so that the graph shows the average impact for each group of
countries.
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A. Determining the number of common factors

Hallin and Lǐska (2007) propose a consistent information criterion for determining the num-

ber of q common dynamic shocks in Forni et al.’s (2000) generalized dynamic factor model.

The criterion builds on the (n, T )-asymptotic properties of the eigenvalues for the spectral

density matrix of the observable variables Ynt. The spectral density matrix is denoted by

Σn(θ), where θ ∈ [−π, π], and its corresponding eigenvalues in decreasing order of magni-

tude are denoted by κn1(θ), ..., κnn(θ). As n→∞ it can be shown that the projection X
(n)
it

of Yit onto the space spanned by Σn(θ)’s first q dynamic principal components provides a

consistent reconstruction of Xit, where the number q is equivalent to the number of diverging

eigenvalues of Σn(θ). As illustrated by Hallin and Lǐska (2007) the q dynamic principal com-

ponents and the X
(n)
it ’s are the solutions to an optimization problem in which the expected

mean of squared residuals is minimized.

Accordingly, Hallin and Lǐska (2007) propose that the estimated number of factors, for

given (n, T ) and a maximum number of common factors qmax, is determined by minimizing

the following information criterion:

ICT
2;n(k) = log

[
1

n

n∑
i=k+1

1

2MT + 1

MT∑
l=−MT

κTni(θl)

]
+ kp(n, T ), (A.1)

where 0 ≤ k ≤ qmax.

MT > 0 is a truncation parameter and p(n, T ) is an appropriate penalty function whose

conditions and properties are discussed in detail by Hallin and Lǐska (2007). Provided that

p(n, T ) is an appropriate penalty function, then multiplying the penalty with an arbitrary

positive real constant c, i.e. cp(n, T ), is also appropriate. The uncertainty regarding the

choice of c is exploited by Hallin and Lǐska (2007) to derive a practical guide for the selection

of q, which is based on a mapping of c → qTc,n and c → Sc in a joint plot. qTc,n denotes the

number of factors resulting from applying the IC2 criterion in Eq. (A.1) and Sc captures

the variability among the J values of q
Tj
c;nj , j = 1, ..., J in a sample with fixed n and T and

allows for an assessment of the stability of the factors for a given c.
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Figure A.1: Hallin and Lǐska (2007) IC2 criterion

Note: The figure shows the joint mapping of c → qTc,n and c → Sc for the

panel of 152 CDS returns. qTc,n is derived from applying the IC2 criterion as

shown in (A.1) using a penalty function of p(n, T ) = (M−2
T +M0.5

T T−0.5 +
n−1)log(min[n,M2

T ,M
−0.5
T T 0.5]).

Figure A.1 depicts the joint mapping for our sample of 152 CDS series. As can be seen

the values for Sc are 0 in several intervals of c, which are called “stability intervals” in the

terminology of Hallin and Lǐska (2007), while the values for Sc fluctuate heavily in other

regions of c (hence they are called “instability intervals”). For values of c close to 0, the

first “stability interval” typically yields the maximum possible numbers of common factors

q̂ = qmax. Since low values of c are associated with severe underpenalization Hallin and

Lǐska (2007) propose to choose the number of factors q̂ = qTĉ,n by considering the c → Sc

mapping where ĉ belongs to the second “stability interval”. In Figure A.1 this is the case for

the interval c = [1.15, 1.84], corresponding to q = 1; hence the criterion clearly identifies one

common factor in the sample and higher-order factor model specifications are not supported.

Figure A.2 shows the evolution of the common factor over the sample period. Most notable

are the clusters of large CDS spread changes during the 2007-09 global financial crisis and

the 2010-12 European sovereign debt crisis, reflecting the highly volatile financial markets

during these periods. To provide a more detailed characterization of the common factor, we
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report some statistics regarding its properties in Table A.1. Panel A shows the proportion

of variance explained by the common factor averaged by sectors and over the total sample,

respectively. In total, the common factor explains about one third of the variation in all

CDS returns and between 44 and 46 percent of the variation in corporate sector CDS. For

the sovereign sector average explanatory power is considerably lower (9 percent). To give an

indication of the drivers of the common factor, we investigate in Panel B the correlation of

the common factor with the CBOE Volatility Index (VIX), a measure of global uncertainty

and risk aversion, and a key determinant of the global financial cycle (Rey 2015). We find

a clear positive relationship between the common factor of European CDS returns and the

VIX, indicating that European CDS spreads increase when global uncertainty increases.

Figure A.2: Evolution of common factor over sample period

Table A.1: Properties of the common factor

Panel A: Variance explained by the common factor
Sector Autos &

Industrials
Consumers Energy TMT Financial Sovereign All CDS

R2 0.455 0.439 0.438 0.459 0.444 0.094 0.3373

Panel B: Correlation with global uncertainty (VIX)

ρ(Ft,∆V IXt) ∆V IXt ∆V IXt−1 R2

0.326 0.047∗∗∗ 0.035∗∗∗ 0.174

Note: Panel A shows the explanatory power (R2) of the common factor for individual CDS returns averaged by sector. In
Panel B we investigate the link between the common CDS factor and global uncertainty as proxied by the VIX. ρ(Ft,∆V IXt)
is the Pearson’s correlation coefficient, ∆V IXt, ∆V IXt−1 and R2 are the estimates of regressing the common factor Ft on
VIX returns (contemporaneous and first lag): Ft = c+ ∆V IXt + ∆V IXt−1 + εt. ∗∗∗ denotes significance at the 1% level
based on Newey-West standard errors.
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B. Dataset of CDS spreads

Table A.2: List of CDS Entities
Entity Name Sector Sub-Sector Country Name Code
Adecco Non-financial Autos & Industrials Switzerland ADE
Volvo Non-financial Autos & Industrials Sweden VOL
Akzo Nobel Non-financial Autos & Industrials Netherlands AKN
Alstom Non-financial Autos & Industrials France ALS
Anglo American Non-financial Autos & Industrials UK ANA
Astrazeneca Non-financial Autos & Industrials UK ASZ
Atlantia Non-financial Autos & Industrials Italy ATL
Bae Systems Non-financial Autos & Industrials UK BAE
BASF Non-financial Autos & Industrials Germany BAS
Bayer Non-financial Autos & Industrials Germany BAY
BMW Non-financial Autos & Industrials Germany BMW
Bouygues Non-financial Autos & Industrials France BOU
Clariant Non-financial Autos & Industrials Switzerland CLA
Saint-Gobain Non-financial Autos & Industrials France SAG
Michelin Non-financial Autos & Industrials Switzerland MIC
Continental Non-financial Autos & Industrials Germany CON
Daimler Non-financial Autos & Industrials Germany DAI
Deutsche Post Non-financial Autos & Industrials Germany DPO
Evonik Non-financial Autos & Industrials Germany EVO
Finmeccanica Non-financial Autos & Industrials Italy FME
GKN Holding Non-financial Autos & Industrials UK GKN
Glencore Non-financial Autos & Industrials Switzerland GLC
Koninklijke DSM Non-financial Autos & Industrials Netherlands DSM
Air Liquide Non-financial Autos & Industrials France AIR
Lanxess Non-financial Autos & Industrials Germany LAX
Linde Non-financial Autos & Industrials Germany LIN
Peugeot Non-financial Autos & Industrials France PEU
Renault Non-financial Autos & Industrials France REN
Rentokil Initial Non-financial Autos & Industrials UK REI
Rolls-Royce Non-financial Autos & Industrials UK ROR
Sanofi-Aventis Non-financial Autos & Industrials France SAA
Siemens Non-financial Autos & Industrials Germany SIE
Stora Enso Oyj Non-financial Autos & Industrials Finland SEO
Solvay Non-financial Autos & Industrials Belgium SOL
ThyssenKrupp Non-financial Autos & Industrials Germany THK
UPM-Kymmene Oyj Non-financial Autos & Industrials Finland UPM
Valeo Non-financial Autos & Industrials France VAL
Vinci Non-financial Autos & Industrials France VIN
Volkswagen Non-financial Autos & Industrials Germany VOL
Wendel Non-financial Autos & Industrials France WEN
Accor Non-financial Consumers France ACC
Electrolux Non-financial Consumers Sweden ELE
Auchan Non-financial Consumers France AUC
Alliance Boots Non-financial Consumers UK ALL
Carrefour Non-financial Consumers France CAR
Casino Guichard Non-financial Consumers France CAG
Compass Non-financial Consumers UK COM
Danone Non-financial Consumers France DAN
Lufthansa Non-financial Consumers Germany LUF
Diageo Non-financial Consumers UK DIA
Experian Finance Non-financial Consumers UK EXF
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(Table A.2 continued)

Entity Name Sector Sub-Sector Country Name Code
Henkel Non-financial Consumers Germany HEN
Ladbrokes Non-financial Consumers UK LAD
Imperial Brands Non-financial Consumers UK IMB
ISS Global Non-financial Consumers Denmark ISS
J Sainsbury Non-financial Consumers UK JSA
Kering Non-financial Consumers France KER
Kingfisher Non-financial Consumers UK KIN
Koninklijke Ahold Delhaize Non-financial Consumers Netherlands AHO
Koninklijke Philips Non-financial Consumers Netherlands PHI
LVMH Non-financial Consumers France LVM
Marks & Spencer Non-financial Consumers UK M&S
Metro Non-financial Consumers Germany MET
Nestlé Non-financial Consumers Switzerland NES
Next Non-financial Consumers UK NEX
PernodRicard Non-financial Consumers France PER
Safeway Non-financial Consumers UK SAF
Svenska Cellulosa Non-financial Consumers Sweden SCE
Swedish Match Non-financial Consumers Sweden SWM
Tate & Lyle Non-financial Consumers UK T&L
Tesco Non-financial Consumers UK TES
Unilever Non-financial Consumers UK UNI
BP Non-financial Energy UK BP
Centrica Non-financial Energy UK CEN
EON Non-financial Energy Germany EON
Edison Non-financial Energy Italy EDI
Energias de Portugal Non-financial Energy Portugal EDP
Electricité de France Non-financial Energy France EDF
ENBW Non-financial Energy Germany ENB
ENEL Non-financial Energy Italy ENE
ENGIE Non-financial Energy France ENG
Fortum OYJ Non-financial Energy Finland FOY
Gas Natural SDG Non-financial Energy Spain SDG
Iberdrola Non-financial Energy Spain IBE
National Grid Non-financial Energy UK NGR
Royal Dutch Shell Non-financial Energy Netherlands RDS
RWE Non-financial Energy Germany RWE
Statoil Non-financial Energy Norway STA
Total Non-financial Energy France TOT
United Utilities Non-financial Energy UK UNU
British Telecom Non-financial TMT UK BTE
Deutsche Telekom Non-financial TMT Germany DTE
Hellenic Telecom Non-financial TMT Greece HTE
ITV Non-financial TMT UK ITV
Nokia Non-financial TMT Finland NOK
Orange Non-financial TMT France ORA
Pearson Non-financial TMT UK PEA
Publicis Non-financial TMT France PUB
Relx Non-financial TMT UK REL
St Microelectronics Non-financial TMT Switzerland STM
Ericsson Non-financial TMT Sweden ERI
Telefonica Non-financial TMT Spain TEF
Telekom Austria Non-financial TMT Austria TEA
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(Table A.2 continued)

Entity Name Sector Sub-Sector Country Name Code
Telenor Non-financial TMT Norway TEL
Telia Non-financial TMT Sweden TEI
Vivendi Non-financial TMT France VIV
Vodafone Non-financial TMT UK VOD
Wolters Non-financial TMT Netherlands WOL
WPP Non-financial TMT UK WPP
Aegon Financial Netherlands AEG
Allianz Financial Germany ALL
Generali Financial Italy GEN
Aviva Financial UK AVI
AXA Financial France AXA
Hannover Rueck Financial Germany HRE
Munich RE Financial Germany MRE
Swiss RE Financial Switzerland SRE
Zurich Insurance Financial Switzerland ZIN
Dexia Financial Belgium DEX
BNP Paribas Financial France BNP
Crédit Agricole Financial France CAG
Société Générale Financial France SOG
Deutsche Bank Financial Germany DBA
Commerzbank Financial Germany COB
Bank of Ireland Financial Ireland BOI
Intesa Sanpaolo Financial Italy INS
Banca Monte Di Paschi Financial Italy BMP
Banca Popolare Financial Italy BPO
Unicredit Financial Italy UNI
Mediobanca Financial Italy MED
ING Financial Netherlands ING
Rabobank Financial Netherlands RAB
Banco Comercial Port. Financial Portugal BCP
Santander Financial Spain SAN
BBVA Financial Spain BBV
Royal Bank of Scot. Financial UK RBS
HSBC Bank Financial UK HSB
Barclays Bank Financial UK BAB
Lloyds Bank Financial UK LLB
Standard Chartered Financial UK SCH
UBS Financial Switzerland UBS
Credit Suisse Financial Switzerland CSU
Austria Sovereign Austria AUT
Belgium Sovereign Belgium BEL
France Sovereign France FRA
Germany Sovereign Germany GER
Ireland Sovereign Ireland IRE
Italy Sovereign Italy ITA
Netherlands Sovereign Netherlands NED
Portugal Sovereign Portugal POR
Spain Sovereign Spain ESP
UK Sovereign Spain UK
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Table A.3: Summary statistics of CDS data by country

Panel A: CDS non-financial corporations
Raw returns Idiosyncratic returns

Country Entities Mean Std.
dev.

Min Max Mean Std.
dev.

Min Max

Austria 1 0.00 3.12 -24.76 25.16 0.00 2.03 -12.76 18.34
Belgium 1 0.04 3.33 -24.99 27.46 0.00 2.20 -13.46 26.59
Denmark 1 -0.04 3.65 -83.40 38.09 0.00 3.25 -82.86 32.30
Finland 4 0.04 3.43 -83.81 37.77 0.00 2.61 -84.21 33.87
France 24 0.02 3.34 -58.90 60.05 0.00 2.32 -59.10 56.89
Germany 19 0.02 3.41 -33.47 103.03 0.00 2.36 -32.10 104.47
Greece 1 0.06 4.68 -33.14 44.11 0.00 3.69 -26.79 44.37
Italy 4 0.05 3.71 -53.65 33.74 0.00 2.73 -52.62 31.62
Netherlands 6 3.29 0.032 -77.98 80.75 0.00 2.41 -80.11 78.10
Norway 2 0.02 3.14 -25.62 29.90 0.00 2.36 -16.90 26.71
Portugal 1 0.06 4.13 -39.00 29.34 0.00 2.76 -29.63 19.28
Spain 3 0.03 4.03 -39.99 30.53 0.00 2.64 -19.22 30.17
Sweden 6 0.02 2.96 -28.86 51.84 0.00 2.11 -24.43 51.71
Switzerland 6 0.02 3.57 -44.11 44.11 0.00 2.60 -36.85 38.27
UK 30 0.03 3.39 -127.01 140.46 0.00 2.56 -129.97 139.87
Panel B: CDS financial institutions

Raw returns Idiosyncratic returns
Country Entities Mean Std.

dev.
Min Max Mean Std.

dev.
Min Max

Belgium 1 0.11 4.47 -35.06 86.61 0.00 4.23 -34.17 86.82
France 4 0.05 4.80 -43.96 62.68 0.00 3.24 -22.58 42.14
Germany 5 0.05 4.96 -47.63 61.34 0.00 3.32 -37.74 40.60
Ireland 1 0.08 5.84 -86.90 60.45 0.00 5.61 -86.73 58.79
Italy 6 0.08 4.76 -53.99 75.37 0.00 3.38 -53.62 55.22
Netherlands 3 0.07 4.44 -38.22 67.65 0.00 3.38 -32.84 62.16
Portugal 1 0.10 4.31 -35.41 40.67 0.00 3.40 -17.93 47.57
Spain 2 0.05 4.79 -45.72 32.54 0.00 3.07 -16.60 20.17
Switzerland 4 0.05 4.51 -41.03 56.25 0.00 3.06 -33.50 30.57
UK 6 0.06 4.80 -70.69 65.79 0.00 3.44 -61.27 56.97
Panel C: CDS sovereigns

Raw returns Idiosyncratic returns
Country Entities Mean Std.

dev.
Min Max Mean Std.

dev.
Min Max

Austria 1 0.09 10.42 -200.14 153.14 0.01 10.17 -197.03 153.23
Belgium 1 0.06 4.46 -28.76 30.59 0.00 3.93 -28.04 31.58
France 1 0.07 10.17 -200.14 153.14 0.00 9.97 -197.37 153.24
Germany 1 0.07 9.45 -133.50 154.04 0.01 9.27 -133.93 154.23
Ireland 1 0.08 16.40 -208.63 207.18 0.00 16.33 -208.23 207.81
Italy 1 0.07 4.21 -36.27 33.12 0.00 3.55 -33.11 25.59
Netherlands 1 0.10 6.25 -65.92 65.92 0.00 6.12 -65.35 69.46
Portugal 1 0.11 4.60 -51.27 27.99 0.00 4.05 -34.40 25.59
Spain 1 0.06 5.24 -57.05 57.05 0.00 4.87 -58.66 56.74
UK 1 0.09 4.44 -40.54 93.60 0.00 4.21 -40.90 92.17

Note: The table shows descriptive statistics of CDS raw and idiosyncratic returns by country and sector. Raw CDS returns
have been demeaned prior to computation of the common and idiosyncratic returns.
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C. Additional results for cross-sectoral connectedness

Figure A.3: Dynamic cross-sectoral connectedness, net contribution
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Note: The above figure shows aggregate net contribution of the financial and sovereign
sector, respectively, to the non-financial sector in a dynamic framework (rolling window
of 200 days). Net contribution of the financial sector is “aggregate connectedness from
financial institutions to non-financial corporations” minus “aggregate connectedness from
non-financial corporations to financial institutions”. Net contribution of the sovereign sector
is “aggregate connectedness from sovereigns to non-financial corporations” minus “aggregate
connectedness from non-financial corporations to sovereigns”. Each measure is normalized
by the number of entities so that the graph shows the average impact for each sector.
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Figure A.4: Dynamic cross-sectoral connectedness, sub-sectors
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Note: The above figure shows the results from calculating time-varying parameters of the connectedness
measure aggregated by sub-sectors, using a rolling-window of 200 days. Each measure is normalized by the
number of entities so that the graph shows the average impact for each sub-sector.
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D. Properties of elastic net parameters

To provide insights into the properties of the elastic net parameters α and λ in the dynamic

framework we plot their distribution over the sample period for different window sizes (150,

200, and 250 days) in Figure A.5. The mixing parameter α does not fluctuate much over the

sample period, remaining in the range between 0.1 and 0.3 for the most part, which is close

to the LASSO estimator (α = 0). The distribution of α is very similar across the different

window sizes, indicating that the mixing parameter is little affected by the choice of window

size. There are more dynamics at work for the penalty tuning parameter λ (Figure A.5(b)).

It is larger at the beginning of the sample but then declines with the onset of the global

financial crisis, suggesting that the larger degree of interconnectedness after the crisis start

leads the elastic net estimator to penalize the parameters less to find the optimal model fit.

The lowest values for λ are observed for the peak of the sovereign debt crisis (2010-11), which

is also the period for which our measure of system-wide connectedness (Figure 7) shows the

highest estimates. As for the impact of the window size on λ, we observe that, in general, a

smaller window leads to a slightly larger penalty (higher values for λ).

E. Granger-causality network

We implement the Granger-causality approach to a large-dimensional setting by defining

connectedness as the number of short-run spillover coefficients in the VAR that are not

shrunk toward 0 by elastic net.1 The results for cross-sectoral connectedness in the static

(full-sample) framework based on the Granger-causality approach are reported in Figure A.6.

It shows that the differences across sectors are substantially less pronounced compared to the

variance decomposition approach, suggesting that the unweighted (i.e., zero vs. non-zero)

Granger-causality approach may mask important dependencies among variables.

Figure A.7 shows the resulting system-wide connectedness for the dynamic framework

1Note that we do not consider significance of the coefficients since direct model inference after variable
selection via LASSO or elastic net is not valid, because the p-values are distorted since the variables that
are selected will tend to be those that are significant (Tibshirani et al. 2016).
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Figure A.5: Distribution of elastic net parameters for different window sizes

(a) Mixing parameter α

(b) Penalty tuning parameter λ

Note: Figure (a) shows the evolution of the elastic net mixing parameter α
for the dynamic VAR framework over the sample period for different window
sizes in the rolling-regression. Figure (b) depicts the corresponding values
(log scale) for the penalty tuning parameter λ. Each observation for α and λ
represents the average value across all 152 VAR equations for each window.
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Figure A.6: Static Granger-causality cross-sectoral network connectedness

Note: The figure shows the share of Granger-causality linkages between sectors, i.e.
it presents the share of non-zero links relative to the total number of possible links
across sectors.

Figure A.7: Dynamic Granger-causality connectedness

Note: The figure shows the share of Granger-causality linkages between CDS entities, i.e.
it presents the share of non-zero links relative to the total number of possible links. The
underlying VAR is estimated with a rolling-window of 200 days. The above figure is the
analogue to the system-wide connectedness measure depicted in Figure 7 which is based
on variance decompositions.
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(200 days rolling-window), which depicts the percentage of non-zero links for each window.

It is thus the Granger-causality analogue to Figure 7. A strong increase in connectedness

is visible in the run-up to the global financial crisis, while after the crisis Granger-causality

links indicate a number of fluctuations but with no clear discernible trend. This suggests

that the Granger-causality measure is lacking the granularity, in particular compared to

the variance decomposition approach pursued in this paper, to serve as a helpful tool in

monitoring systemic risks in quasi real-time.

F. Robustness checks results

We conduct robustness checks for the static (full-sample) framework for (i) different forecast

horizons and (ii) a 2-factor specification. Figures A.8-A.11 depict the visualized networks

resulting from these alternative model specifications. It is shown that changing the forecast

horizon to 5, 15 or 20 days has very little impact on the network structure as the visual-

izations look almost identical. The 2-factor specification leads to more visible changes in

the network structure, which is not surprising given that the additional factor removes cor-

relation from the variables in the sample. However, the main findings remain qualitatively

similar: we observe a strong clustering of sectors and a dominant financial sector which is

an important transmitter of shocks to non-financial corporations. Beyond visual inspections

we evaluate robustness in a more formal way by computing bivariate correlation coefficients

for the rankings of the most important senders/receivers between the baseline model and

alternative specifications (Table A.4). The correlation coefficients are all statistically sig-

nificantly positive and all except one are very close to 1, thus indicating that the network

structure does not change substantially if alternative model specifications are chosen.

For the time-varying framework we focus on the sensitivity of results to different window

sizes. Figure A.12 reports the measure for system-wide connectedness using windows of 150

days, 200 days (baseline) and 250 days. We observe that the dynamic pattern of the system-

wide connectedness measures are comparable across window sizes. For example, both the

Lehman bankruptcy and the outbreak of the European sovereign debt crisis are captured
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by all window specifications. As expected, a smaller window size produces a slightly more

sensitive measure as reflected in larger spikes and drops, in particular for the window size

of 150 days. Moreover, a change in the window size results in a small level shift of the

system-wide connectedness measure in that a smaller window size produces on average a

slightly larger degree of connectedness at each point in time.

Figure A.8: Network with forecast horizon h = 5
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Figure A.9: Network with forecast horizon h = 15

Figure A.10: Network with forecast horizon h = 20
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Figure A.11: Network based on 2-factor model

Table A.4: Rank correlation coefficients between baseline model (1 factor, 10 days forecast
horizon) and alternative specifications

(a) Financial → Non-Financial

Ranking of Senders Ranking of Receivers
Forecast horizon

5 days 0.997∗∗∗ 0.997∗∗∗

15 days 0.981∗∗∗ 0.996∗∗∗

20 days 0.997∗∗∗ 0.997∗∗∗

2 common factors 0.812∗∗∗ 0.439∗∗∗

(b) Sovereign → Non-Financial

Ranking of Senders Ranking of Receivers
Forecast horizon

5 days 0.987∗∗∗ 0.989∗∗∗

15 days 1.000∗∗∗ 0.993∗∗∗

20 days 0.987∗∗∗ 0.989∗∗∗

2 common factors 0.988∗∗∗ 0.809∗∗∗

Note: The table reports rank correlation coefficients for rankings of receivers/senders based on different specifications of the
underlying VAR model. The comparison is always the ranking resulting from the baseline model with one common factor
and a 10 days forecast horizon as reported in Table 2. A value of 1 indicates that the ranking is exactly equal between the
baseline model and the alternative model.
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Figure A.12: Dynamic system-wide connectedness for different window sizes

(a) 150 days

(b) 200 days

(c) 250 days
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