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ABSTRACT

This paper investigates how the asset-return variance risk premium changes leverage. I find

that the premium lowers leverage by increasing risk-neutral bankruptcy probability and costs

in a model where asset returns have stochastic variance with risk premium. Empirically, the

model calibrations verify significant reduction in optimal leverage, closer to observed leverage

than the model without the premium. In model-free regressions, I also document negative

correlation between leverage and the variance premium. The most negative correlation is

among investment-grade firms with low asset beta and historical variance but high variance

premium because their assets have high exposure to market variance premium.

Keywords: Variance Risk Premium, Capital Structure, Optimal Leverage.

JEL classification: G32, G33, G12.
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I. Introduction

It is not yet clear how risky time-variations in asset variance that create the variance risk

premium(s) (VRP) impact leverage. This question is important because asset variance has

a first-order effect on leverage: first, high asset variance that measures business uncertainty

reduces leverage because variance increases debt costs, e.g. overhang and bankruptcy costs.

Second, return variance of an underlying security directly impacts option prices. Debt and

equity are options on the firm assets. The firm assets’ variance directly impacts debt and

equity because their underlying security is the firm assets (Merton, 1974). VRP is the

spread between risk-neutral (RN) and historical variances created by risky time-variations

in variance. Since variance directly impacts option prices, VRP also has a first-order impact

on them.1 If VRP of the underlying security has a critical role in pricing options, then,

analogically, asset VRP has a critical role in pricing debt and equity. This critical role also

implies that asset VRP impacts leverage. But, the dynamic and direction of any potential

impact is not documented as asset VRP is absent in most capital structure studies (see

Strebulaev and Whited (2011) for a review2).

To answer the question, this paper investigates the effect of asset VRP on leverage by

addressing two challenges: first, it is complicated to theoretically consider risky variance

in the already-complex capital structure models (Huang and Huang, 2012). Hence, the

relationship between VRP and leverage remains unclear which leads to the second challenge:

it is not obvious empirically which firms’ leverage is affected by asset VRP. This paper

proposes that asset returns have VRP and, therefore, RN asset variance is greater than

1See Christoffersen, Heston, and Jacobs (2013), van der Ploeg (2006), and Christoffersen and Diebold

(2000) for derivative studies. Historical variance is also called “physical”, “realized”, or “P-measure” variance.

I pick this term because historical variance usually measures physical variance. RN variance is also called

“risk-adjusted”, “Q-measure” or “pricing measure” variance. Asset variance is short for asset-return variance.

2See also Sundaresan (2013), Bhamra, Kuehn, and Strebulaev (2010), Broadie, Chernov, and Sundaresan

(2007) and Anderson and Sundaresan (1996) where historical and RN asset variances are identical.
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historical variance. I find that asset VRP negatively impacts leverage and, in the cross-

section of the firms, the strongest negative relationship is for investment-grade firms. VRP

reduces the optimal leverage significantly, on top of the variance level itself, because the

firms borrow conservatively to hedge against the risk of future increases in variance.

Theoretically, this paper introduces the concept of hedging asset VRP to determine

leverage in corporate finance. Asset VRP recently has been used to only explain some asset-

pricing puzzles. Choi and Richardson (2016) report time-varying asset variance based on

market data such as equity variance and Barras and Malkhozov (2016) show that VRP exists

and measure it both in options and equity markets. I relax the deterministic asset variance

assumption in the earlier studies by considering asset VRP. I only focus on trade-off theory

in Brennan and Schwartz (1978)’s extended settings, while the results are complementary

to other capital structure theories. Without VRP, the model nests Leland (1998)’s dynamic

capital structure that has optimal default, leverage, and debt rollover but there is no upward

restructuring and transaction costs. The model with VRP results in tractable formulas

for debt, equity, and optimal default policy, which makes the optimal leverage calculations

simpler. The model shows that high VRP increases RN default probability. High RN default

probability reduces tax benefits and increases debt costs, which lowers optimal leverage.

By introducing the missing factor of the risk premium for asset variance (proxied by

VRP), this paper helps to reducing an empirical paradox: contrary to earlier theoretical

predictions, empirical studies observe that “large, liquid, profitable firms with low expected

distress costs use debt conservatively” (Graham, 2000). Historical asset variance has a

key role in the observation because underleveraged firms usually have low historical asset

variance. This implies low expected distress costs. Low distress costs provide an opportunity

to have more debt, which these firms seemingly do not utilize. However, most of these capital

structure studies consider asset variance to be deterministic3 and ignore variance risk. Since

3See also Denis (2012), Welch (2004) or Frank and Goyal (2007) for a broader analysis. Without VRP,

this paper’s calibrations are limited to historical variance and collapse to earlier models that propose higher
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rating agencies consider profitability and historical asset risk, I use ratings to highlight such

underleveraged firms. Investment-Grade (IG) firms are large and profitable and they have

the lowest leverage and historical asset variance. Therefore, the largest difference between

actual and proposed leverage is for IG firms. Between 2002 and 2015, for example, an

average IG firm has leverage close to 37% but the model without VRP predicts leverage

close to 53%. However, with VRP, the model yields lower optimal leverage that is closer

to observed leverage: in the case of IG firms, the model implies 38% leverage on average

because of their high asset VRP. Hence, VRP is an important missing piece in the capital

structure analysis.

This paper also analyzes why RN variance remains relatively high while historical variance

is low for IG firms. The spread in variance, VRP, widens for IG firms because they hold

asset portfolios with low idiosyncratic variance and high exposure to market variance.4 With

deterministic market variance and no VRP, only the level of the market variance and fear

of direct shocks to market reduces leverage via asset beta. Chen, Xu, and Yang (2013) and

Schwert and Strebulaev (2014) document several effects of systematic variance level on the

capital structure. This paper complements these studies by proposing high VRP as a new

effect of exposure to market variance on leverage; with VRP, the shocks to asset variance

are additional to the direct shocks to asset return. Idiosyncratic variance of assets does not

change asset beta. But, idiosyncratic variance cushions the market variance shocks and VRP

to be transferred to the firm. While a firm may have low asset beta and total variance, it

chooses conservative leverage to hedge exposure to market VRP due to low idiosyncratic

asset variance and high asset VRP. In the case of IG firms, relatively high RN variance from

the exposure to market VRP lowers IG firms’ leverage more than other firms’ leverage.

optimal leverage for the firms compared to actual leverage.

4Possible explanation that requires further research is holding a large and diverse portfolio of the assets.

Idiosyncratic variance is also called diversifiable variance. Market variance is also called systematic or non-

diversifiable variance.
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Empirically, I test the theoretical implications and verify that the assets’ VRP reduces

optimal leverage, particularly for IG firms. Between 1997 and 2015, I calibrate the model to

data using a method similar to Jones, Mason, and Rosenfeld (1984) and Huang and Huang

(2012). The calibrations without VRP do not agree with observed leverage because the

model is misspecified from ignoring VRP. The model that only considers historical asset

variance concludes that IG firms have the highest underleverage. I also find that IG firm’s

underleverage directly correlates with their unexplained credit premium, or credit premium

puzzle. This finding complements the studies showing that IG firms contribute the most to

the credit premium puzzle, e.g. Eom, Helwege, and Huang (2004). However, the model with

VRP yields leverage which is much closer to observed leverage. The results are robust to

calibrations on individual firms in each rating class following a method similar to Schaefer

and Strebulaev (2008) for a shorter period between 2002 and 2015.5 Model-free regressions

with controls for other factors, such as cash holdings and profitability, also produce the

two results: a) VRP proxy has negative correlation with target leverage of the firms, which

relatively has stronger negative effect than profitability. This result supports the importance

of VRP-leverage relationship because profitability has first-order effect on leverage (Titman

and Wessels, 1988), b) VRP has stronger effect on IG firms than an average firm.

Finally, in a supporting analysis, while IG firms have the lowest asset beta and historical

variance, this paper verifies that IG firms’ asset variance has the largest correlation and

exposure to market variance among all rated firms. Since market variance is priced, high

correlation explains their high asset VRP. Robust calibrations with this exposure also support

the earlier results. In sum, the empirical results confirm the propositions: asset VRP reduces

leverage and, consequently, underleverage, where the highest VRP belongs to IG firms.

This paper contributes to the earlier empirical work on firm leverage in three ways. First,

5Bond-yield data in the calibrations on the firm-years is limited to the 2002-2015 period, while data for

average representative firms in ratings is available for longer time from FRED, between 1997 and 2015.
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it adds asset VRP as a factor to determine optimal leverage.6 The calibrations with VRP

produce results closer to observed leverage than calibrations excluding VRP. The regressions

also show that asset VRP is as important as profitability in determining the target leverage

for all the firms. Second, it shows how ratings highlight firms with more severe underleverage

and connect underleverage to the credit-spread puzzle. Chen (2010) also links underleverage

and the credit premium puzzle by analyzing their relationship to common risk factors in

time-series at the macro level. However, this paper extends the analysis to the cross-section

of the firms and determines the categories of the firms to which the puzzles are relevant.

Without VRP, this paper finds almost one-to-one correlation between underleverage and

credit-spread puzzles across IG firms. Third, I propose that asset VRP and hedging the

exposure to market variance risk complement credit-score targeting as identified by Kisgen

(2009) and Kisgen (2006) in determining the capital structure of the rated firms.

This paper also makes three contributions to the literature on structural models and

optimal capital structure. This paper is the first, to my knowledge, to extend the work on

hedging variance risk from asset pricing7 to capital structure both theoretically and empi-

rically. Some structural models suggest that a dynamic capital structure can explain the

leverage choice of the firms. However, they have difficulty explaining the observed abnormal

low leverage because they are limited to the constant-variance assumption. This paper re-

laxes the constant-variance assumption and finds that VRP reduces optimal leverage through

increasing RN default probability and hedging variance risk. Second, using a framework si-

milar to Tahani (2005), I derive approximate closed-form solutions for asset prices and the

default policy with stochastic variance. The tractable formulas are simpler to derive compa-

red to the perturbation method suggested by Fouque, Sircar, and Solna (2006).8 Hence, this

6List of the other factors are available in many studies, such as Öztekin (2015), Fan, Titman, and Twite

(2012), Graham and Leary (2011), Frank and Goyal (2009), and Rajan and Zingales (1995).

7For example, see Campbell, Giglio, Polk, and Turley (2015), Garlappi and Yan (2011) and Campbell,

Hilscher, and Szilagyi (2008).

8McQuade (2013) and Barsotti (2012) also recently use the perturbation method. Ericsson, Elkamhi,
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paper’s method technically makes it easier and possible to calculate optimal leverage because

the closed-form is used for the optimal default. Third, this paper adds a missing factor and

model misspecification to the earlier literature concerning the sources of underleverage, such

as macro conditions (Korajczyk and Levy, 2003) or errors in tests (Strebulaev, 2007). I con-

firm that ignoring VRP in a constant-variance framework implies puzzling higher optimal

leverage than observed leverage and, thus, the underleverage.

II. The Model

Let’s consider a firm with unlevered-asset9 return process that follows Geometric Brownian

with stochastic variance:

(1) P :


dν
ν

= (µ− δ)dt+
√
V dW p

1

dV = κ(θ − V )dt+ σ
√
V dW p

2

Q :


dν
ν

= (r − δ)dt+
√
V dW1

dV = λ(θ∗ − V )dt+ σ
√
V dW2,

where P is physical measure, Q is risk-neutral measure, µ is the return drift, δ is the payout

rate of cash or leak in the cashflows, V is variance,
√
V is volatility, κ is the mean-reversion

speed, σ is variance’s volatility, θ is the mean variance (long-run or long-term variance), r

is the risk-free rate, θ∗ is the RN mean variance, and λ is the RN speed of mean-reversion.

W1 and W2 are independent Brownian motions under Q and W p
1 and W p

2 are independent

Brownian motions under P (see Appendix A for a description of all variables). W p
1 and W1

are direct shocks to asset return. W p
2 and W2 are shocks to variance.

With stochastic variance, Q-measure is not unique and this paper assumes that the firm’s

asset-return process under Q is a process similar to Heston (1993) where θ∗ = κθ
λ

. Cox,

Ingersoll, and Ross (1985) present the general equilibrium model behind the processes. The

and Du (2011) use numerical integration.

9Unlevered asset value, ν, is present value of all future asset cash flows (see Online Appendix 1 for

details).
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difference between the risk-neutral and physical mean-reversion speeds (λ − κ) represents

VRP.10 If hypothetically one could have invested on variance as a security, VRP is intuitively

the return premium of this security, the spread between physical and RN returns. VRP is

unitless and negative (λ < κ) which implies variance’s mean under the pricing measure

is higher than the historical mean. Carr and Wu (2009) and Bakshi and Kapadia (2003)

report empirical evidence on negative VRP. Negative VRP holds because intuitively the

risk-averse agents dislike risky variance and consider a higher RN mean for variance when

variance is stochastic with priced risk. For example, no VRP sets RN variance equal to

historical variance. This paper reports the absolute value of VRP in the calibrations. Similar

to McQuade (2013), Stein and Stein (1991) and Hull and White (1987), variance is not

asymmetric for the asset returns, Corrasset(
dν
ν
, dV ) = 0, which helps to keep the model

tractable. Despite this assumption, the model replicates asymmetric stock variance for the

equity process (Correquity < 0) as a stylized fact in the markets (see Appendix B).

A. VRP and Market Variance Risk

Let’s assume that market variance has priced risk with the following process:

(2)

 P : dVs = κs(θs − Vs)dt+ σs
√
VsdW

p
sys

Q : dVs = λs(θ
∗
s − Vs)dt+ σs

√
VsdWsys

θ∗s = κsθs/λs,

V RPs = λs − κs,

where Vs is market variance, κs is market variance’s mean-reversion speed and θs is mean

market variance in physical measure. σs is volatility of market variance, λs is market vari-

ance’s mean-reversion speed under pricing measure, θ∗s is mean market variance in pricing

measure, and V RPs is market VRP. W p
sys and Wsys respectively are variance shocks under

physical and RN measures. For the firm, total variance in Equation 1 breaks down into

10Online Appendix 2 describes more details about the underlying economic assumptions such as risk

premiums (µ− r and λ− κ), and why λ− κ represents VRP.
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systematic priced variance and idiosyncratic variance:

(3)

P :


dν
ν

= (µ− δ)dt+
√
bVsdW

p
s +
√
VidW

p
i

V = Vi + bVs, dV = bdVs,

β =
√
b, α = 1− VI

V
, κ = ακs,

σ = σs
√
αb, θ = bθs/α,

Q :


dν
ν

= (r − δ)dt+
√
bVsdWs +

√
VidWi

V = Vi + bVs, dV = bdVs,

λ = αλs, θ∗ = bθ∗s/α,

θ∗ = κθ/λ, V RP = αV RPs,

where Vi is constant idiosyncratic variance, β is asset beta, and b is a positive constant.

α isexposure and mean correlation of asset variance with market variance which matches

proportional systematic variance. W p
i and Wi respectively are idiosyncratic shocks under

physical and RN measures independent from W p
s and Ws which are shocks to market. While

it has no effect on asset beta which transfers market-return shocks, idiosyncratic variance

reduces the impact of market variance shocks and VRP to be transferred to the firm.11

If I shut down the stochastic variance and its priced risk, the formulas collapse into

a model similar to Strebulaev (2007). When market variance is deterministic and has no

priced risk, only the market variance level would affect the firms’ leverage decision via asset

beta and total variance. But, if market variance has priced risk, having proportionally high

asset-return exposure to market variance makes a firm more likely to have high asset VRP:

while market variance may remain low, market VRP can be high due to uncertain future

of market variance. The VRP channel complements the direct effect of exposure to market-

return shocks suggested by the earlier studies through beta. With asset VRP, the assets are

additionally exposed to the variance shocks. Hence, RN asset variance and asset VRP also

depend on the exposure to market variance.

There is no qualitative difference between decomposing variance or only using total va-

riance. Therefore, I abstract from the decomposition for brevity in the derivations and only

present the model and calibrations with total variance using Equation 1.

11Table 15 in Online Appendix 3 has a numerical example based on empirical values.
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B. Capital Structure

The firm with unlevered assets is all equity and optimally recapitalizes some equity with debt.

For simplicity, the firm faces no information asymmetry and agency costs as the manager has

aligned objectives with the shareholders. Unlevered asset value is not affected by financial

decisions and financial manager also cannot control the business risk of the firm, V , which

is exogenously imposed by the business environment. Based on the classical framework of

Modigliani and Miller (1958), tax savings from interest payments, default costs, and debt

rollover are the only frictions. The only effect of VRP is on optimal default policy and RN

default probability that affects the value for tax savings and default costs. The levered value

of the firm is the unlevered value plus the expected net debt benefits (tax savings of interests

less the costs of bankruptcy). The levered firm continuously issues and rollovers debt with

infinite maturity. But, average actual debt maturity is M = 1/m because the firm replaces

old perpetual debt at a continuous rate m by issuing new perpetual debt with coupon c and

face value p. The firm effectively has outstanding debt with coupon payments C and face

value P at any point of time after issuance where p = mP, c = mC. The coupon payments

symbolically represent interest expenses of the firm. Due to the rollover, the continuous debt

service is the total coupon rate, C, plus the net partial principal repayment, mP . The debt

rollover has no transaction costs but creates extra continuous debt service equal to mP .

After recapitalization, shareholders decide when to file for bankruptcy. They pick a

boundary, L. For the asset value below L, they file for bankruptcy because there is no value

in serving debt anymore. Shareholders fix the boundary for a period, T . At the beginning of

each period, they set the boundary and they commit to declare bankruptcy when unlevered

value falls below the boundary. Most of earlier research assumes a constant boundary due to

constant variance. A very large T results in a constant boundary. Changing the boundary

at certain points of time creates a degree of freedom over fixing the boundary for an infinite

horizon. At default, shareholders recover zero value by losing the firm to creditors. Creditors
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liquidate the firm and receive the value of the firm less the bankruptcy costs, (1− ρ)L. ρ is

the proportional bankruptcy cost (PBC) rate.

When equity holders decide about the boundary, they maximize the equity’s value. The

shareholders’ optimization problem requires optimal boundary, L∗, to satisfy the “smooth

pasting” condition (L∗ : ∂Eq
∂ν
|(ν=L∗) = 0, where Eq is equity value function). L∗ maximizes

equity value and ∂Eq
∂L∗ = 0. Smooth-pasting condition assures that equity derivative remains

continuous at L∗ and equal to 0.

Without VRP, the model reduces to the dynamic model in Leland (1998) without optimal

risk shifting, cash-flow-triggered default, transaction costs, and rebalancing. These assump-

tions are not in the model because qualitatively they do not change the results but they add

extra layers of complexity to the model. Even with the current simplifying assumptions,

the model equations are hard to setup and solve because of stochastic variance and require

applying approximations to derive the optimal policies.

The assumption about outstanding debt being perpetual allows for time homogeneity

and formulating equity and debt functions from a recursive relation: given states νnT ∈

[L∗(VnT ),∞] and VnT ∈ (0,∞] at time nT where n = {0, 1, 2...}, shareholders choose optimal

L∗nT as only a function of the current variance state, VnT . Then, at time kT , L∗kT is a function

of VkT while ν is only checked for crossing the boundary L∗kT . The time homogeneity at

decision points means that, if by coincidence VkT = VnT , then optimal policies are the same,

L∗kT = L∗nT , because variance is the only state variable to determine the optimal boundary.

If the firm is not in default, the optimal default boundary is dependent only on variance and

independent from the current value of the firm; shareholders do not change their mind about

the boundary, if the firm value changes. This result has already been used in previous works,

such as Leland (1994) and Leland and Toft (1996), for constant variance cases.12 Figure 1

shows the structure of the model.

Insert Figure 1 about here.

12Proposition 1 in Online Appendix 4 shows that the same result is valid for a more general case.
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Table 1 compares the model with some of the studies and highlights model features.

For example, Hsu, Sa-Requejo, and Santa-Clara (2010) use stochastic boundary, but it has

just random variations without an underlying factor. This paper considers stochastic asset

variance as the underlying cause for time-varying optimal default boundary. Ericsson et al.

(2011) show the effect of asset VRP on credit risk and McQuade (2013) analyzes asset VRP

and Fama-French factors. This paper extends their work from asset pricing into the capital

structure using a novel approximation technique which allows me to find optimal leverage

and determine the effect of asset VRP on leverage.

Compared to numerical integration in Ericsson et al. (2011), the approximation met-

hod provides direct formulas for debt and equity. Without the formulas, optimal leverage

calculations require 3 levels of numerical calculations: calculating optimal leverage requires

the calculation of optimal default which, itself, depends on calculation of debt and equity

values. Basically, the calculations of debt and equity values add one layer of numerical com-

plexity. However, this paper’s formulas allow to even derive semi-closed form for optimal

default and, only optimal leverage requires numerical calculation which substantially redu-

ces the numerical complexity. Perturbation method based on Fouque et al. (2006) requires

fast mean-reversion speed to deliver accurate estimation. However, the calibrations in this

paper show that volatility has very slow mean-reversion speed, specially under RN measure.

This slow mean-reversion speed may reduce the accuracy of the perturbation method. In

this paper, I extend the technique in Romano and Touzi (1997) to calculate debt and equity

values, which is less sensitive to mean-reversion speed. The formulas perform reasonably

and converge13, when compared to simulation results.

Insert Table 1 about here.

13See Online Appendix 5
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C. Securities valuation

C.1. Debt valuation

Perpetuity of debt allows writing the formula in recursive form, given time homogeneity.At

the beginning of each period, the debt value, d, is :

(4)
d(ν0, V0) = EQ

(
c+mp
m+r

+ (1− Iτ<T )
[
e−rT (d(νT , VT )− c+mp

m+r
)
]
+

Iτ<T

[
e−rτ ((1− ρ)mL− c+mp

m+r
)
])

where τ is default time and Iτ<T is 1, if default happens prior to time T . The value of

debt is simply the cash flow from coupons and debt rollover until the holder re-evaluates

it at time T or receives the recovery value at default. The first term is the present value

of risk-free perpetuity with debt retirement. The second term is the present value of debt

at time T given no default. The final term is the present value of debt in default. The

coupon and face value of outstanding debt has linear relation with coupon and face value of

d (c = mC, p = mP ), which implies d = mD. Using the approach in Romano and Touzi

(1997), I define ζ as ln(ν/L) and future variance, V̂ , as average variance between time 0 and

T. They follow (see Appendix C):

(5)

 dζ = (r − δ − 1
2
V̂ )dt+

√
V̂ dW

V̂ = (
∫ T

0
Vsds)/T

The transformed state variables facilitate the valuation. However, both new variables are

still random. I condition the term inside the expectation operator in Equation 4 on future

variance. Using the conditioning, the debt formula is (see Appendix D.1 for details):

(6)
d = c+mp

m+r
+
(
(1− ρ) mL− c+mp

m+r

)
E(e−Hbζ0)

h =
r−δ− 1

2
V̂√

V̂
Hb =

√
h2+2(r+m)+h√

V̂
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The only random variable is future variance within the expectation operator (the last term

in the equation). Based on the solution for the expectation, debt value is:

(7)

d = c+mp
m+r

+
(
(1− ρ) mL− c+mp

m+r

) (
1− 1

2
(Ab ζ0 −Bb ζ0

2)
)
e−ζ0Ĥb

Ab = Ĥ ′′b .E[(V̂0 − E[V̂0])2], Bb = Ĥb

′2
.E[(V̂0 − E[V̂0])2]

Ĥb = Hb|V̂0=E[V̂0], Ĥ ′b = ∂Hb
∂V̂0
|V̂0=E[V̂0], Ĥ ′′b = ∂2Hb

∂V̂ 2
0

|V̂0=E[V̂0]

There is no available closed-form solution for the future variance moments. Appendix E

derives the formulas for the moments. Taylor expansion up to second order approximates

the expectation term around the expected variance.14 Hull and White (1987) and Sabanis

(2003) have also used a similar approximation technique.

C.2. Equity and Optimal Default Boundary

Similar steps produce the values for the tax benefits and bankruptcy costs of debt (see

Appendix D.2), where tax is the tax rate:

(8) TB(ζ0, V̂0) = tax× C

r
− tax× C

r
E
(
e−H.ζ0

)
, H =

√
h2 + 2r + h√

V̂
,

(9) BC(ζ0, V̂0) = ρLE
(
e−H.ζ0

)

In the contingent-claim framework discussed in Ericsson and Reneby (1998), the expectation

term is the value of a claim that pays $1 at default, or the discounted RN default probability:

(10) E
(
e−H.ζ0

)
' e−ζ0.Ĥ

[
1− 1

2
(Aζ0 −Bζ2

0 )
]

14Online Appendix 5 compares the values from the simulation and approximation results to also show

that the second order is acceptable.
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where all the parameter definitions, such as A and B, and derivations are in Appendix E.

Equity is simply the unlevered value plus the tax benefits less debt and the bankruptcy costs:

(11) Eq(ζ0, V̂0) = ν0 + TB(ζ0, V̂0)−D(ζ0, V̂0)−BC(ζ0, V̂0)

All the valuations depend on the optimal default level. The optimal boundary is:

(12)
∂Eq

∂ν
|(ν=L∗) = 0⇒ L∗ =

C+mP
r+m

(Ĥb + 1
2
Ab)− tax×C

r
(Ĥ + 1

2
A)

1 + (1− ρ)(Ĥb + 1
2
Ab) + ρ(Ĥ + 1

2
A)

Here, the boundary adjusts for asset VRP and nests earlier models: if m is zero and without

VRP, the optimal boundary is very similar to the formula in Leland (1994).

D. Comparative Statics: Optimal Leverage and Default Boundary

The comparative statics show that asset VRP reduces both the optimal default boundary

and leverage. In the statics, the model parameters match the empirical values. Risk-free and

asset payout rates are respectively equal to 5% and 3% to match the historical rates between

1997 and 2015. Variance volatility is 30% to match the standard deviation of variance in

equity data. Historical variance mean-reversion speed, κ, is set to 4 to make sure that the

Feller condition is met similar to Ericsson et al. (2011). The average asset variance is 0.04,

20% squared, close to the asset variance in low-risk firms reported by Elkamhi, Ericsson,

and Parsons (2012). The managers update their decision for boundary every year, T = 1.

Effective tax rate is 25% and debt rollover rate is 10%, which are the tax and minimum

rollover rate used in Leland (1998). The tax rate is lower than conventional 35% to include

personal taxes. PBC rate is in the 30% to 60% range with an average of 45% as calculated

by Glover (2016). Earlier studies may use lower costs, e.g. Bris, Welch, and Zhu (2006)

and Davydenko, Strebulaev, and Zhao (2012), but Glover (2016) argues that earlier low

estimates have selection bias and fixing for the bias increases the bankruptcy costs. Elkamhi

et al. (2012) also estimate 50% cost that includes other early distress costs, such as lost
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customers. For optimal leverage, the decision variable is the amount of debt to borrow, P ,

and maximizes the total levered value of the firm, P : ∂(Eq +D)/∂P = 0. The coupon rate

is set to make the face value of debt, p, match with the market value, d. If both face value

and coupons are optimized, the managers choose 0 face value to avoid debt rollover and the

answer is degenerate; the model collapses into a static model. Finally, the default boundary

is at the optimal level.

VRP decreases the optimal default boundary (see Figure 2). Intuitively, with high VRP,

equity holders are more patient to file for bankruptcy in hopes for getting out of trouble due

to the uncertainty in variance. Equity is analogous to a call option on the assets and call’s

value increases with RN variance of the underlying asset. This relation makes equity holders

more likely to wait because high RN variance implies high value for their call option that

only benefits from the upside risk. Thus, shareholders are more patient when VRP is high,

and they lower the optimal boundary.

Another explanation for the negative effect of VRP on the boundary is through the real-

option theory. In Dixit and Pindyck (2012)’s real-option framework, filing for bankruptcy is

a real option held by shareholders and they compare it with the costs of serving debt (Geske,

1977). Ceteris paribus, an option experiences appreciation when its underlying asset’s VRP

goes up. This principle applies to the real option to default: high VRP increases the value

of holding the real option to default, which reduces optimal default threshold.

The optimal market leverage ratio decreases with high asset VRP in Figure 3. High

VRP implies high RN variance because it represents the relative difference between RN and

historical variances. Even if default boundary is lower for high RN variance, overall, high

RN variance increases RN default probability. Hence, VRP increases the present value of the

bankruptcy costs and lowers the tax benefits, which both reduce optimal market leverage.

These results lead to the following hypothesis:

Hypothesis 1. The asset variance risk premium decreases target leverage, ceteris paribus

(H1).
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Insert Figure 2 about here.

Insert Figure 3 about here.

III. Empirical Analysis

A. Data, puzzles and variance risk

Model calibrations with data show that asset VRP decreases optimal leverage to a level

closer to actual leverage, especially for IG firms. I also compare the contribution of the

model with VRP versus the model without VRP in explaining the empirical trends.

The sample includes matched fiscal year-end financial data of the US firms from Compu-

stat, the ratings from S&P, and equity historical volatilities for 365 days from Optionmetrics.

Data is between 1997 and 2015 due to the availability range for Optionmetrics data. I drop

financial firms (SIC codes 6000-6999), utility firms (SIC codes 4900-4999), non-public firms,

small firm-years with book asset value (AT) below $10 millions and subsidiaries (STKO=1

and 2) since they have different bankruptcy policies (for example, see Luciano and Nicodano

(2014)). Equity market cap is shares times share price. Equity volatility is 365-day standard

deviation of equity returns. The linear interpolation fills equity-volatility time series for

missing data dates, where volatility represents variance with the square-root transformation.

The time series of the US treasury notes as risk-free rate and yield spreads are from Federal

Reserve. The yield data is available for an average rated firm from the Bank-of-America

Merrill-Lynch (BOA-ML) US Corporate Option-Adjusted Spreads (OAS). In each rating,

the spread is between OAS index of all the bonds and the spot risk-free rate. BOA-ML

spreads are available only for the average rated firms (e.g. see Hong and Sraer (2013) that

also use same data). Therefore, this paper calibrates the model to the representative firms

in each category instead of each firm-year data point. Later, in robustness check, I use

firm-year data using a different source and results do not change. The simple averages of
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the firm-years’ characteristics in each rating represent the firms in the rating. The first four

columns of Table 2 show the statistics for all the firm-years in the sample. In data, an

average IG firm’s equity is larger and financial risks are smaller with lower equity volatility,

yield spread, and financial leverage. The trends in data across ratings are similar to earlier

studies such as Huang and Huang (2012). Further discussion about the table follows.

Place Table 2 about here

A.1. Leverage and credit premium without VRP

The calibration results for all the representative firms are also in Table 2. The calibration

without VRP in this paper is standard procedure in the literature (Jones et al., 1984; Scha-

efer and Strebulaev, 2008) (calibration details such as the procedure and formulas are in

Appendix F). In brief, the calibrations adjust asset value and volatility to match model-

implied equity value and volatility with empirical values (2-by-2 calibration: 2 equations,

2 unknowns). When rating improves, calibrated asset size has increasing trend and histo-

rical asset risk has declining trend in the last columns. These trends together support the

stylized observation that the historical probability of default for better ratings are smaller

as reported by the rating agencies. The trends also are similar to reports by the earlier

studies (Elkamhi et al., 2012; Schaefer and Strebulaev, 2008; Eom et al., 2004). Figure 4

shows the counter-intuitive positive correlation between asset volatility and leverage without

VRP from Table 3. Since IG firms’ historical asset variance is lower and size is larger than

the other firms, they have lower historical default risk. Without asset VRP, it seemingly

contradicts intuition when they choose low leverage despite their low historical default risk.

Insert Figure 4 about here.

Insert Figure 5 about here.

I use the calibrated parameters for representative firms without VRP to calculate model-

implied leverage and yield spread. Middle columns in Table 2 compare these model-implied
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values with their empirical twins. In Figure 5, I calculate the percentage difference between

model-implied and empirical values.

For SG firms, the model without VRP reports lower optimal leverage than observed

leverage. A similar trend appears later in the calibrations with VRP for SG firms. This

“overleverage” is normal and matches the intuition: low grade firms should have lower

leverage, but they do not afford buying back debt due to facing financial distress and debt

buyback costs. In other words, they naturally are overlevered because their financial distress

makes debt almost irreversible for them. As long as the costs to buyback debt are higher

than default or issuing new debt, they remain overlevered. For example, one source of high

refinancing cost for them is the stylized hold-out problem. Empirical evidence also supports

this established observation. Simple transaction cost is one of the empirically identified

reasons for overleverage (Gilson, 1997). Another empirical reason is financial distress for

these firms. Korteweg (2010) reports that very low “refinancing probability is consistent

with market frictions preventing these highly overlevered firms from immediately unlevering,

causing significant friction costs due to financial distress.” Although optimal leverage for

these firms are lower than their leverage and they benefit the most from unlevering, the

overlevered firms are very unlikely to unlever. So from now on, I mostly focus on IG firms.

Modeling a firm’s decisions without asset VRP leads to serious model misspecification,

which is also not limited to leverage. For IG firms, the misspecification creates some gap

between observed leverage and optimal leverage which has a one-on-one relationship with the

mismatch in the credit spread. Of course, there is no expectation for the model to explain

all the credit spread due to other priced factors such as liquidity (Bongaerts, De Jong, and

Driessen, 2011). However, the gap is the largest for IG firms which have liquid bonds due to

their ratings. The calibrations ignore asset VRP and, consequently, are misspecified. In the

finance literature, there are separate reports of the mismatch in credit premium and leverage

without noticing any connection across ratings. For example, the gap in the credit spreads

is reported by Huang and Huang (2012). The gap in leverage is implicit in capital structure
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studies without a thorough analysis, such as in Elkamhi et al. (2012). The big picture that

this paper portrays combines these familiar pieces in the literature together with a thorough

analysis on leverage. Chen (2010) also finds that there is connection between the credit

spread and leverage puzzles, but only in time series without priced variance risk as variance

depends only on macroeconnomic conditions. However, I show that the puzzles are cross-

sectionally connected: the unexplained leverage and credit spreads are larger only in top

ratings, which supports the idea that ignoring VRP creates misspecification not limited to

credit premium. Moreover, I relax deterministic variance with priced variance risk. Next, I

show that asset VRP alleviates the mismatch in explaining the empirical trends.

A.2. Calibration with VRP

Table 3 shows the calibration results. Compared to the model without VRP, model ca-

libration with VRP has one extra equation and parameter: asset VRP adjusts to match

model-implied yield spread to empirical values (3-by-3 calibration: 3 equations, 3 unkno-

wns).15 Similar to the calibrations without VRP, IG firms have relatively larger size and

lower mean asset volatility in the model with VRP. Thus, the model with VRP also replicates

low historical risk and default probability of the top ratings.

Place Table 3 about here

Regarding VRP, Ait-Sahalia and Kimmel (2007) report RN mean-reversion speed of 5 on

VIX as equity-market variance index. In Table 3, the mean-reversion speed of asset variance

is smaller than 5 in RN measure for two reasons, idiosyncratic variance and no leverage.

First, leverage inflates equity variance compared to asset variance (Merton, 1974). Ceteris

15As a stylized finding, the structural models with constant variance do not produce large enough yield

spreads, which leads to the credit premium puzzle (Jones et al., 1984; Elton, Gruber, Agrawal, and Mann,

2001; Amato and Remolona, 2003; Eom et al., 2004; Huang, 2010). There is no yield spread in the calibration

for the model without VRP because this model cannot match the observed yield spreads in data. But, the

model with VRP perfectly matches the yield spread. Later in Section C.1, when I drop yield spread from

calibrations and apply 2-by-2 calibration to both models with and without VRP, the results do not change.
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paribus, high leverage increases the financial risk of a firm, which increases equity’s variance

almost linearly with leverage. Thus, leverage of S&P-500 firms also inflates mean-reversion

speed of equity-return variance in VIX compared to the speed of asset variance. Second,

individual firm-level speed is also deflated compared to market’s speed due to idiosyncratic

variance, assuming that idiosyncratic variance is not time-varying as much as market variance

(see Equation 3). While the physical mean-reversion speed is constant for all the firms, RN

speed is smaller in IG firms because of high VRP. Ericsson et al. (2011) also report similar

ranges for VRP and mean-reversion speed.

First and foremost, Table 3 shows that optimal leverage is lower with asset VRP (H1),

especially for IG firms that tend to have the highest asset VRP. Contrary to the earlier

low levels of historical variance and default probability for IG firms, the trend of the assets’

VRP is reverse. High VRP implies that IG firms have relatively high RN variance and

RN default probability, even with low historical variance and historical default probability.

For IG firms, the comparison confirms that the model with VRP significantly alleviates

their underleverage compared to the model without VRP. Hence, the following hypothesis is

implied by the calibrations, which I verify statistically in addition to H1 in the next section:

Hypothesis 2. Asset VRP reduces the investment-grade firms’ leverage more than the other

firms, ceteris paribus (H2).

It is interesting to notice how ignoring VRP may mislead a researcher about the leverage

behavior: historical asset variance and default risk for IG firms are lower than the average.

Many theories of capital structure and intuition expect their low historical risk to create po-

tential for increasing debt in their capital structure. But, this expected high optimal leverage

conflicts with low leverage choice of IG firms. However, taking VRP into account reconciles

them: some firms just try to hedge their variance risk. Thus, model misspecification, i.e. not

considering VRP, contributes to seemingly paradoxical leverage choice of the firms, which

adds to the other explanations.
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B. Regression analysis

The regressions have the advantage of being model-free compared to the calibrations. In

the linear regressions, the assets’ VRP proxy has negative effect on leverage of the firms,

while there are controls for other factors such as cash holdings and internal funds. On the

same sample used for calibrations, the ratio of equity’s RN and historical volatility is the

assets’ VRP proxy. Equity RN volatility is volatility implied by option prices. Since both

RN and historical equity volatilities are inflated by the leverage, the ratio cancels out the

leverage effect. The regressions also have the classical factors used by the earlier studies (For

example, see Bae, Kang, and Wang (2011)): a) asset tangibility to control for bankruptcy

costs, b) profitability to control for pecking order, c) cash holdings to control for financial

flexibility d) natural logarithm of revenues to control for size e) Tobin’s Q to control for

the growth of the business, f) unlevered historical equity volatility to represent historical

asset volatility. Appendix A has more details about the calculation of the variables, such as

Compustat codes. Table 4 shows the descriptive statistics of these variables.

Place Table 4 about here

It is interesting to notice some anecdotal factors that imply IG firms should have more

debt (see Figure 6): IG firms have more tangible assets relative to their debt, which implies

lower bankruptcy costs because tangible assets can be used as collateral for debt (Jensen and

Meckling, 1976). They have less risk, low historical asset variance16 and asset beta, and they

are larger in size, where both reduce the chances of information asymmetry (Hennessy and

Whited, 2007) or default (asset beta is unlevered equity beta). These size and historical risk

trends also appear in the calibrations. IG firms have high payout rate, mostly to the share-

holders, signaling less concerns for financial flexibility as suggested by DeAngelo, DeAngelo,

16Only CCC and lower ratings have low unlevered volatility due to their extreme leverage: their unlevered

volatility is low because unlevered volatility is equity volatility×(1 − leverage) and does not closely reflect

their true asset volatility. Only calibrations address this issue (see their asset volatility in Table 2 and

Figure 4).
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and Whited (2011) and hold less cash for internal funding of their projects. Regardless of

all these positive factors pushing them towards having higher leverage, they have the lowest

leverage. In Figure 7, the only factor that sends a negative signal for low leverage is asset

VRP; the proxy for VRP and firm exposure to market variance risk for IG firms are the

highest on average, which also anecdotally imply H2. Exposure to market variance risk is

defined in Section C.1 with more detailed analysis.

Place Figure 6 about here

Place Figure 7 about here

To verify these anecdotal findings, this paper runs the regression that considers leverage

adjustments by the firms following DeAngelo and Roll (2015), Banerjee, Dasgupta, and Kim

(2008), and Fama and French (2002):

(13) Levi,t − Levi,t−j = Ψ[Targeti,t − Levi,t−1], Targeti,t =
∑
k

akXk,i,t

where Ψ is adjustment speed, Target is target leverage, Lev is leverage, i is the firm index, t

is time index, X has the independent variables, and k is the index for independent variables.

With the assumption that j is for one period and there is an intercept in the regression, the

relation turns into:

(14) Levi,t = (1−Ψ)Levi,t−1 + a0 +
∑
k

ΨakXk,i,t + εi + εt + ε

where clustered-error controls are εi, the firm, and εt, time. There are several independent

variables. Average leverage of the industry for each firm controls the industry effect and there

is no difference between having fixed industry dummies or the leverage average. Dummies

for years and firms control the fixed effects. The other independent variables are the same as

listed in Table 4 without the asset payout rate. The regressions are on the whole sample and

the subsamples of IG and SG firm-years. Factors are standardized to analyze the relative

importance.

23



Place Table 5 about here.

Table 5 shows the results.17 Similar to Bae et al. (2011), R-squared is above 50% due to

including fixed effect dummies and lagged leverage. Asset historical volatility has the largest

effect on leverage. The overall strong effect of volatility is similar to the results in Chen,

Wang, and Zhou (2015). One standard deviation of a firm-year from the average drops target

leverage by 6%. But, historical volatility has less strong effect in the IG subsample.

On the other hand, one standard deviation of the assets’ VRP from the average among

IG firms has stronger negative effect on leverage than SG firms. The VRP coefficient in the

IG sample is almost relaively twice as the SG sample: the asset VRP coefficient is 50% of

the historical volatility coefficient for the IG subsample, while it is 30% in the SG sample

(3.1%/6.4% and 2.9%/8.6%). Similar results also appear on the subsample in robustness

check. Another noteworthy result is the relatively higher impact of asset VRP than the

profitability in data. Titman and Wessels (1988) and Myers (1993) argue that profitability

is a widely considered factor to have first-order effect on leverage. If all the factors are ranked

based on their standardized impact, asset VRP stands second in line next to asset volatility

and above the other factors. In sum and similar to the calibrations, asset VRP has negative

effect on leverage in the regressions (H1) and the negative effect is relatively stronger in IG

firm-years (H2) than the average.

C. Robustness check

C.1. Calibration with exposure to market variance risk

As an alternate asset VRP measure, I check exposure of the firms’ asset variances to market

variance and, consequently, market VRP. I show three outcomes. First, I confirm IG firms’

high exposure to market VRP, which explains their high asset VRP and its negative effect

17None of the subsamples have zero-leverage observations, so the issues raised by Elsas and Florysiak

(2015) or Lotfaliei (2015) does not apply to this paper’s analyses.
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on their leverage. Second, I replicate results in Ericsson et al. (2011) and McQuade (2013)

about improved credit spreads with VRP to show that using this new method is reasonable.

Finally, the calibration results are robust to VRP estimation method which parsimoniously

uses exposure to market variance risk instead of credit spread. The model with VRP still

shows significantly closer leverage ratio to observed leverage ratio.

For each firm-year between 1997 and 2015, I calculate 90-day correlation between squared

CBOE’s VIX index and squared 30-day option-implied equity volatility. Since VIX is based

on 30-day options, I use 30-day volatility for each firm rather than 365-day volatility. The

volatility is squared to represent variance. Assuming that leverage is constant during the

90-day period before the data date, the correlation is not inflated by the firm’s leverage.

Leverage inflates both the covariance of equity variance with squared VIX and the standard

deviation of equity variance. Leverage cancels out when the covariance is divided to volatility

of variance in correlation calculation. The average correlation across all the firm-years in

each rating represents the exposure of an average firm in the rating to market variance, and,

subsequently, to market VRP. Therefore, I use the correlation as a measure of exposure

Insert Figure 8 about here.

Figure 8 shows support for H2 where an average IG firm has higher exposure to market

variance than an average firm while they have lower asset beta. Compared to Figure 6 and

Figure 7, Figure 8 report the averages across major categories rather than subcategories.

Unlevered asset beta is unlevered historical equity beta from the market returns in past

year. Asset beta shows exposure to market return shocks, while correlation shows exposure

to market variance shocks. For example, across the extreme ratings, the IG subsample in

the figure has almost twice as much exposure than the SG subsample. But, SG firms have

higher asset beta than IG firms. A similar trend in asset beta across ratings is also reported

by Huang and Huang (2012) which has larger gap between IG and SG firms. Hence, the

asset betas are more parsimonious with lower gap in this paper. If IG firms have higher

exposure to market variance, then they are more likely to face high asset VRP. It is different
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from hedging asset beta which is about shocks to market return. IG firms have indeed low

asset beta while their asset VRP is high. These firms choose low leverage in this case to

hedge VRP and the risk of their asset variance to be affected by a market-wide variance

shock. Next, I verify this behavior through leverage calibration via the exposure.

Insert Table 6 about here.

Table 6 shows the robust calibrations where model with VRP generate more realistic

leverage ratios (Appendix F has the calibration details). The earlier calibrations for the

model with VRP include yield spread. This extra parameter may imply an unfair calibration

advantage towards the model with VRP. In addition, any error in measuring yield spread

only would affect the calibrations in the model with VRP. Hence, I change the calibration

method to check the robustness of results as follows: for representative firms, both models

with or without VRP are only calibrated with 2-by-2 equations. In 2-by-2 equations, asset

volatility and value are calibrated to equity volatility value. Model with VRP has 2 extra

parameters, instant asset volatility and asset VRP. Instant volatility is set to mean asset

volatility. Asset VRP is asset variance exposure, α, times market VRP as in Equation 3. I

multiply the exposure times 4 which is estimated by Ait-Sahalia and Kimmel (2007) as the

market VRP. The asset VRP estimation is more parsimonious in this method and lower than

asset VRP in Table 3. Nevertheless, the results are similar to earlier calibrations in Table 3.

Not only the results support the negative relationship between asset VRP and leverage (H1),

but also the model with asset VRP still produces leverage closer to observed leverage for IG

firms relative to other firms (H2).

Insert Table 7 about here.

In order to validate this calibration method, I report the model-implied yield spreads

in Table 7. If considering asset VRP alleviates the underleverage puzzle (H1) and there is

connection between credit and underleverage puzzles as in Figure 5, then, one expects to also
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see improvement in credit puzzle with using asset VRP. There is no expectation to explain all

the credit spreads due to other priced factors such as liquidity. However, if the VRP intuition

is valid, there is expectation to improve model-implied spreads, especially for IG firms. I

use the parameters from Tables 6 and 2, such as asset VRP, asset volatility and value, to

calculate model-implied yield spreads with and without asset VRP. The calibration without

VRP shows the classical credit premium puzzle. But, the model with VRP indeed produces

yield spreads which are closer to the observed spreads. Moreover, the highest improvement

is in IG category due to their high asset VRP.

These results are similar to Ericsson et al. (2011) and McQuade (2013). They report

improved credit spreads with asset VRP, but this paper also connects the credit spreads to

observed leverage. Regarding the exposure of firm asset to VRP, Dorion (2010) also reports

that the ratio of systematic volatility for IG firms’ assets is higher than an average firm

across ratings. Using a different method, he shows that the diversification gain in volatility

is smaller by putting IG firms in a portfolio than the others.

As explained in Section A, the differences in asset beta and asset VRP are due to idi-

osyncratic volatility’s impact on VRP. The magnitude of idiosyncratic volatility does not

change asset beta but it reduces asset VRP. Idiosyncratic variance cushions the impact of

the shocks to market variance being transferred to the firm. When idiosyncratic variance is

relatively low, the systematic portion of total variance is larger and the effect of market va-

riance change is larger in IG firms. Since market variance has premium, the premium results

in higher VRP on IG firm’s assets. Hence, IG firms have higher VRP than SG firms, while

IG firms have lower asset beta. In sum, the firms, particularly IG firms, reduce leverage

because, in addition to other factors, their assets has VRP through market VRP.

C.2. Calibration using firm-year data

In order to make sure that the results of calibrations are not driven by using representative

firms and Jensen’s inequality, I run calibrations on firm-year data. It turns out that ear-
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lier representative-firm calibrations are more parsimonious because underleverage in model

without VRP is larger in firm-year calibrations. Calibrating to firm-year data has the advan-

tages that statistical test on the calibrations is possible and it also delivers the time-series

of estimated asset VRP. The disadvantage is to have a much smaller sample leaning towards

IG firms. Nevertheless, the inferences for H1 and H2 are similar.

Data collection process is similar to Section A, but I replace representative-firm yield

spread data with firm-years. I collect corporate bond characteristics, prices, and yield from

Mergent and TRACE. The sample shrinks to the 2002-15 period because of bond data

availability from TRACE. Bond data are for senior unsecured corporate bonds without

features such as being callable. Yield spread is bond yield less maturity-matching risk-

free rate. Missing yield data for data dates are filled by linear interpolation of daily data.

The first four columns of Table 8 show the statistics for all the firm-years in the sample.

The sample leans more towards IG firms because bond data’s availability is better for these

firms. Similar to Table 3, an average IG firm’s equity is larger, and equity volatility, yield

spread, and financial leverage are lower.

Place Table 8 about here

The calibration results for all the firm-years are in Table 8 where the results are similar

to Table 3. Calibration details are in Appendix F. For each firm-year, in the model without

VRP, asset value and volatility calibrate so that equity value and volatility match with

empirical data (2-by-2 calibration). Calibrations with VRP is 4-by-4; it involves two extra

equations (to match empirical yield spread and empirical leverage) and two extra parameters

(instant asset volatility and asset VRP).18 Specifically, the model with asset VRP implies

yield spreads that fit their empirical twins as part of the calibration similar to Table 3.

I report calibrated parameters only for the model with VRP for brevity. Asset VRP

18Calibration to the leverage does not create an endogeneity problem and, in both models, it is a com-

parison between “as is” versus “as expected” for the leverage. Nevertheless, this paper also reports similar

results when leverage is dropped from calibrations in Table 8 for robustness check in Online Appendix 6.
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is close to the numbers from representative-firm calibration. The model with stochastic

variance implies a flatter difference between historical instant and mean asset variance for

IG firms. Therefore, if there exists a historical asset-volatility term structure, it is flatter

for IG firms than the others. This means that the VRP proxy used in Figure 7a for the

regressions actually overestimates SG firms’ asset VRP proxy and is more parsimonious.

Since an SG firm’s asset VRP is low and long-run historical volatility is more likely to be

higher due to steeper term structure, the ratio of long-run RN to historical volatility is more

likely to be smaller than the same ratio based on 1-year values.

The model-implied leverage with and without VRP are based on calibrated parameters.

These results show that the calibrations to representative firms are more parsimonious be-

cause underleverage in the model without VRP is more severe in firm-year data. In other

words, Jensen’s inequality lowers model-implied leverage in the representative-firm calibra-

tion compared to calibrating to firm-years and, then, averaging. Since IG firms’ historical

asset variance is lower and size is larger than the other firms, they have lower historical

default risk. Without asset VRP, it is counter-intuitive when IG firms have relatively low

historical default risk but also choose low leverage. However, calibrating with VRP shows

that these firms have high VRP and implies lower leverage.

Table 9 statistically measures the sample differences which controls for firm and year clus-

tered errors using the method recommended by Petersen (2009). I estimate Leveragedata −

Leveragemodel = α+εi+εt+ε where α is the difference, and εi and εt control for clustered firm

and time errors. Negative α implies underleverage where observed leverage is smaller than

model-implied leverage and vice versa. For SG firms, both models with and without VRP

overestimate optimal leverage, which highlight these naturally overlevered firms as discussed

earlier. For IG firms, the model without VRP significantly underestimates leverage while

the model with VRP generates more reasonable results. Hence, ignoring VRP exacerbates

the seemingly paradoxical choice of these firms to have conservative leverage.

Place Table 9 about here
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In addition to the cross-sectional analysis, this paper reports the time-series behavior

of an average firm’s estimated asset VRP and compares it with leverage and the market’s

proxy for VRP. Figure 9 shows the time-series. Asset VRP index is the size-weighted asset

VRP from calibrations. Leverage index is size-weighted observed leverage of the firm-years

in each year. The market VRP proxy is the ratio of the difference between markets’ RN

and historical volatility to historical volatility. Market’s RN volatility is CBOE’s VIX and

historical volatility is for 30-day returns of S&P-500. Both VIX and S&P-500 historical

volatility are based on equity which inflates them by the leverage of the S&P-500 firms.

When the difference is divided to historical volatility, leverage cancels out and market VRP

proxy is unlevered. Market VRP is based on the information from the options market.

Market VRP looks more volatile than the asset VRP because asset VRP’s calculation is

based on a longer horizon than market VRP proxy.

Insert Figure 9 about here.

Even without including any information from the options market in this paper’s asset

VRP index, the average asset VRP and market VRP proxy seem to correlate. They also have

negative relationship with leverage. The negative relationship seems stronger during non-

crisis times when the VRP indexes are high and imply high variance fears. The fear seems

legitimate: during the crisis, the negative economy-wide shock drives historical variance up

close to RN variance which is evident in market VRP reduction. This increase validates the

market-wide fear of increases in variance, which leads to conservative low leverage during

non-crisis times.

C.3. Regression analysis in subsample

For the 2002-15 period subsample, the empirical inferences from running model-free regressi-

ons also produce similar results in support of the model implications: VRP has negative effect

on the firms’ leverage, especially for IG firms. Between 2002 and 2015, this paper collects
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all the data following the same procedure as in the earlier section from merging Compustat

and Optionmetrics with similar filters. The descriptive statistics are in Appendix G and

the classical factors, such as asset volatility and Tobin’s Q, that determine leverage follow

the same trends as in Figures 6 and 7. Among these factors, only asset VRP proxies and

exposure to market variance risk support IG firms’ relatively low leverage.

Place Table 10 about here

Table 10 shows the results for the regressions. Asset VRP has negative effect on leverage

as implied by the theory (H1)and it is the second factor in rank. Asset VRP is also relatively

more important for IG firms (H2): the VRP coefficient in the IG sample is almost twice as

the SG sample. Another noteworthy result is the relatively higher impact of asset VRP than

the profitability in the IG subsample. The profitability seems more important for SG firms

which are more likely to experience financial distress. Although the sample seems small,

Appendix H reports similar results by estimation of bias-corrected least-square dummy vari-

able (LSDV) with bootstraping to control for small sample. The appendix also addresses the

classical Nickell (1981)’s critique due to including lagged leverage and fixed-effect dummies

because it reports bias-corrected results using the method from Arellano and Bond (1991).

Therefore, both hypotheses are still confirmed in model-free regressions on the subsample.

IV. Conclusion

This paper shows that variance risk premium at the asset level reduces leverage, especially

for IG firms which seem to have greater exposure to market variance risk. I present a

theoretical model to support these hypotheses and verify them in the empirical tests. Risky

time-variations in asset variance produces the variance risk premium that increases the wedge

between historical and RN variance. RN asset variance raises the RN probability of default

for the firm which increases the costs of debt and reduces the tax savings. Hence, a firm

with low historical variance and high variance premium chooses conservative leverage. This
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behavior hedges future increase in asset variance induced by the exposure to market variance

shocks. Empirically, the model calibrations with VRP produce lower leverage closer to actual

leverage of the firms than the model excluding VRP. In the time-series, asset VRP is high

post crisis, which reflects the market’s apprehension of a possible increase in variance during

the crisis. This apprehension leads to lower leverage. In the cross-section of the firms

ranked by their historical risk, the investment-grade firms hold assets with high exposure to

market variance risk, which also seems to explain their conservative leverage. The regressions

also validate negative VRP-leverage correlation with more negative correlation in the IG

subsample.

The VRP effect cannot be detected in the earlier models with constant variance because

they assume that historical and RN variances are equal. It is contrary to the stylized fact in

other finance areas that variance is stochastic with priced risk. Focusing only on historical

variance of the firm’s assets creates model misspecification: without asset VRP, IG firms seem

to have potential to increase their leverage considering their low historical risk of default,

which remains underutilized. The misspecification not only is tractable in underleverage,

but also links underleverage to other seemingly odd observations such as unexpectedly high

credit premium identified by Eom et al. (2004) and Huang and Huang (2012).

A potential extension of this paper for future research is to explain the low speed of

leverage adjustments reported by Frank and Goyal (2007). Asset variance is an important

factor in the speed of leverage adjustments modeled by Goldstein, Ju, and Leland (2001);

high variance implies fewer re-adjustments. All these models assume constant variance.

But, VRP may be a factor in the puzzling infrequent leverage adjustments and alleviate

the debate on the structural models (Welch, 2013; Strebulaev and Whited, 2013). Also, a

potential subject for future research is to examine the underlying causes for high exposure to

market variance risk in IG firms’ assets; IG firms are large firms and may have high operating

leverage or well-diversified portfolio of assets with low idiosyncratic variance.
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Figure 1. The setup of the model based on the state variables: all the paths start at
the same state with the same default boundary. Path 0 ends in early default.
Path 1 changes the boundary to L1. Path 2 changes the boundary to L2.
Only if by coincidence VnT = V0 in a path, then optimal boundary for that
path is L∗nT = L∗0, because variance is the only state variable that determines
the optimal boundary.
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(a) Without debt roll over (b) With debt roll over

(c) Without debt roll over (d) With debt roll over

Figure 2. Reduction in the optimal default boundary due to asset VRP: X-axis shows
the Variance Risk Premium (VRP). In the first row, y-axis shows the ratio
of optimal default boundary, L∗, to unlevered asset value, ν. In the second
row, y-axis shows the relative optimal default boundary with and without
VRP. Optimal boundary maximizes the equity value. The boundary is the
unlevered asset level at which the firm files for bankruptcy (see Equation 12).
The firm has optimal leverage. Debt coupon rate is set to make the debt’s
face value match with the market value, c : d = p. VRP is |λ − κ|. Pro-
portional bankruptcy cost (PBC) rate, ρ, is the proportion of assets lost at
default. Initial and mean variances are the same, θ = V0, and set to 4%, 0.2
squared. Initial asset value is $100 and it is scalable. Historical variance
mean-reversion speed, κ, is 4, risk-free rate, r, is 5%, asset payout rate, δ, is
3% and tax rate is 25%. Debt rollover rate, m, is 10%.
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(a) Without debt roll over (b) With debt roll over

(c) Without debt roll over (d) With debt roll over

Figure 3. Reduction in the optimal leverage ratio due to asset VRP: X-axis shows the
Variance Risk Premium (VRP). In the first row, y-axis shows the optimal
market leverage, D/(D + Eq). In the second row, y-axis shows the relative
optimal market leverage with and without VRP. Optimal leverage maximizes
the total levered firm value by choosing optimum debt, P : ∂(Eq+D)/∂P = 0.
Debt coupon rate is set to make the debt’s face value match with the market
value, c : d = p. The firms follow optimal default policy. VRP is |λ − κ|.
Proportional bankruptcy cost (PBC) rate, ρ, is the proportion of assets lost
at default. Initial and mean variances are the same, θ = V0, and set to 4%,
0.2 squared. Initial asset value is $100 and it is scalable. Historical variance
mean-reversion speed, κ, is 4, risk-free rate, r, is 5%, asset payout rate, δ, is
3% and tax rate is 25%. Debt rollover rate, m, is 10%.
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Figure 4. Leverage and calibrated historical asset volatility across risk groups (1997-
2015): the figure shows the trends in observed leverage and asset volatility
across the ratings as the risk group. CCC also includes ratings below CCC.
The figure is based on Table 3. X-axis shows the ratings. Y-axis shows
observed leverage and calibrated asset volatility. Intuitively, low historical
asset volatility implies higher leverage, but the trend seems puzzling as it is
reverse; firms with low business risk have also lower leverage.

Figure 5. Model mismatch for credit spread and leverage without VRP (1997-2015):
the figure shows the model error in predicting observed leverage and observed
credit spreads across the risk groups after calibrating the model without
asset VRP to representative firms. The figure is based on Table 2. X-
axis shows the ratings. Y-axises show the relative difference in matching
the observed leverage and observed yield spread in data. The unexplained
portion is emprical−model-implied

empirical . CCC also includes ratings below CCC.
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(a) Trends in observed leverage and To-
bin’s Q across risk groups.

(b) Trends in observed leverage and tangi-
bility across risk groups.

(c) Trends in observed leverage and unle-
vered asset volatility across risk groups.

(d) Trends in observed leverage and unle-
vered asset beta across risk groups.

Figure 6. The counter-intuitive trends of classical leverage determinants and leverage
(1997-2015): This figure shows the trends in observed leverage and the le-
verage factors. Ratings are used as they categorize the observations based on
historical risk. CCC also includes ratings below CCC. Variables are defined
in Appendix A and Table 4 shows the numbers. Figure 6c is comparable to
Figure 4. X-axis shows the ratings. Right Y-axis shows observed leverage
and left Y-axis shows the factor. Intuitively, high Tobin’s Q, relatively high
asset tangibility, low historical asset volatility and asset beta in the figures
imply expected higher leverage for IG firms than the others. But, their
reverse leverage trend implies that IG firms choose conservative leverage,
which highlights them as the contributing firms to underleverage puzzle.
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(a) Trends in observed leverage and asset
VRP proxy across risk groups.

(b) Trends in observed leverage and expo-
sure to variance risk across risk groups.

Figure 7. The trends of asset VRP proxy and exposure to market variance risk across
ratings (1997-2015): this figure shows the trends in observed leverage and
asset VRP. Ratings are used as they categorize the observations based on
historical risk. CCC also includes ratings below CCC. Variables are defined in
Appendix A. X-axis shows the ratings. Right Y-axis shows observed leverage
and left Y-axis shows the factor. Declining asset VRP proxy across ratings
is the only factor (compared to Figure 6) to imply low leverage for IG firms.
This anecdotally supports the proposition that asset VRP reduces leverage
for IG firms (H2).
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Figure 8. Exposure of variance to market variance compared to asset beta (1997-2015):
Data is between 1997 and 2015 (see Table 4 in Appendix G for other sample
statistics). The three columns at the top represent the average correlation
and unlevered beta for all Investment-grade (IG) firm-years, all rated firm-
years and all speculative-grade (SG) firm-years. Exposure of variance to
market variance is 90-day average correlation between the squared VIX in-
dex and squared volatility of each firm-year. CBOE reports and calculates
VIX from 30-day option-implied S&P-500 volatility. For each firm-year, the
correlation is for the past 90 days from data date. The unlevered-asset beta
is the unlevered beta of equity for each firm-year. The figure shows relatively
higher exposure of IG firms to market-variance shocks and relatively lower
exposure to market-return shocks than SG firms
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Figure 9. Time series of VRP and leverage: Leverage and asset VRP are respecti-
vely the asset-value weighted averages of observed leverage and calibrated
asset VRP for all the firm-years in each year. Market VRP is the annual
daily average for the difference between VIX and 30-day S&P-500 historical
volatility divided by historical S&P-500 volatility. This paper’s calibrated
asset VRP index does not include any information content from the options’
market, while VIX index is based solely on option prices. The figure shows
positive correlation of the asset VRP index with market VRP and negative
correlation of both with leverage in time series.
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Table 1- The model’s features compared to the earlier structural models of the firm:
Xs determine the model features. The last row is about the model costs. In the
model costs, numerical integration yields accurate results for asset prices, but
makes finding optimal leverage difficult due to optimization complexity. Fast
mean-reversion limits the analysis by restricting the range for variance mean-
reversion speed. Zero correlation implies no asset variance asymmetry, while
the model still replicates equity variance asymmetry as a stylized fact in the
equity markets (see Appendix B).

Model
Leland
(1994)

Leland and
Toft (1996)

Hsu et al.
(2010)

Ericsson
et al. (2011)

McQuade (2013) This paper

Endogenous
leverage

X X - - - X

Endogenous
default

X X - X X X

Stochastic
variance

- - - X X X

Time-varying
boundary

- - X X X X

Term-structure
of credit spread

- X X X X -

Model cost
No

stochastic
variance

No
stochastic
variance

No
stochastic
variance

Numerical
integration

Zero correlation &
Fast

mean-reversion

Zero
correlation
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Table 5- Regression results (1997-2015): It estimates Levi,t = (1 − Ψ)Levi,t−1 + a0 +∑
k ΨakXk,i,t where X has standardized independent variables and control dum-

mies. Table 12 in Appendix A has the details of the variable calculations.
Descriptive statistics are in Table 4. IG-firms sample only has all the firm-
quarters rated as investment grade by S&P. SG-firms sample only has all the
firm-quarters rated as none investment-grade or speculative grade by S&P.
Dummies for years, and firms control for time and firm fixed effects. Average
industry leverage controls fixed industry effect. Standard errors are corrected
for clustered time and firm errors in parentheses. The p-values test the null
hypothesis that the coefficient is zero and they are:∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Coefficients for the standardized variables show the relative importance of each
variable in determining target leverage. Asset VRP has significantly negative
effect on leverage (H1), especially for IG firms (H2).

Parameter Estimated Coefficients for each statistical regression

Model (1) (2) (3) (4) (5) (6)

Sample All IG firms SG firms All IG firms SG firms

Dependent
variable

Leverage Leverage Leverage Leverage Leverage Leverage

Lag Leverage 0.438*** 0.476*** 0.346*** 0.380*** 0.380*** 0.317***

(0.024) (0.027) (0.029) (0.022) (0.025) (0.023)

Asset volatility -0.0937*** -0.0826*** -0.102*** -0.0790*** -0.0645*** -0.0861***

(0.006) (0.009) (0.006) (0.005) (0.007) (0.005)

VRP proxy -0.0358*** -0.0370*** -0.0336*** -0.0310*** -0.0306*** -0.0289***

(0.005) (0.006) (0.006) (0.005) (0.005) (0.006)

Tobin Q - - - -0.0284*** -0.0239*** -0.0363***

- - - (0.007) (0.006) (0.012)

Profitability - - - -0.0263*** -0.0304*** -0.0282***

- - - (0.006) (0.005) (0.005)

Cash - - - -0.00821*** -0.0118*** -0.00648

- - - (0.003) (0.004) (0.005)

Tangiblity - - - 0.0105* 0.00301 0.0175**

- - - (0.006) (0.006) (0.009)

Log sales - - - -0.00932 0.0137 -0.00244

- - - (0.007) (0.010) (0.008)

Intercept 0.249*** 0.248*** 0.538*** 0.221*** 0.302*** 0.489***

(0.012) (0.013) (0.022) (0.014) (0.019) (0.033)

Industry
average leverage

yes yes yes yes yes yes

Time and firm
fixed effect

yes yes yes yes yes yes

Time and firm
clustered errors

yes yes yes yes yes yes

R-squared 60% 57% 61% 66% 64% 67%

BIC -30304.4 -18001.8 -14116.2 -32254.3 -19111.5 -15105.9

Obs 12342 6138 6204 12342 6138 6204

49



T
a
b

le
6
-C

a
li
b

ra
ti

o
n

ro
b

u
st

n
e
ss

-c
h

e
ck

re
su

lt
s

to
re

p
re

se
n
ta

ti
v
e

fi
rm

s
in

th
e

ra
ti

n
g
s

(1
9
9
7
-2

0
1
5
):

T
h

is
ta

b
le

is
c
o
m

p
a
ra

b
le

to
T

a
b

le
3
.

C
o
m

p
a
re

d
to

T
a
b

le
3
,

th
e

c
a
li
b

ra
ti

o
n

s
d
o

n
o
t

in
c
lu

d
e

y
ie

ld
sp

re
a
d

fo
r

ro
b

u
st

n
e
ss

ch
e
ck

.
T

h
is

ta
b

le
o
n

ly
in

c
lu

d
e
s

c
a
li
b

ra
ti

o
n

s
o
f

a
ss

e
t

v
o
la

ti
li
ty

a
n

d
v
a
lu

e
to

e
q
u

it
y

v
o
la

ti
li
ty

a
n

d
v
a
lu

e
.

T
a
b

le
4

in
A

p
p

e
n
d

ix
G

p
ro

v
id

e
s

th
e

st
a
ti

st
ic

s
o
n

fi
rm

-y
e
a
r

d
a
ta

.
T

a
b

le
1
2

h
a
s

th
e

d
e
ta

il
s

o
f

th
e

v
a
ri

a
b

le
c
a
lc

u
la

ti
o
n

s.
T

h
e

fi
rs

t
fi

v
e

c
o
lu

m
n

s
o
n

th
e

le
ft

re
p

o
rt

th
e

sa
m

p
le

a
v
e
ra

g
e
s

u
se

d
a
s

ch
a
ra

c
te

ri
st

ic
s

o
f

th
e

re
p

re
se

n
ta

ti
v
e

fi
rm

in
e
a
ch

ra
ti

n
g

fo
r

c
a
li
b

ra
ti

o
n

.
V

o
la

ti
li
ty

is
sq

u
a
re

-r
o
o
t

o
f

v
a
ri

a
n

c
e
.

A
ss

e
t

V
R

P
e
x
p

o
su

re
is

e
st

im
a
te

d
fr

o
m

9
0
-d

a
y
s

c
o
rr

e
la

ti
o
n

b
e
tw

e
e
n

sq
u

a
re

d
V

IX
in

d
e
x

a
n

d
th

e
sq

u
a
re

d
o
p

ti
o
n

-i
m

p
li
e
d

3
0
-d

a
y

e
q
u

it
y

v
o
la

ti
li
ty

.
I

ch
o
o
se

3
0
-d

a
y

v
o
la

ti
li
ty

m
a
tc

h
w

it
h

V
IX

h
o
ri

z
o
n

w
h

ic
h

is
a
ls

o
3
0

d
a
y
s.

T
h

e
c
o
rr

e
la

ti
o
n

is
in

se
n

si
ti

v
e

to
le

v
e
ra

g
e

a
n

d
d

o
e
s

n
o
t

re
q
u

ir
e

d
e
-l

e
v
e
ri

n
g
.

A
ss

e
t

V
R

P
,
|λ
−
κ
|,

is
th

e
p

ri
c
e

o
f

v
a
ri

a
n

c
e

ri
sk

,
w

h
ic

h
is

c
a
lc

u
la

te
d

b
y

m
u

lt
ip

ly
in

g
e
x
p

o
su

re
,
α

,
ti

m
e
s

m
a
rk

e
t

V
R

P
.

M
a
rk

e
t

V
R

P
is

se
t

to
a
v
e
ra

g
e

4
re

p
o
rt

e
d

b
y

A
it

-S
a
h

a
li
a

a
n

d
K

im
m

e
l

(2
0
0
7
).

E
q
u

it
y

v
o
la

ti
li
ty

is
th

e
st

a
n

d
a
rd

d
e
v
ia

ti
o
n

o
f

st
o
ck

re
tu

rn
s

fo
r

3
6
5

d
a
y
s.

E
q
u

it
y

m
a
rk

e
t

c
a
p

is
c
o
m

m
o
n

sh
a
re

s
ti

m
e
s

st
o
ck

p
ri

c
e
.

T
h

e
la

st
tw

o
c
o
lu

m
n

s
re

p
o
rt

th
e

p
a
ra

m
e
te

rs
in

a
2
-b

y
-2

c
a
li
b

ra
ti

o
n

w
it

h
V

R
P

a
s

in
A

p
p

e
n

d
ix

F
to

th
e

sa
m

p
le

a
v
e
ra

g
e
s

fo
r

e
q
u

it
y

m
a
rk

e
t

c
a
p

a
n

d
v
o
la

ti
li
ty

w
it

h
o
u

t
le

v
e
ra

g
e
.

S
iz

e
,
ν 0

,
is

th
e

u
n

le
v
e
re

d
v
a
lu

e
o
f

th
e

fi
rm

’s
a
ss

e
ts

.
M

e
a
n

v
o
la

ti
li
ty

is
th

e
sq

u
a
re

-r
o
o
t

o
f

th
e

m
e
a
n

a
ss

e
t

v
a
ri

a
n

c
e
,
√
θ.

In
st

a
n
t

v
o
la

ti
li
ty

is
e
q
u

a
l

to
m

e
a
n

v
a
ri

a
n

c
e
.

T
h

e
tw

o
c
o
lu

m
n

s
in

th
e

m
id

d
le

re
p

o
rt

th
e

st
a
ti

st
ic

s
fo

r
th

e
o
p

ti
m

a
l
le

v
e
ra

g
e
s

w
it

h
a
n

d
w

it
h

o
u

t
V

R
P

a
s

im
p

li
e
d

b
y

th
e

c
a
li
b

ra
te

d
p

a
ra

m
e
te

rs
.

T
h

e
se

c
o
lu

m
n

s
a
re

c
o
m

p
a
ra

b
le

w
it

h
a
c
tu

a
l
le

v
e
ra

g
e

o
n

th
e
ir

le
ft

.
O

p
ti

m
a
l

le
v
e
ra

g
e

fo
r

th
e

m
o
d

e
l

w
it

h
o
u

t
V

R
P

is
a
ls

o
im

p
li
e
d

b
y

th
e

p
a
ra

m
e
te

rs
in

a
2
-b

y
-2

c
a
li
b

ra
ti

o
n

a
s

in
A

p
p

e
n

d
ix

F
.

19
97

-2
01

5
D

at
a

st
at

is
ti

cs
O

p
ti

m
al

le
ve

ra
ge

C
al

ib
ra

te
d

va
lu

es
in

th
e

m
o
d
el

w
it

h
V

R
P

R
at

in
g

O
b
s

st
at

is
ti

c
A

ss
et

V
R

P
ex

p
os

u
re

A
ss

et
V

R
P

E
q
u
it

y
va

lu
e

E
q
u
it

y
vo

la
ti

li
ty

L
ev

er
ag

e
W

it
h
ou

t
V

R
P

W
it

h
V

R
P

S
iz

e
M

ea
n

vo
la

ti
li
ty

A
A

A
11

3
M

ea
n

51
.0

2%
2.

04
18

3,
89

6
26

.5
%

24
.8

%
39

.5
%

45
.0

%
22

7,
88

5
21

.3
%

A
A

36
9

M
ea

n
41

.8
4%

1.
67

82
,0

53
28

.2
%

24
.2

%
39

.4
%

43
.6

%
10

1,
29

6
22

.8
%

A
19

75
M

ea
n

37
.9

5%
1.

52
26

,6
14

30
.9

%
30

.2
%

39
.6

%
43

.3
%

35
,2

71
23

.1
%

B
B

B
36

81
M

ea
n

33
.8

5%
1.

35
9,

30
8

35
.1

%
39

.6
%

40
.0

%
43

.4
%

14
,0

13
23

.1
%

IG
fi
rm

s
61

38
M

ea
n

35
.9

6%
1.

44
22

,4
64

33
.1

%
35

.3
%

39
.7

%
43

.3
%

31
,8

36
23

.2
%

B
B

37
41

M
ea

n
30

.2
4%

1.
21

3,
16

0
45

.2
%

46
.1

%
37

.8
%

40
.7

%
5,

32
8

26
.9

%

B
23

21
M

ea
n

25
.4

4%
1.

02
1,

55
1

60
.3

%
55

.5
%

36
.2

%
38

.4
%

3,
13

2
31

.1
%

C
C

C
or

b
el

ow
14

2
M

ea
n

22
.7

7%
0.

91
1,

27
0

87
.3

%
71

.2
%

35
.7

%
38

.1
%

3,
85

5
32

.9
%

50



Table 7-Model-implied yield spread based on calibration results in Table 6 (1997-2015):
This table shows model-implied yield spread in comparison with observed yield
spread in data based on calibrated parameters in Table 6. Compared to Table 3
and for robustness check, the calibrations do not use yield spread. This table
only includes calibrations of asset volatility and value to equity volatility and
value. Appendix F has more calibration details. Table 12 in Appendix A has
the details of the variable calculations. The first column on the left reports
the sample averages of the representative firm in each rating for comparison.
The two middle columns report the model-implied yield spread with and wit-
hout asset VRP in a 2-by-2 calibration in Table 6. The second column from
left replicates the classical credit premium puzzle where model without VRP
produces yield premiums much lower than their observed counter parts. The
last column on the right measures the improvement in explaining yield spread
using asset VRP. The highest improvement belongs to IG firms caused by their
high exposure to market VRP (see also Figure 8 ).

Rating
Observed yield

spread
Yield spread
without VRP

Yield spread
with VRP

VRP
contribution to
explaining yield

AAA 0.8% 0.1% 0.4% 35%
AA 1.1% 0.1% 0.4% 24%
A 1.4% 0.3% 0.6% 23%

BBB 2.1% 0.5% 1.0% 20%
IG firms 1.6% 0.4% 0.8% 24%

BB 3.9% 1.3% 1.9% 17%
B 5.7% 2.7% 3.7% 17%

CCC or below 11.8% 5.3% 7.0% 14%
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Table 9- Differences between model-implied optimal and actual leverages (2002-
15): Leverage statistics are in Table 8. The differences are estimated with
Leveragedata−Leveragemodel = α+ εi + εt + ε where α is the difference, and εi and εt
control for clustered firm and time errors respectively. Actual leverage is from
data for each firm-year. Model-implied optimal leverage is the result of plugging
the calibrated parameters into each model. The p-values test the null hypot-
hesis that the coefficient is zero and they are:∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
Negative α implies underleverage and positive implies overleverage.

Model
With
VRP

Without
VRP

With
VRP

Without
VRP

With
VRP

Without
VRP

Sample IG firms IG firms All All
SG

firms
SG

firms

Leveragedata − Leveragemodel -0.0091 -0.16*** 0.029 -0.12*** 0.24*** 0.064**

p-value (0.586) (0.000) (0.121) (0.000) (0.000) (0.009)

Time and firm clustered errors yes yes yes yes yes yes

Obs 811 811 960 960 149 149
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Table 10- Regression results (2002-15): The table is comparable to Table 5 with the
similar independent variables, but the sample is smaller than the sample in
Table 5. It estimates Levi,t = (1−Ψ)Levi,t−1 +a0 +

∑
k ΨakXk,i,t where X has stan-

dardized independent variables and control dummies. Independent-variable
statistics are described in Table 13. Table 12 in Appendix A has the details of
the variable calculations. IG-firms sample only has all the firm-quarters rated
as investment grade by S&P. SG-firms sample only has all the firm-quarters
rated as none investment-grade or speculative grade by S&P. Dummies for
years, and firms control for time and firm fixed effects. Average industry le-
verage controls fixed industry effect. Coefficients of these control variables are
omitted for brevity. Standard errors are corrected for clustered time and firm
errors in parentheses. The p-values test the null hypothesis that the coeffi-
cient is zero and they are:∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1. Coefficients for
the standardized variables show the relative importance of each variable in
determining the target leverage.

Parameter Estimated Coefficients for each statistical regression

Model (1) (2) (3) (4) (5) (6)

Sample All IG firms SG firms All IG firms SG firms

Dependent
variable

Leverage Leverage Leverage Leverage Leverage Leverage

Lag Leverage 0.468*** 0.425*** 0.436*** 0.352*** 0.253*** 0.395***

(0.039) (0.051) (0.055) (0.040) (0.046) (0.060)

Asset volatility -0.0761*** -0.0650*** -0.0861*** -0.0585*** -0.0484*** -0.0620***

(0.009) (0.008) (0.024) (0.006) (0.005) (0.015)

VRP proxy -0.0405*** -0.0375*** -0.0342*** -0.0321*** -0.0297*** -0.0181***

(0.006) (0.006) (0.013) (0.005) (0.005) (0.005)

Tobin Q - - - -0.0427*** -0.0522*** -0.108***

- - - (0.009) (0.009) (0.030)

Profitability - - - -0.0300*** -0.0216*** -0.0246**

- - - (0.005) (0.004) (0.010)

Cash - - - -0.0066 -0.00667 -0.0119

- - - (0.006) (0.007) (0.018)

Tangiblity - - - 0.0340** 0.0173 0.0746*

- - - (0.017) (0.021) (0.040)

Log sales - - - 0.0331 0.0108 -0.0118

- - - (0.025) (0.016) (0.041)

Intercept 0.192*** 0.351*** 0.446*** 0.229*** 0.490*** 0.441***

(0.027) (0.042) (0.051) (0.032) (0.053) (0.116)

Industry
average leverage

yes yes yes yes yes yes

Time and firm
fixed effect

yes yes yes yes yes yes

Time and firm
clustered errors

yes yes yes yes yes yes

R-squared 64% 61% 71% 74% 74% 84%

BIC -2997.9 -2783.3 -366.3 -3294.5 -3106.9 -455.1

Obs 959 810 149 959 810 149

54



Appendices

A. Table of the Variables

Place Table 11 about here

Place Table 12 about here

B. Asymmetric Equity Variance Effect

Even without negative correlation between asset returns and asset variance (variance asym-

metry), this simplifying assumption does not reduce the power of the model in qualitatively

replicating asymmetric variance observed at the equity level. It is a stylized fact that equity

returns and return variance have negative correlation.19

In Figure 10, model-implied equity volatility is asymmetric in this paper and has negative

correlation with equity returns. Volatility has one-on-one relation with variance by square-

root transformation. Equations 35 and 36 in Appendix F show the equity process which

creates Figure 10. Without debt, the firm is all equity and there is no correlation between

the returns and volatility by the model assumption. As the fraction of debt in the capital

structure increases, a negative shock to equity return raises equity volatility due to financial

distress costs. Hence, there exists a negative correlation between equity return and its

volatility. The higher is the leverage ratio of the firm, the higher is the asymmetric volatility.

Insert Figure 10 about here.

19See for example Ait-Sahalia, Fan, and Li (2013), Bekaert and Wu (2000), Figlewski and Wang (2001),

and Wu (2001).
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C. Change of Variable

Let’s define ζ = ln(ν/L). By Ito’s lemma, it follows:

(15) dζ = (r − δ − 1

2
V )dt+

√
V dW

Integration over the equation above results in the simple solution of the differential equation:

(16) ζT − ζ0 = (r − δ)T − 1

2

∫ T

0

V dt+

∫ T

0

√
V dW

Defining V̂ = (
∫ T

0
Vsds)/T transfers the above equation into:

(17) ζT − ζ0 = (r − δ − 1

2
V̂ )T +

∫ T

0

√
V dW

The variable ζT follows a Brownian motion with mean ζ0 + (r− δ− 1
2
V̂ )T . The variance for

ζT is
∫ T

0
V dt which is also equal to V̂ T . Therefore, the differential of the process in equation

17 is:

(18) dζT = (r − δ − 1

2
V̂ )dt+

√
V̂ dW

D. Derivation of Security Formulas

1. Debt formula

Since debt value will be conditioned on variance, first I analyze the debt value when the

variance is constant in Equation 4:

(19)
d(ν0) = EQ

(
c+mp
m+r

+ (1− Iτ<T )
[
e−rT (D(νT )− c+mp

m+r
)
]
+

Iτ<T

[
e−rτ ((1− ρ)mL− c+mp

m+r
)
])
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With constant variance, debt value satisfies the following PDE and Dirichlet conditions,

which is similar to the Black-Scholes PDE for contingent claim pricing:

(20)


1
2
V ν2dνν + (r − δ)νdν − (r +m)d+ (C +mP ) = 0,

d(L) = (1− ρ)mL, d(ν → +∞) = c+mp
m+r

With constant variance, the default boundary is also constant and the debt value has a

closed-form solution:

(21)
d = c+mp

m+r
+ e−Hbζ0

(
(1− ρ)mL− c+mp

m+r

)
h =

r−δ− 1
2
V̂√

V̂
Hb =

√
h2+2(r+m)+h√

V̂

where future variance, V̂ , is equal to variance, V , because variance is constant.

I use conditioning on future variance. In Equation 4, new state variables ζ and V̂ replace

ν and V :

(22)
d(ζ0, V̂0) = EQ

[
E
(
c+mp
m+r

+ (1− Iτ<T )
[
e−rT (d(ζT , V̂T )− c+mp

m+r
)
]
+

Iτ<T

[
e−rτ ((1− ρ)mL− c+mp

m+r
)
]
|V̂
)]

Note that d(ζ0, V̂0) does not have the same form as d(ν0, V0), because it is not a linear

transformation. Conditioning on V̂ makes the expression within the parentheses similar to

Equation (19), which has a solution in the form of Equation (21). Variance is constant from

the conditioning and the default boundary is decided and fixed at the start of the period:

(23) d =
c+mp

m+ r
+

(
(1− ρ) mL− c+mp

m+ r

)
E(e−Hbζ0)

The expectation term is presented in Appendix E. A similar method generates formulas for

tax benefits, bankruptcy costs, and equity.
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2. Tax savings and bankruptcy cost formulas

Similar to debt, the derivation uses conditioning on variance and, first, I show the valua-

tion when variance is constant. With constant variance, any claim, F, making continuous

payments C satisfies the following PDE and the solution depends on Dirichlet conditions:

(24)
1

2
V ν2Fνν + (r − δ)νFν − rF + C = 0,

With constant variance, the default boundary is also constant. Tax savings’ formula is:

(25)

TB(L) = 0, TB(ν → +∞) = tax.C/r

TB(ζ0, V̂0) = E

(
tax.C

r
+ (1− Iτ<T )[e−rT (TB(ζT , V̂T )− tax.C

r
)]+

Iτ<T [e−rτ (0− tax.C
r

)]

)
= tax× C

r
− tax× C

r
e−H.ζ0

For bankruptcy costs, the formula is:

(26)

BC(L) = ρL, BC(ν → +∞) = 0

BC(ζ0, V̂0) = E
(

(1− Iτ<T )[e−rTBC(ζT , V̂T )] + Iτ<T [e−rτρL]
)

= ρLe−H.ζ0

A similar method conditioning on future variance as in debt valuation (see Equation 22)

generates formulas for tax benefits and bankruptcy costs:

(27) TB(ζ0, V̂0) = tax× C

r
− tax× C

r
E
(
e−H.ζ0

)

(28) BC(ζ0, V̂0) = ρLE
(
e−H.ζ0

)

The expectation term is derived in Appendix E.
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E. Discounted RN Default Probability and the Mo-

ment Generating Function

1. Taylor expansion

The following derivations apply to the expectation terms in equations 6, 8, and 9. Since the

debt rollovers with rate m, the expectation term in Equation 6 has m as an extra parameter

compared to the other two. Regardless of the form, Taylor expansion of any function within

the expectation term up to the second degree is:

(29)

E
{
F (ζ0, V̂0)

}
' E

{
F
(
ζ0, E[V̂0]

)
+ F ′

(
ζ0, E[V̂0]

)
.
(
V̂0 − E[V̂0]

)
+

1
2
F”
(
ζ0, E[V̂0]

)
.
(
V̂0 − E[V̂0]

)2}
= F

(
ζ0, E[V̂0]

)
+ 1

2
F”
(
ζ0, E[V̂0]

)
.E

[(
V̂0 − E[V̂0]

)2
]

where F (ζ0, V̂0) = exp(−ζ0.Hb) is in Equation 6, and F (ζ0, V̂0) = exp(−ζ0.H) is in equation

8 and 9. I only show the derivation for F (ζ0, V̂0) = exp(−ζ0.H). The other derivations are

similar by replacing H with Hb. Since the function is exponential, deriving its higher order

derivatives is straightforward:

(30)

E
{
exp(−ζ0.H)

}
' exp

(
− ζ0.Ĥ

)[
1− 1

2
(Aζ0 −Bζ2

0 )
]

A = Ĥ ′′.E
[
(V̂0 − E[V̂0])2

]
, B = Ĥ ′2.E

[
(V̂0 − E[V̂0])2

]
Ĥ = H|V̂0=E[V̂0], Ĥ ′ = ∂H

∂V̂0
|V̂0=E[V̂0], Ĥ ′′ = ∂2H

∂V̂ 2
0

|V̂0=E[V̂0]

where E[V̂0] and E[(V̂0 − E[V̂0])2] are presented next.
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2. Future variance moments

To calculate the moments of future variance, this paper uses the Moment Generating Function

(MGF) derived from the Feynman-Kac formula and the method recommended by Tahani

(2005). The MGF is:

(31) MGF (V̂ , x) = E[exp(xV̂ )] = F (V0, x)

The expected value follows Feynman-Kac PDE as function of variance, V , under Q:

(32)
∂F

∂t
+ (κθ − λV )

∂F

∂V
+

1

2
σ2V

∂F

∂V
+ xV F = 0

The solution is exponential-linear in V . Hence, the MGF for V̂ is log-linear in V:

(33)

MGF (V̂ , x) = exp(V0M(T, x) +N(T, x))

M(T, x) =
2x(1− e−ωT )
T (λ+ω)(1+φe−ωT )

N(T, x) = −2κθ
σ2 [log(1+φe−ωT

1+φ
)− (ω−λ)T

2
]

ω =
√
λ2 − 2xσ2

T
; φ = ω−λ

ω+λ

From the MGF, the first and the second moments are calculated asMGF ′|x=0 andMGF ′′|x=0:

(34)

E(V̂0) = V0M1 +N1, E
(

[V̂0 − E(V̂0)]2
)

= V0M2 +N2

M1 = 1−exp(−Tλ)
Tλ

, M2 = σ2

T 2λ3

[
1− 2Tλexp(−Tλ)− exp(−2Tλ)

]
N1 = κθ

λ

[
1−M1

]
, N2 = κθσ2

Tλ3

[
1 + exp(−Tλ)− 2M1

]
− κθ

2λ
M2
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F. Calibration Procedure

Applying Ito’s lemma on Equation 11 generates the model-implied equity process:

(35)

dEq
Eq

= µEqdt+ a1dW
p
1 + b1dW

p
2

a1 = ∂Eq
∂ν0

ν0

Eq

√
V0, b1 = ∂Eq

∂V0

σ
Eq

√
V0

where µEq is the drift for equity-return process. Variance of equity return, σ2Eq
r , is:

(36)

σ2Eq
r = a2

1 + b2
1

dσ2Eq
r = µEqr dt+ a2dW

p
1 + b2dW

p
2

a2 = ∂σ2Eq
r

∂ν0
ν0

√
V0, b2 = ∂σ2Eq

r

∂V0
σ
√
V0

Empirical calibrations use equity value and equity variance.

1. Firm-year calibration

For the model with VRP, the calibration uses a 4-by-4 equation: i) the instant variance, V0,

ii) long-run variance mean, θ, iii) unlevered asset value, ν0, and iv) VRP, |λ − κ|, are set

so that the model implied values match with i) equity value, Eq, ii) historical volatility of

equity return,
√
σ2Eq
r , iii) corporate yield spread, ysp, and iv) the leverage of the firm, Lev,

for each firm-year. In the model without VRP, the stochastic variance parameters, V RP

and θ, do not exist. The process without VRP follows the standard in the literature and the

calibration collapses into solving a 2-by-2 equation: unlevered asset value, ν, and variance,

61



V , calibrate to match the leverage ratio and historical equity volatility:

(37) With VRP



Eq(V0, θ, ν0, λ− κ) = Eqdata√
σ2Eq
r (V0, θ, ν0, λ− κ) = σEqdata

ysp(V0, θ, ν0, λ− κ) = yspdata

Lev(V0, θ, ν0, λ− κ) = Levdata

, Without VRP


√
σ2Eq
r (V0, ν0) = σEqdata

Lev(V0, ν0) = Levdata

where Eqdata is the equity market cap, σEqdata is the historical 365-day equity volatility, yspdata

is the yield spread for the longest bond maturity, and Levdata is the leverage of the firm-year

in data.

With VRP, model-implied equity value and variance are in Equations 11 and 36. Model-

implied market leverage isD/(D+Eq) whereD = d/m and d is in Equation 7. Model-implied

yield spread is calculated using the following equation:

(38) ysp =
Cs

D(Cs)
− r, Cs : P = D(Cs)

To solve the equations, the calibration process minimizes the Mean Absolute Percentage

Error (MAPE). Without VRP, model-implied value for equity is available by plugging Equa-

tions 21, 25, and 26 from Appendix D into Equation 11. From the equity value, equity

volatility is easy to derive similar to Equation 36. Debt from Equation 21 divided by equity

plus debt also result in model-implied leverage. There is no yield spread in the model wit-

hout VRP because this model cannot match the observed yield spreads in data as a stylized

fact (Eom et al. (2004)).

Some other model parameters are set to match the data as well and Table 12 in Ap-

pendix A has the details of the calculations for each variable: outstanding debt, P , is set

equal to total liabilities.20 Outstanding debt’s coupon rate is the continuously compounded

20Debt and leverage calculations are similar to Elkamhi et al. (2012). Trade credits of the firm from its

suppliers or customers are affected by the risk of the firm. There is also evidence that some firms substitute
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annual interest expenses relative to the liabilities. Asset payout rate is 3% to match the

average of the total asset payout. Variance volatility for each firm-year matches volatility for

all the firm-years’ unlevered volatility in the rating. Other model parameters are the same

as the values used in the comparative statics to match the empirical trends (m=0.1, r=0.05,

ρ=0.45, κ=4, T=1). The model without VRP does not have variance volatility, physical

mean-reversion speed, and the decision period.

2. Representative-firm calibration

Since the calibrations are done to the representative firms instead of the firm-years, the

process slightly changes compared to the firm-year calibrations: instant variance is set equal

to the long-run mean and the decision period is two years. Hence, the last equation with

leverage and instant variance from the 4-by-4 calibration in Equation 37 is dropped and the

calibration becomes a 3-by-3 match. Equity value, volatility, leverage, outstanding debt,

outstanding debt’s coupon rate, asset payout rate, and variance volatility match with the

empirical averages similar to the earlier calibration. Other model parameters are the same

as the values used in the comparative statics (m=0.1, r=0.05, ρ=0.45, κ=4) which match the

empirical reports. The model without VRP lacks variance volatility, physical mean-reversion

speed, and the decision period and its 2-by-2 calibration matches equity value and volatility

by adjusting asset variance and size. Plugging the estimated parameters into each model

yields the model-implied optimal leverage.

In section C.1, the calibration is similar with one slight change. Asset VRP and yield

spread is dropped in the model calibration with VRP. Hence, both models are calibrated

in 2-by2 where asset variance and size are adjusted so that model-implied equity value and

volatility match their empirical values. In model with asset VRP, asset VRP is simply the

asset variance exposure times market VRP.

borrowing with trade credits (Petersen and Rajan, 1997; Murfin and Njoroge, 2015).
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G. Sample statistics for data between 2002 and 2015

Place Table 13 about here

H. Robust estimation with bias correction and control

for small sample properties

The inferences are robust when I control for small sample properties with the dynamic-

panel regressions and bootstraped errors. Table 14 shows the results where VRP is more

significant for IG firms than SG firms. The estimated coefficients and the inferences are

also close to the results in Table 10 in magnitude. Estimations are done using the method

described in Bruno (2005), which uses bias-corrected least-squares dummy variable (LSDV)

estimators ( it is embedded in Stata’s LSDVC). The procedure automatically includes lagged

variable while corrects for biases. There are 200 iterations using estimates from the method

recommended by Arellano and Bond (1991) as the initial points. Therefore, the dynamic

regression does not require control for the industry effect and drops the control variables.

This method not only resolves the issue with small sample properties, but also addresses

possible concerns raised by the classical Nickell (1981)’s critique.

Place Table 14 about here
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Figure 10. Replicated volatility asymmetry at the equity level implied by the model:
X-axis shows the market leverage ratio of the firm. Y-axis shows negative
correlation between equity returns and equity volatility, known as stock
volatility asymmetry. Volatility is the standard deviation of equity returns.
Coupon for outstanding debt is the risk-free rate times the face-value of
debt, C = rP . Initial and mean variances are the same, θ = V0. Initial asset
value is $100 and it is scalable. Historical variance mean-reversion speed,
κ, is 4, VRP, |λ− κ|, is 2, risk-free rate, r, is 5%, asset payout rate, δ, is 3%,
PBC rate, ρ, is 45%, tax rate is 25%, and debt rollover rate, m, is 10%.
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Table 11-The list of the variables in the model

ν unlevered asset value,
√
V volatility,

V variance of unlevered asset returns T period length for following optimal default policy

λ Risk-Neutral (RN) speed of mean-reversion V̂ future variance

κ mean-reversion speed under physical measure Iτ<T is 1, if default happens prior to time T

λ− κ Variance Risk Premium (VRP) δ assets’ payout rate

r risk-free rate σ variance volatility

θ mean variance (long-run or long-term variance) y debt yield

θ∗ RN mean variance ysp credit spread, yield spread or credit premium

tax tax rate C debt’s coupon (interest) payment

µ return drift under physical measure P P outstanding face value of the firm’s debt

D debt value Eq equity value

L∗ optimal default boundary ρ proportional bankruptcy cost (PBC) rate

d new debt’s value c newly issued debt’s coupon

p newly issued debt’s face value M average debt maturity (=1/m)

α Asset variance exposure to market VRP
√
b asset beta

W p
i

independent Brownian motions under physical
measure P, i={1,2} Wi

independent Brownian motions under RN
measure Q, i={1,2}
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Table 12-The list of the empirical variables with Compustat codes for the calculation
of each variable.

Equity market
cap

Total common shares times stock price (CSHO × PRCC F)

Leverage
The total book value of liabilities to the market cap of equity plus the book liabilities

(Lev=LT/(LT+CSHO × PRCC F))

Historical equity
volatility

Historical standard deviation of equity returns for 365 days from Optionmetrics (RV)

Historical equity
beta

Historical covariance of equity returns and CRSP value-weighted index divided by its variance
with minimum 60 days and maximum 250 days of returns (βequity)

Option-implied
equity volatility

Daily average for 365-day-option implied equity standard deviation across all the strike prices
in volatility surface from Optionmetrics (IV)

Asset VRP
proxy

The ratio of the historical annual average of option-implied equity volatility to the historical
equity volatility based on the same period (Mean365day(IV )/RV )

Market VRP
proxy

The ratio of the difference between CBOE VIX and historical 30-day S&P volatility to
historical volatility ((V IX − V ol)/V ol)

Exposure to
market variance

90-day correlation between squared option-implied 30-day volatility and squared VIX
(Corr90day(IV

2
30day, V IX

2) )

Asset volatility
proxy

Unlvered historical equity volatility ((1-Lev) × RV)

Asset beta
proxy

Unlvered historical equity beta ((1-Lev) ×βequity )

Corporate yield
spread

Credit spread, Yield of longest maturity bond less the maturity-matching risk-free rate

Asset payout
Payout to shareholders (dividends and share repurchases) plus interest payments divided to

assets ((DVPSP F*CSHO +PRSTKC +XINT)/(LT+Equity) )

Variance
volatility

The standard deviation of unlevered equity volatility for all the firm-years in the rating

Tobin’s Q
Equity market cap, liabilities and preferred shares less taxes divided by the book assets

((CSHO × PRCC F + LT + PSTKL - TXDITC)/AT)

Tangibility
Proxy for bankruptcy costs, the ratio of the property, plant and equipment to the assets

(PPENT/AT)

Profitability
Operating income divided by the book

assets (OIBDP/AT)
Cash

The ratio of cash and equivalents to
the book assets (CHE/AT)

Log(Sales)
The natural log of the revenues

(log(SALE))
Risk-free rate US treasury notes rates

Coupon rate, C
Continuously compounded coupon

rate (ln(1 +XINT/LT ))
Outstanding

debt, P
Total liabilities (LT)
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Table 13- More descriptive statistics for the sample of the rated firm-years used in
the regressions (2002-15): The sample is the same as in Table 8 from merged
Compustat and Optionmetrics. Table 12 in Appendix A has the details of the
variable calculations. Tobin’s Q is market to book value of assets. Profitability
is the operating income ratio. Cash is the ratio of the cash holdings. Tangi-
bility is the ratio of the tangible assets and the proxy for bankruptcy costs.
Log(Sales) is the natural log of the revenues. Asset payout is the total payout
to debt and equity holders relative to size. Leverage is the total liabilities to
the market cap of equity plus the liabilities. Unlevered volatility is the histo-
rical volatility of stock returns unlevered with the leverage to proxy for the
assets’ historical volatility. VRP proxy represents the asset VRP and is the
ratio of equity option-implied to historical volatilities.

Rating statistic Tobin’s Q Profitability Cash Tangibility Log(sales)
Unlevered
volatility

VRP
proxy

Asset
payout

AAA Mean 2.34 18.9% 23.0% 12.9% 11.17 15.5% 1.12 4.7%
32 Std 0.80 7.2% 16.2% 4.2% 0.44 8.2% 0.23 1.6%
AA Mean 2.23 16.8% 10.1% 28.5% 10.85 14.3% 1.14 4.0%
83 Std 0.84 5.7% 6.4% 15.9% 1.21 6.2% 0.18 1.8%
A Mean 2.11 17.4% 8.5% 32.2% 9.75 17.1% 1.07 4.0%

365 Std 0.87 6.4% 7.9% 20.8% 0.96 7.2% 0.17 2.0%
BBB Mean 1.48 13.2% 8.8% 33.3% 9.35 16.7% 1.03 4.3%
331 Std 0.50 4.9% 7.8% 24.6% 0.94 7.1% 0.16 4.8%

IG firms Mean 1.87 15.7% 9.3% 31.5% 9.75 16.6% 1.06 4.1%
811 Std 0.80 6.2% 8.7% 22.0% 1.10 7.1% 0.17 3.4%

BB Mean 1.27 10.5% 10.6% 28.7% 8.63 17.7% 1.03 4.0%
90 Std 0.35 5.4% 8.6% 15.8% 1.13 8.9% 0.18 3.9%
B Mean 1.35 8.1% 11.9% 31.9% 9.06 16.2% 1.02 3.5%
51 Std 0.35 7.0% 8.6% 16.4% 1.25 9.0% 0.22 1.8%

CCC Mean 1.24 4.0% 13.2% 57.8% 8.95 13.7% 1.00 4.3%
8 Std 0.25 4.8% 3.5% 16.1% 1.31 6.3% 0.22 0.6%

All Mean 1.78 14.7% 9.6% 31.5% 9.61 16.6% 1.06 4.1%
960 Std 0.78 6.6% 8.6% 21.3% 1.16 7.4% 0.18 3.4%
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Table 14- Regression results with small-sample controls: the results are similar to
Table 10. Stata’s LSDVC procedure estimates bias-corrected least-squares
dummy variable (LSDV) model. The procedure automatically includes lagged
variable and corrects its inclusion bias. The model is Levi,t = (1 − Ψ)Levi,t−1 +
a0 +

∑
k ΨakXk,i,t where X has standardized independent variables and control

dummies. Independent variables are described in Table 13. Table 12 in Ap-
pendix A has the details of the variable calculations. IG-firms sample only has
all the firm-quarters rated as investment grade by S&P. SG-firms sample only
has all the firm-quarters rated as none investment-grade or speculative grade
by S&P. Dummies for years and firms control for time and firm fixed effects.
Standard errors are corrected for small sample properties with bootstrapping
200 iterations and they are reported below the estimates. The p-values test
the null hypothesis that the coefficient is zero:∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
Coefficients for the standardized variables show the relative importance of each
variable in determining the target leverage.

Parameter Estimated Coefficients for each statistical regression

Model (1) (2) (3)

Sample All IG firms SG firms

Dependent
variable

Leverage Leverage Leverage

Lag Leverage 0.415*** 0.317*** 0.504***

(0.026) (0.033) (0.092)

Asset volatility -0.0617*** -0.0504*** -0.0608***

(0.004) (0.004) (0.011)

VRP proxy -0.0316*** -0.0304*** -0.0162

(0.003) (0.003) (0.010)

Tobin Q -0.0420*** -0.0544*** -0.0605

(0.005) (0.005) (0.040)

Profitability -0.0269*** -0.0186*** -0.0259

(0.004) (0.005) (0.017)

Cash -0.0029 -0.00364 -0.0193

(0.004) (0.004) (0.019)

Tangiblity 0.0659*** 0.0383*** 0.085

(0.011) (0.013) (0.068)

Log sales 0.0328*** 0.00124 0.0134

(0.010) (0.012) (0.046)

Time and firm
fixed effect

yes yes yes

Obs 814 683 131
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I. Internet appendices

1. From EBIT to unlevered value

Operating incomes (EBIT) from assets follow Geometric Brownian motion with stochastic

variance under both measures:

(39) P :


dEBIT
EBIT

= (µ− δ)dt+
√
V dW p

1

dV = κ(θ − V )dt+ σ
√
V dW p

2

Q :


dEBIT
EBIT

= (r − δ)dt+
√
V dW1

dV = λ(θ∗ − V )dt+ σ
√
V dW2

The EBIT and payout rate are strictly positive to assure unlevered asset value is always

positive, where I borrow the assumption from Goldstein et al. (2001). The value of the

unlevered assets, ν, that generate the income is the present value of all the future cashflows

from operating income. Since EQ(EBITs|EBITt) = EBITte
(r−δ)×(s−t), the value is :

(40) νt = EQ
( ∫ ∞

t

(1− τ)e−r(s−t)EBITsds
)

=
(1− tax)

δ
EBITt

By applying Ito’s lemma to Equation 40, the unlevered-asset return process also follows

Geometric Brownian with stochastic variance under both measures as in Equation 1.

2. Economic Assumptions

In this economy, assets are traded and their premium can be determined. But, variance is not

traded and in order to determine the instant variance premium, Heston (1993) assumes that

the instant premium is proportional to variance itself following Cox et al. (1985). Therefore,

70



the stochastic discount factor, SDF , and the premiums of the returns follow:

(41)

dSDF
SDF

= −rdt− µ−r√
V
dW p

1 −
(λ−κ)

√
V

σ
dW p

2 , d〈W p
1 ,W

p
2 〉 = 0, EP[dν

ν
]− EQ[dν

ν
] = −EP [dSDF

SDF
dν
ν

] = (µ− r)dt = AP.dt

EP[dV
V

]− EQ[dV
V

] = −EP [dSDF
SDF

dV
V

] = (λ− κ)dt = V RP.dt

where AP is the asset premium. When variance, V , is constant, the model collapses into

classical Black-Scholes economy with classical stochastic discount factor:

(42) dW p
1 = µ−r√

V
dt− dW1, AP = µ−r√

V
×
√
V = µ− r, dSDF

SDF
= −rdt− AP√

V
dW p

1

In another representation, Barras and Malkhozov (2016) define the following as the pre-

miums where the expected values are based on Equation 1:

(43)

EP[dν
ν

]− EQ[dν
ν

] = (µ− r)dt = AP.dt, EP[dV ]− EQ[dV ] = (λ− κ).V dt = V RP.V dt,

EP[dV ]−EQ[dV ]
V

= V RPdt = (λ− κ)dt

In this setup which is used in options literature, λ− κ is the relative difference between RN

and historical instant variances. The results are similar to the assumptions in Heston (1993).

3. Example of different exposures to market shocks and market

variance risk

Let’s consider two firms: one firm has high exposure to market variance, α, with low beta,
√
b,

and idiosyncratic variance, Vi. But, the other has low exposure to market variance and high

beta and idiosyncratic variance. The first is relatively more exposed to variance shocks and

the later is relatively more exposed to return shocks. Low-VRP firm has high asset beta and

total variance, but it has low VRP because it has relatively small proportion of systematic
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variance compared to the high-VRP firm. High-VRP firm, on the other hand, has low asset

beta and total variance, but its asset VRP is high because of small idiosyncratic variance

and relatively large systematic variance. While it has no effect on asset beta, idiosyncratic

variance reduces the impact of market variance shocks and premium to be transferred to the

firm.

Table 15 shows the numerical example. Total volatility and asset VRP for high-VRP firm

are within estimated ranges for IG firms and total volatility and asset VRP for low-VRP

firm are within the range for B firms in Table 8. Market variance risk exposure for high-VRP

firm is within the range for IG firms and the exposure for low-VRP fimr is within the range

for B firm in Table 6.

Place Table 15 about here

4. Proof for Proposition1

All state variables are Markov. Optimal default boundary, L∗, is chosen based on Markov

state variables, which also makes L∗ a Markov variable.

Assumption 1. Equity value at each point of time is monotonic and increasing in the firm’s

value, given all other parameters being constant (ν1 < ν2 → Eq(ν1) ≤ Eq(ν2))

The assumption is plausible because if Eq(ν1) > Eq(ν2), then shareholders will destroy

part of the firm’s value to move it to ν1. Therefore, the equity value at ν2 cannot be smaller

than ν1, and the equity value at ν2 is at least as large as the equity value at ν1.

Assumption 2. The equity function is a continuous function of the unlevered firm value for

all parameters and other state variables.

PROPOSITION 1. The optimal default triggering boundary L∗ is independent of the firm’s

current value, if the firm’s value is above the boundary.

The proposition is analogical to the optimal exercise policy of an American put option;
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the optimal exercise boundary of the put is independent from the underlying asset’s value

as long as the put is not exercised.

Proof : The rationale of the proof is about showing that the optimal boundary is the

same for two different firm values. For the firm’s value below default boundary, the firm

defaults, equity is valued at zero, and debt holders are in control of the firm. Hence, I only

consider the values above the boundary. Based on the rationality of investors equity value

is positive for any asset value above the boundary, L∗. Shareholders maximize equity value,

Eq({ν,Σ}; Θ), where Θ={all model parameters} and {ν,Σ}={all state variables including

current unlevered firm-value}. Based on the smooth pasting condition, the optimal control

variable must satisfy ∂Eq(Θ;{ν,Σ})
∂ν

|(ν=L∗) = 0. From Assumption 1 and Assumption 2, the

equity function is monotonic and continuous. Therefore, the solution to the smooth pasting

condition is unique. Ceteris paribus, this result implies that the optimal default policy

is the same for two completely similar firms with only different unlevered assets’ values

(L∗[Θ; {ν1,Σ}] = L∗[Θ; {ν2,Σ}]).

5. Approximation Errors

The approximation errors are small and closed-form debt value with Taylor expansion to the

second degree is close to the value from the simulations. The closed-form formula slightly

overestimates the value of debt and leverage compared to the simulation. Hence, using the

closed-form is more parsimonious because debt value is even slightly lower with VRP based

on simulations, which implies stronger negative effect of VRP on leverage.

For the simulations, I draw 100,000 paths of both variance and unlevered asset value with

weekly steps, ∆t = 1/50, under RN measure :

(44)
νt = νt−∆t exp

(
(r − δ − Vt−∆t

2
)∆t+

√
∆t
√
Vt−∆tz1

)
Vt = Vt−∆t exp

(
[λ(κθ

λ
−Vt−∆t)−σ

2

2
]∆t+

√
∆tσ
√
Vt−∆tz2

Vt−∆t

)
where z1 and z2 are respectively standard normal shocks to the asset return and variance
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under RN measure. Random numbers are all antithetic to increase convergence in the

results. Although the path is discrete, the process is time continuous. At the end of each

year, T = 1, I calculate and update the default boundary, L, as in Equation 12. For each

path, if asset value hits the boundary, firm defaults and creditors control the firm. To

value their debt, I discount the firm’s value less the default costs plus all the coupons up to

the default. Otherwise, I discount debt’s market value, considering the bond sold after 50

years for the constant-variance price, plus all the coupons during the 50 years. This method

allows me to calculate the debt value under the perpetual process. Although this violates the

model assumption about stochastic volatility, it has a minor effect on the results because the

discounting time is after 50 years, e−50r ≈ 0.08. If the path does not hit default, I calculate

the market value of debt using Equation 21 on year 50 and discount it to time 0.

Simulating perpetual stochastic variance processes has a main obstacle that is having an

infinite time dimension. It is not yet possible to simulate this process with an infinite horizon.

Therefore, I assume the variance to stay constant after 50 years at the mean level under the

RN measure. At the end of 50 years with this assumption, there exists a closed-form formula

and it is the closest value to estimate the terminal debt value.

Figures 11 and 12 show the results. Average and median of the debt value from all the

paths provides the simulated value for the perpetual debt. VRP is 2 within the range of

empirically estimated values. Instant and long-run variances are equal to 0.04, 0.2 squared.

The rest of the parameters are also similar to calibrations. The results for the tax benefits

and bankruptcy costs are similar because they follow a similar derivation.

Insert Figure 11 about here.

Insert Figure 12 about here.
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6. 3-by-3 calibration statistics for data (2002-15)

The results are robust to dropping leverage in the calibrations. In the model with VRP,

dropping the leverage from the calibration reduces the equations into 3-by-3 match where I

drop instant variance and assume it is equal to the long-run mean. This is a more restrictive

assumption because it assumes that the variance term structure is flat and the asset VRP is

more important. The 2-by-2 calibration for the model without VRP also misses the leverage

and the equity value replaces leverage in the calibration. Table 16 shows the results. The

comparison between optimal leverage from each model shows that the model with VRP

implies lower leverage closer to the observed leverage, especially for IG firm-years.

Place Table 16 about here

Table 15-Examples of two firms with different exposure to market risk and market
variance risk: This table shows that a firm with low asset beta can have
high asset VRP and vice versa. Asset beta measures the exposure of the
assets to market return premium and return shocks. Asset VRP measures
the exposure of the assets to market VRP and variance shocks. Proportional
variance from market exposure is also correlation of total asset variance with
market variance. Market variance is set to 4% and market VRP is set to 4
reported by Ait-Sahalia and Kimmel (2007). The correlations are in the range
of the empirical values in Table 6. Total volatility and asset VRP are within
ranges in Table 8 . All the numbers are calculated based on Equation 3.

High-VRP firm Low-VRP firm

Positive constant, b1 1 b2 1.2

Idiosyncratic variance, Vi1 (24%)2 Vi2 (45%)2

Proportional variance from
market exposure, α1

50% α2 20%

Total volatility,
√
V1 32%

√
V2 50%

Asset beta, β1 1.00 β2 1.10

Total asset variance, V1 10% V2 25%

VRP, |λ1 − κ1| 2.00 |λ2−κ2| 0.8
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(a) Without debt roll over (b) With debt roll over

Figure 11. Comparing the approximate closed-form values with the simulations: X-
axis shows face value of debt, P . Y-axis shows the value of the variables
of interest: the first row is for debt value, the second row is the market
leverage ratio, D/(D + Eq), and the third row is the quasi-market leverage
(QML), P/(P +Eq). Coupon for outstanding debt is the risk-free rate times
the face-value of debt, C = rP . Initial and mean variances are the same,
θ = V0, and set to 0.04, 0.2 squared. Initial asset value is $100 and it is
scalable. Historical variance mean-reversion speed, κ, is 4, VRP, |λ − κ|,
is 2, risk-free rate, r, is 5%, asset payout rate, δ, is 3%, PBC rate, ρ, is
45% and tax rate is 25%. Debt rollover rate, m, is 10%. There are 100,000
simulation paths. For each path, I discount the value of debt to time zero,
either from default or after 50 years at estimated perpetual value, and also
measure leverage and QML. The box is between 25 and 75 percentiles of
the simulated values.
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Table 16-Results for calibrations without leverage on the rated firm-years (2002-15):
The table is comparable to Table 8. Table 12 in Appendix A has the details
of the variable calculations. The last four columns report the statistics for the
parameters in a 3-by-3 calibration with VRP to the firm-years as in Equa-
tion 37 and the error without having leverage. Asset VRP, |λ− κ|, is the price
of variance risk. Size, ν0, is the unlevered value of the firm’s assets. Mean vo-
latility is the square-root of the mean asset variance,

√
θ. MAPE is the mean

average percentage error between model-implied and observed values in the
calibration. The first two columns report the statistics for the optimal levera-
ges with and without VRP as implied by the calibrated parameters. These
columns are comparable with actual leverage. The optimal leverage for the
model without VRP is implied by the parameters in a 2-by-2 calibration as in
Equation 37 where equity value replaces leverage.

Optimal leverage Calibrated values in the model with VRP

Rating statistic With VRP
Without

VRP
Asset VRP Size

Mean
volatility

MAPE

AAA Mean 44.2% 54.5% 3.45 340,754 17.2% 20%

32 Std 9.9% 11.2% 0.92 230,505 8.2% 15%

AA Mean 42.9% 54.9% 3.66 188,772 16.3% 22%

83 Std 7.0% 9.1% 0.87 172,226 6.4% 16%

A Mean 40.1% 50.5% 3.47 49,312 19.3% 16%

365 Std 5.2% 7.8% 1.04 44,886 7.4% 15%

BBB Mean 40.6% 51.0% 3.48 29,539 19.6% 13%

331 Std 6.9% 9.1% 0.99 42,168 7.9% 13%

IG firms Mean 40.7% 51.3% 3.49 67,014 19.0% 16%

811 Std 6.5% 8.8% 1.00 108,907 7.6% 15%

BB Mean 39.7% 51.1% 3.56 14,649 21.6% 13%

90 Std 7.4% 11.2% 0.85 32,627 10.5% 13%

B Mean 41.3% 54.0% 3.09 23,087 22.3% 15%

51 Std 9.2% 14.6% 1.36 58,314 10.9% 23%

CCC Mean 40.2% 53.4% 3.65 34,160 21.4% 21%

8 Std 10.2% 7.8% 0.64 68,392 9.2% 28%

All Mean 40.7% 51.4% 3.48 59,283 19.5% 15%

960 Std 6.8% 9.4% 1.01 102,979 8.2% 15%
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(a) Without debt roll over (b) With debt roll over

Figure 12. Median approximation errors: X-axis shows face value of debt P . Y-axis
shows the approximation error for each value. All the parameters are the
same as Figure 11.
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