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Abstract 

In this paper we present a new approach to analyse the interconnectedness between a macro-

level network and a local-level network. Our methodology is developed on the Diebold and 

Yilmaz connectedness measure and it considers the presence of entities within a global network 

which can influence other entities within their own local network but are not relevant enough to 

influence the entities which do not belong to the same local network. This methodology is then 

applied to the Maltese domestic investment funds sector and we find that a high-level correlation 

between the domestic funds can transmit higher spillovers to the local stock exchange index and 

to the government bond secondary market prices. Moreover, a high correlation among the 

Maltese domestic investment funds can increase their vulnerability to shocks stemming from 

financial indices, and therefore, investment funds may potentially become a shock transmission 

channel.  

JEL Classification: C32, C58, G10, G23 

Keywords: Network model, investment funds, interconnectedness, contagion, systemic risk, 

herding behaviour. 
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Introduction 

The analysis of interconnectedness and contagion, with the latter defined as an increase in 

interconnectedness attributable to a turmoil in the markets (Forbes & Rigobon, 1999), became an 

established topic of studies in the academic field by the end of the 1990s. Initially the focus was 

on cross-correlations and how these change in extreme events (Boyer, et al., 1997; Loretan & 

English, 2000; Longin & Solnik, 2001). The global financial crisis and the renewed focus on systemic 

risk and financial stability exposed the weaknesses of the existing methodologies, thus requiring 

new and more sophisticated methodologies to analyse and assess properly the interlinkages 

between financial institutions. One of the methodologies which received significant attention in 

the field of contagion analysis is the CoVaR approach of Adrian and Brunnermeier (2011), which 

measures the change in the Value-at-Risk of the financial system conditioned on one or more 

institutions being in distress. 

 

The interconnectedness analysis took an alternative approach to the usual analysis of the 

correlation coefficients behaviour, as it started being applied to the identification of financial 

networks. Each node in the network represents one financial entity, so that the 

interconnectedness analysis focuses on the strength and the direction of the edges linking these 

nodes. This network analysis mainly follows two approaches. 

 

The first approach follows the seminal work of Allen and Gale (2000) and is based on the 

identification of the direct linkages between institutions using granular data such as direct 

exposures through deposits, borrowings and investments in equity shares. Initially, this strand of 

research was constrained by the fact that the amount of granular data required for this approach 

was limited. However, in the aftermath of the global financial crisis, regulators introduced new 

and more comprehensive reporting requirements for financial institutions. This facilitated the 

publishing of new studies on network analysis in banks (among others Espinosa-Vega and Solé 

(2010) and Covi, Gorpe and Kok (2019), in different financial institutions (Abad, et al., 2017) and in 

derivatives (D'Errico & Roukny, 2019; Rosati & Varica, 2019). In the Maltese scenario, Fenech and 

Zahra (2020) follow this approach to reconstruct and analyse the underlying network of Maltese 

financial institutions (namely banks, insurance undertakings and mutual funds) using granular 

data submitted by the entities licensed with the MFSA. 

 

The second approach is based on the use of market data to identify, usually through statistical 

methodologies, indirect linkages between entities. The most popular methodology in this strand 

of research was developed by Diebold and Yilmaz (2009, 2012, 2014). This methodology analyses 

the equity returns or volatility data through a Vector Autoregressive (VAR) Model, and it uses the 

forecast error variance decomposition to study the interlinkages between entities in the network. 

Similar to Diebold and Yilmaz (2009), Billio et al. (2012) developed a network of financial 

companies starting from a VAR model but the linkages between these companies were studied 

using a pairwise Granger-causality analysis. 

 

Our study builds on the Diebold and Yilmaz methodology and presents a new approach to 

analyse multi-level networks. In particular, our methodology considers financial entities which, 
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despite belonging to the same global financial network, may form part of different sub-networks 

in terms of relevance or geographical area. The main novelty of our methodology is that it 

considers the presence of a ‘macro-level’ network and a ‘local-level’ network. The ‘macro-level’ 

network is composed of various large indices whose developments influence the whole global 

network. The ‘local-level’ network is composed of entities whose developments can impact the 

other entities in the same local network but are not important enough to influence the whole 

global network.   

 

We apply our new methodology to the Maltese domestic investment funds. The application of 

such interconnectedness analysis to investment funds is particularly suitable as a large quantity 

of market data is available for building satisfactory time series. Moreover, investment funds tend 

to have limited direct exposure to each other, with the interconnectedness arising mainly from 

their joint exposure to the same market factors and to the same underlying individual securities 

forming part of their investment portfolio. Spillovers between funds and financial markets could 

be especially relevant in the case where the latter are not particularly liquid, and in those market 

niches where funds play a dominant role. In the Maltese scenario, where only few transactions 

occur in the stock exchange, if investment funds start receiving significant redemptions due to 

poor performance, the fund managers may need to sell off local equities and bonds to meet 

these redemptions, depressing prices in the Maltese financial markets. Through the Diebold and 

Yilmaz methodology it is possible to analyse the interlinkages in the investment funds sector even 

when granular data on exposures is not available. The application of the Diebold and Yilmaz 

methodology in the context of investment funds is relatively new, with just a few examples in 

recent years (among the few, Manicaro and Falzon (2017), Meglioli (2019) and ESMA (2020)). In 

this paper we study the relationship between the correlation structure of domestic funds and the 

spillovers which they receive and transmit. We find that if funds become more correlated for a 

prolonged period of time, they could become more vulnerable to external shocks and they tend 

also to transmit more shocks to the local bond and equity markets. 

 

The paper is structured as follows: the next section presents the methodologies applied to the 

generalised case and to the specific case studied in this paper. Then, we present the empirical 

application to the Maltese domestic investment funds. Finally, we analyse our findings from a 

financial stability perspective.  

Methods and Approach 

Generalised Case 

Consider a global network formed by two different levels: a macro-level and a (or several) local-

level network(s). The macro-level network is composed of variables which can influence all the 

variables in the global network, such as the US GDP or the S&P500 index given their size and 

importance. However, it is assumed that the variables in the macro-level network are affected 

only by other variables in the macro-level network, but not by the variables in the local-level 

network. Conversely, the local-level network comprises of relatively small variables, such as the 

GDP and the stock indices of small or closed-economies, which are interconnected between 

themselves and may be affected by developments in the macro-level network. However, these 
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variables are not big enough to have an impact on the macro-level variables or on variables in 

the other local networks. 

 

Consider 𝑚 variables 𝑤𝑖 in the macro-level network and 𝑛 variables 𝑦𝑖 belonging to the local-

level network. Starting from the general case in which 𝑤𝑖 is modelled through a VAR(p) model 

while 𝑦𝑖 is modelled as a VAR(q) model, we will have: 

𝒘𝑡 = 𝒄 + ∑ 𝚽𝑖𝒘𝑡−𝑖

𝑝

𝒊=1

+ 𝝐𝑡 (1) 

 

and 

𝒚𝑡 = 𝒂 + ∑ 𝚯𝑖𝒚𝑡−𝑖

𝑞

𝑖=1

+ 𝜷𝒘𝑡 + 𝜼𝑡 = 𝒂 + ∑ 𝚯𝑖𝒚𝑡−𝑖

𝑞

𝑖=1

+ 𝜷 (𝒄 + ∑ 𝚽𝑖𝒘𝑡−𝑖

𝑝

𝑖=1

+ 𝝐𝑡) + 𝜼𝑡 (2) 

 

where 𝒘𝑡 is an 𝑚 × 1 vector, 𝝐𝑡 is serially uncorrelated with distribution 𝑁(𝟎, 𝚺𝝐), 𝒚𝒕 is an 𝑛 × 1 

vector where the residual 𝜼𝑡 is also assumed to be serially uncorrelated with distribution 𝑁(𝟎, 𝚺𝜂) 

and 𝜷 is an 𝑛 × 𝑚 matrix.  

This can be written in a single VAR(max(p,q)) framework as: 

(
𝒚𝑡 − 𝝁𝑦

𝒘𝑡 − 𝝁𝑤
) = ∑ (

𝚯𝑖 𝜷𝚽𝑖

𝟎 𝚽𝑖
) (

𝒚𝑡−𝑖 − 𝝁𝑦

𝒘𝑡−𝑖 − 𝝁𝑤
)

ma x(𝑝,𝑞)

𝑖=1

+ (
𝑰 𝜷
𝟎 𝑰

) (
𝜼𝑡

𝝐𝑡
) (3) 

 

Let’s define 𝝃𝑡 as: 

𝝃𝑡 = [
𝜼𝑡  
𝝐𝑡

] 

Since the noise term 𝝐𝑡 enters in 𝒚𝑡’s equation as an exogenous variable, then the covariance 

matrix of 𝝃𝑡   can be defined as: 

𝚺𝜉 = [
 𝚺𝜂  𝟎

 𝟎   𝚺𝜖
]. 

Moreover, 

(
𝝁𝑦

𝝁𝑤
) = [𝑰 −  ∑ (

𝚯𝑖 𝜷𝚽𝑖

𝟎 𝚽𝑖
)

ma x(𝑞,𝑝)

𝑖=1

]

−1

(
𝒂

𝜷𝒄) (4) 

 

At this point, substituting for the term (
𝑰 𝜷
𝟎 𝑰

) (
𝜼𝑡

𝝐𝑡
) with the noise term (

𝜼𝑡
∗

𝝐𝑡
), we can rewrite Eq. 

3 in a more traditional VAR model as: 

(
𝒚𝑡 − 𝝁𝑦

𝒘𝒕 − 𝝁𝑤
) = ∑ (

𝚯𝑖 𝜷𝚽𝑖

𝟎 𝚽𝑖
) (

𝒚𝑡−𝑖 − 𝝁𝑦

𝒘𝑡−𝑖 − 𝝁𝑤
)

ma x(𝑝,𝑞)

𝑖=1

+ (
𝜼𝑡

∗

𝝐𝑡
) (5) 

or, 
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𝒛𝑡 = ∑ 𝚽𝑖
∗𝒛𝑡−𝑖

ma x(𝑝,𝑞)

𝑖=1

+ 𝝃𝑡
∗ (6) 

 

with 𝒛𝑡 = (
𝒚𝑡 − 𝝁𝑦

𝒘𝑡 − 𝝁𝑤
), 𝚽𝑖

∗ = (
𝚯𝑖 𝜷𝚽𝑖

𝟎 𝚽𝑖
) and 𝝃𝑡

∗ = (
𝜼𝑡

∗

𝝐𝑡
). Moreover, the covariance of 𝝃𝑡

∗ 

becomes: 

𝚺𝜉∗ = (
𝑰 𝜷
𝟎 𝑰

) (
 𝚺𝜂  𝟎

 𝟎   𝚺𝜖
) (

𝑰 𝟎
𝜷′ 𝑰

) = [
 𝚺𝜂 + 𝜷𝚺𝜖𝜷′  𝜷𝚺𝜖

 𝚺𝜖𝜷′   𝚺𝜖
] 

 

 

 

Through Eq. 6 it is now possible to derive the moving average representation: 

𝒛𝑡 = ∑ 𝛚𝑖
∗𝝃𝑡

∗

∞

𝑖=1

 (7) 

 

with 

 𝛚𝑖
∗ = {

𝟎 ,                                      𝑖 < 0
𝑰 ,                                       𝑖 = 0

∑ 𝚽𝑗
∗𝛚𝑖−𝑗

∗  ,        𝑖 > 0 
ma x(𝑞,𝑝)
𝑗=1

   and  𝛚𝑖
∗ = (

𝝎𝑖
∗11 𝝎𝑖

∗12

𝟎 𝝎𝑖
∗22) 

 

Using the moving average representation, if the information available is only till time 𝑡, the 

forecast error of the value of 𝒛𝑡+ℎ is equal to: 

𝒗𝑡+ℎ = 𝒛𝑡+ℎ − 𝒛(𝑡+ℎ|𝑡) =   ∑ 𝛚𝑗
∗𝝃𝑡+ℎ−𝑗

∗  

ℎ−1

𝑗=0

=    ∑ (
𝝎𝑗

∗11 𝝎𝑗
∗12

𝟎 𝝎𝑗
∗22) 

ℎ−1

𝑗=0

(
𝜼𝑡+ℎ−𝑗

∗

𝝐𝑡+ℎ−𝑗
)  

=  ∑ (
𝝎𝑗

∗11 𝝎𝑗
∗12

𝟎 𝝎𝑗
∗22) 

ℎ−1

𝑗=0

(
𝜼𝑡+ℎ−𝑗 + 𝜷𝝐𝑡+ℎ−𝑗

𝝐𝑡+ℎ−𝑗
) 

                             = ∑ (
𝝎𝑗

∗11𝜼𝑡+ℎ−𝑗 + (𝝎𝑗
∗11𝜷 + 𝝎𝑗

∗12)𝝐𝑡+ℎ−𝑗 

𝝎𝑗
∗22𝝐𝑡+ℎ−𝑗

) 

ℎ−1

𝑗=0

 

(8) 

 

Once the matrix 𝛀𝑖 is defined as: 

𝛀𝑖 = (
𝝎𝑖

∗11 𝝎𝑖
∗11𝜷 + 𝝎𝑖

∗12

𝟎 𝝎𝑖
∗22 ) (9) 

 

the forecast error of the value of 𝒛𝑡+ℎ can be written simply as: 

𝒗𝑡+ℎ = ∑ 𝛀𝑗𝝃𝑡+ℎ−𝑗 

ℎ−1

𝑗=0

 (10) 

 

Therefore, the covariance matrix of the forecast error can be written as: 
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Cov(𝒗𝑡+ℎ) =  ∑ 𝛀𝑗𝚺𝜉𝛀′𝑗

ℎ−1

𝑗=0

 (11) 

 

At this point, it is possible to follow step by step the framework of Pesaran and Shin (1998) for the 

generalised variance decomposition. Assuming a shock in the 𝑘𝑡ℎ variable (were 𝑘 goes from 1 

to 𝑛 + 𝑚), the new conditional forecast error becomes equal to: 

𝒗𝑡+ℎ
𝑘 = ∑ 𝛀𝑗(𝝃𝑡+ℎ−𝑗 − 𝐸(𝝃𝑡+ℎ−𝑗|

ℎ−1

𝑗=0

𝜉𝑘,𝑡+ℎ−𝑗)) (12) 

 

and the covariance matrix of the conditional forecast error becomes: 

Cov(𝒗𝑡+ℎ
𝑘 ) =  ∑ 𝛀𝑗𝚺𝜉𝛀𝑗

′

ℎ−1

𝑗=0

− 𝜎𝑘𝑘
−1 ∑ 𝛀𝑗𝚺𝜉𝐞𝑘𝐞𝑘

′ 𝚺𝜉𝛀𝑗
′

ℎ−1

𝑗=0

 (13) 

 

where 𝜎𝑘𝑘 is the 𝑘𝑡ℎ diagonal element of 𝚺𝜉 and 𝒆𝑘 is a selection vector which takes the value of 

1 in the 𝑘𝑡ℎ element and 0 elsewhere.  

Therefore, the covariance matrix of the difference in the unconditional and conditional forecast 

is simply: 

𝚫𝑘ℎ = Cov(𝒗𝑡+ℎ
𝑘 − 𝒗𝑡+ℎ) = 𝜎𝑘𝑘

−1 ∑ 𝛀𝑗𝚺𝜉𝐞𝑘𝐞𝑘
′ 𝚺𝜉𝛀𝑗

′

ℎ−1

𝑗=0

 (14) 

 

A shock in the 𝑘𝑡ℎ variable explains an amount of forecast error variance in the 𝑖𝑡ℎ equation equal 

to: 

𝛹𝑖←𝑘
ℎ =

𝜎𝑘𝑘
−1 ∑ 𝐞𝑖

′𝛀𝑗𝚺𝜉𝐞𝑘𝐞𝑘
′ 𝚺𝜉𝛀𝑗

′𝐞𝑖
ℎ−1
𝑗=0

∑ 𝐞𝑖
′𝛀𝑗𝚺𝜉𝛀𝑗

′𝐞𝑖
ℎ−1
𝑗=0

 (15) 

 

The term 𝛹𝑖←𝑘
ℎ  represents the generalised forecast error variance decomposition (GFEVD) as 

defined in Pesaran and Shin (1998). Following the Diebold and Yilmaz methodology, to build the 

global network of the model in consideration, we use as an interconnectedness measure the 

quantity: 

𝜆𝑖←𝑘 =
𝛹𝑖←𝑘

ℎ

∑ 𝛹𝑖←𝑘
ℎ(𝑛+𝑚)

𝑘=1

 (16) 

 

which explains the proportion of the variance attributed to the 𝑘𝑡ℎ component on the 𝑖𝑡ℎ 

component ℎ periods in the future. In non-technical terms, this measure explains the percentage 

of the variance for one variable expected in the future that is due to a shock which occurred in 

another variable. The reason for which the GFEVD is divided by the sum of the matrix values in 

the same row is that, differently from the orthogonalized forecast error variance decomposition, 
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it uses the original errors, and therefore, it would add up to one only in the case in which the 

original errors are orthogonal.  

 

Finally, we compute some summary connectedness measures as per Diebold and Yilmaz, such 

as:  

Total directional connectedness from others to i: 
𝐶𝑖←∎

𝐻 = ∑ 𝜆𝑖←𝑘
ℎ

𝑛+𝑚

𝑘=1
𝑘≠𝑖

 

 

Total directional connectedness from the macro network to i: 
𝐶𝑖←𝑀

𝐻 = ∑ 𝜆𝑖←𝑘
ℎ

𝑛+𝑚

𝑘=𝑛+1
𝑘≠𝑖

 

 

Total directional connectedness to the local network from k: 
𝐶𝐿←𝑘

𝐻 = ∑ 𝜆𝑖←𝑘
ℎ

𝑛

𝑖=1
𝑖≠𝑘

 

 

Total directional connectedness to the local network from the macro 

network: 

𝐶𝐿←𝑀
𝐻 =

1

𝑛
∑ ∑ 𝜆𝑖←𝑘

ℎ

𝑛+𝑚

𝑘=𝑛+1

𝑛

𝑖=1

 

 

Total connectedness in the local network: 
𝐿𝐶𝐻 =

1

𝑛
∑ 𝜆𝑖←𝑘

ℎ

𝑛

𝑖,𝑘=1
𝑖≠𝑘

 

 

Total directional connectedness from the local network to i: 
𝐶𝑖←𝐿

𝐻 = ∑ 𝜆𝑖←𝑘
ℎ

𝑛

𝑘=1
𝑘≠𝑖

 

 

Total directional connectedness to others from k: 
𝐶∎←𝑘

𝐻 = ∑ 𝜆𝑖←𝑘
ℎ

𝑛+𝑚

𝑖=1
𝑖≠𝑘

 

 

Total directional connectedness to the macro network from k: 
𝐶𝑀←𝑘

𝐻 = ∑ 𝜆𝑖←𝑘
ℎ

𝑛+𝑚

𝑖=𝑛+1
𝑖≠𝑘

 

 

Total connectedness: 
𝐶𝐻 =

1

𝑛 + 𝑚
∑ 𝜆𝑖←𝑘

ℎ

𝑛+𝑚

𝑖,𝑘=1
𝑖≠𝑘

 

 

Total connectedness in the macro network: 𝑀𝐶𝐻 =
1

𝑚
∑ 𝜆𝑖←𝑘

ℎ

𝑛+𝑚

𝑖,𝑘=𝑛+1
𝑖≠𝑘

 

 

9



 

 

The generalised case presents various difficulties from a practical point of view. Namely, in order 

to estimate the model, both the parameters and the covariance matrix of the error terms need to 

be constrained. While most of the statistical software and/or packages allow you to insert linear 

constraints on the coefficient parameters, the same cannot be said about the covariance matrix. 

Moreover, the idea behind a network is to analyse several nodes at once, especially if one wants 

to build several levels of a network. When more than one lag is used, the number of parameters 

which one needs to estimate could add up to several hundreds. Therefore, in the next section we 

derive a simple and practical two-step estimation methodology for a multi-level network, in which 

both the macro-level network and local-level network are modelled through a VAR(1). 

Derivation of the VAR(1) case 

In this section, we present a two-step approach to estimate a multi-level network in the particular 

case where both the macro-level and local-level networks are modelled using only one lag. 

In the first step, the macro-level parameters 𝒄, 𝚽1 and 𝝓𝑗 are estimated independently. Therefore, 

considering again the 𝑚 variables 𝑤𝑖 in the macro-level network, the following VAR(1) model, 

together with its moving-average representation, is estimated: 

𝒘𝑡 = 𝒄 + 𝚽1𝒘𝑡−1 + 𝝐𝑡 = (∑ 𝝓𝑗
∞
𝑗=0 )𝒄 +  ∑ 𝝓𝑗𝝐𝑡−𝑗

∞
𝑗=0      (17) 

 

where 𝒘𝑡 is an 𝑚 × 1 vector, and 𝝐𝑡 is serially uncorrelated with distribution 𝑁(𝟎, 𝚺𝜖). Thus, it is 

possible to obtain the estimates  𝒄̂, 𝚽̂1 and 𝝓̂𝑗 . 

In the second step, the VAR(1) for the 𝑛 variables 𝑦𝑖 belonging to the local-level network is fit, 

using the macro-level network VAR model, 𝒘𝑡, as an exogenous variable:   

𝒚𝑡 = 𝒂 + 𝚯1𝒚𝑡−1 + 𝜷𝒘𝑡 + 𝜼𝑡 =  (∑ 𝜽𝑗

∞

𝑗=0

) 𝒂 + ∑ 𝜽𝑗𝜼𝑡−𝑗 + ∑ 𝚷𝑗𝛜𝑡−𝑗

∞

𝑗=0

+  ∑ 𝝁𝑗

∞

𝑗=0

 

∞

𝑗=0

 (18) 

 

where 𝒚𝑡 is an a 𝑛 × 1 vector and the residual 𝜼𝑡 is serially uncorrelated with distribution 

𝑁(𝟎, 𝚺𝜂). The matrices 𝚷j and 𝝁𝑗 model the moving average representation of the macro-level 

network within the local-network’s moving average representation. Their computation is 

calculated using the estimates 𝒄̂, 𝚽̂1, 𝝓̂𝑗 which were obtained in the first step. The derivation of 

these two matrices is provided in Appendix A.2. In particular, the matrix 𝚷j corresponds to the 

term 𝝎𝑖
∗11𝜷 + 𝝎𝑖

∗12 in Eq. 9.  

Now it is possible to follow the same structure of the generalised model. Therefore, using the 

moving average representation, if the information available is till time 𝑡, the best forecast of the 

value of 𝒚𝑡+ℎ is equal to: 

 𝒚𝑡+ℎ |𝑡 =  (∑ 𝜽𝑗

∞

𝑗=0

) 𝒂 + ∑ 𝜽𝑗𝜼𝑡+ℎ−𝑗 + ∑(𝚷𝑗𝛜𝑡+ℎ−𝑗

∞

𝑗=ℎ

) + ∑ 𝝁𝑗

∞

𝑗=0

 

∞

𝑗=ℎ

   (19) 
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while, if the information available is up to time 𝑡 + ℎ, it would be possible to compute the true 

value of 𝒚𝑡+ℎ  as: 

𝒚𝑡+ℎ =  (∑ 𝜽𝑗

∞

𝑗=0

) 𝒂 + ∑ 𝜽𝑗𝜼𝑡+ℎ−𝑗 + ∑(𝚷𝑗𝛜𝑡+ℎ−𝑗

∞

𝑗=0

) 

∞

𝑗=0

  + ∑ 𝝁𝑗

∞

𝑗=0

 (20) 

 

Therefore, the forecast error 𝒗𝑡+ℎ from time 𝑡 to time 𝑡 + ℎ is equal to: 

𝒗𝑡+ℎ = 𝒚𝑡+ℎ − 𝒚𝑡+ℎ |𝑡 = ∑(𝜽𝑗𝜼𝑡+ℎ−𝑗 + 𝚷𝑗𝝐𝑡+ℎ−𝑗)

ℎ−1

𝑗=0

 (21) 

 

The covariance matrix can be computed (given the independence between 𝜼𝑡 and  𝝐𝑡) as: 

Cov(𝒗𝑡+ℎ) =  ∑ 𝜽𝑗𝚺𝜂𝜽𝑗
′ + 𝚷j𝚺𝜖𝚷𝒋

′

ℎ−1

𝑗=0

 (22) 

 

It is convenient, at this point, to redefine the forecast error, 𝒗𝑡+ℎ, in Eq. 21 as: 

𝒗𝑡+ℎ = ∑ 𝚪𝑗𝝃𝑡+ℎ−𝑗

ℎ−1

𝑗=0

 (23) 

 

with the 𝑛 × (𝑛 + 𝑚) matrix  𝚪𝑗 equal to: 

𝚪𝑗 = [𝜽𝑗   𝚷𝑗] 

 

while the (𝑛 + 𝑚) × 1 vector 𝝃𝑡+ℎ−𝑗 is equal to: 

𝝃𝑡+ℎ−𝑗 = [
𝜼𝑡+ℎ−𝑗 
 𝝐𝑡+ℎ−𝑗

] 

 

and which follows 𝑁(0, 𝚺𝜉). The covariance matrix 𝚺𝜉 is defined as: 

𝚺𝜉 = [
 𝚺𝜂  𝟎

 𝟎   𝚺𝜖
] 

 

Moreover, the covariance matrix of the forecast error can be rewritten as: 

Cov(𝒗𝑡+ℎ) =  ∑ 𝚪𝑗𝚺𝜉𝚪𝑗
′

ℎ−1

𝑗=0

 (24) 

 

Now it is easy to draw a parallel between Eq. 23-24 with Eq. 10-11. Therefore, following Eq. 12 to 

Eq.14, we get that the generalised variance decomposition for Eq.18 is equal to (with 𝑖 taking any 

value from 1 to 𝑛 and 𝑘 taking any value from 1 to 𝑛 + 𝑚): 
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𝛹𝑖←𝑘
ℎ =

𝜎𝑘𝑘
−1 ∑ 𝐞𝑖

′𝚪𝑗𝚺𝜉𝐞𝑘𝐞𝑘
′ 𝚺𝜉𝚪𝑗

′𝐞𝑖
ℎ−1
𝑗=0

∑ 𝐞𝑖
′𝚪𝑗𝚺𝜉𝚪𝑗

′𝐞𝑖
ℎ−1
𝑗=0

 (25) 

 

Now it is possible to combine the macro-level and the local-level network by substituting 𝚪j with 

𝛀𝑗, such that  𝛀𝑗 = [
𝜽𝑗   𝚷𝑗

 𝟎  𝝓𝑗
], and letting 𝑖 take any value between 1 to 𝑛 + 𝑚. Substituting, the 

GFVED becomes equal to Eq. 15, i.e.: 

𝛹𝑖←𝑘
ℎ =

𝜎𝑘𝑘
−1 ∑ 𝐞𝑖

′𝛀𝑗𝚺𝜉𝐞𝑘𝐞𝑘
′ 𝚺𝜉𝛀𝑗

′𝐞𝑖
ℎ−1
𝑗=0

∑ 𝐞𝑖
′𝛀𝑗𝚺𝜉𝛀𝑗

′𝐞𝑖
ℎ−1
𝑗=0

  

 

In the traditional Diebold and Yilmaz methodology, the use of an orthogonalized forecast error 

variance decomposition would allow you to downplay the role of a variable within a network by 

re-ordering it. However, this new approach solves this issue when it is not just one variable that 

is in a lower hierarchical level but a whole sub-network. Moreover, this approach allows you to 

include as many sub-networks as needed, ignoring the problem to find theoretical support for 

the ordering. Another important benefit is that this approach reduces considerably the number 

of parameters which need to be estimated compared to the traditional Diebold and Yilmaz 

methodology. Inserting the macro-level network as exogenous within the local-level network 

equation allows you to estimate 𝑚 × 𝑛 less parameters (with 𝑚 being the number of macro-level 

variables and 𝑛 the number of local-level variables). 

Application to the Maltese domestic investment fund industry 

The methodology outlined in this paper is applied to study the financial stability implications of 

herding behaviour between domestic Maltese investment funds. The Maltese domestic 

investment funds industry is potentially susceptible to herding behaviour. One of the main 

reasons is that a handful of asset management companies are managing all the domestic funds. 

Therefore, it is likely that during a period of distress, a fund manager would take similar 

investment decisions across the different fund strategies that it manages. Moreover, due to most 

of the Maltese domestic investment funds being retail and the limited number of Maltese 

households, it is likely that managers will try to meet the investment preferences of the same pool 

of investors, thus adopting the same investment behaviour.  

The herding behaviour is proxied through the correlation among funds. The financial stability 

implications are analysed by testing the following two hypotheses: 

𝐻1: a stronger herding behaviour in the fund industry results in the Maltese equity index and 

long-term Government yields being more vulnerable to shocks in the funds. 

𝐻2: a stronger herding behaviour in the funds industry results in Maltese funds being more 

vulnerable to external shocks. 

We build a global network composed of a macro network and a local Maltese network. The macro 

network is comprised of six indices which represent developments in the equity and bond markets 
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in Europe and the US. The local Maltese network consists of the Maltese Equity Total Return Index, 

the Malta Government Bond 10 Year Yield1 and five time-series representing the different types 

of domestic investment funds, namely bond funds, diversified funds, equity funds, mixed funds 

and other funds2, 3. The weekly logged returns of the variables in the global network are taken 

for the period 1st January 2010 - 3rd January 2020 with a total of 523 observations. Consistent with 

the Diebold and Yilmaz (2014) methodology, we compute the realised volatility for each series. 

Due to the lack of intra-weekly observations for some variables, the realised volatility is computed 

as the moving sum of four weekly squared returns. Accordingly, the realised volatility can be seen 

as the rolling monthly realised volatility observed at a weekly frequency. Consequently, 520 

realised volatilities are calculated for each variable. Finally, the log of these realised volatilities is 

considered in order to approximate normality for each of the observations (Andersen, et al., 

2003). The descriptive statistics of both the log returns and the log realised volatilities can be 

found in Appendix A.5. 

 

Static Multi-Level Network 

Initially, we fit a global network using all the available observations, calculating an unconditional 

static interconnectedness matrix (Table 1). The time horizon selected to compute the 

interconnectedness matrix is equal to four weeks, which represents how much the shocks suffered 

by one variable at time 𝑡 would impact the forecast error variance of another variable one month 

ahead. This matrix is also represented graphically through the multi-level network chart (Figure 

1), where the local network is presented at the top of the figure (blue edges), the macro network 

at the bottom of the figure (sand edges) and the spillovers from the macro to the local network 

are illustrated by the grey edges4. The bolder the edges are, the higher the spillovers and 

interconnectedness.  

 
Figure 1: Multi-level Network 

 
1 The Malta Government Bond Index and the Malta Corporate Bond Index published by the Malta Stock 

Exchange were not considered because the data are available only from 2017 onwards. Instead, the 

Government Bond 10 Year Yield is used to proxy the behaviour of the Malta government bond prices due 

to the inverse relationship between the two. 
2 ‘Other funds’ is a residual category. 
3 Despite these funds being classified as domestic, their investment funds’ portfolios do not only comprise 

of Maltese assets. 
4 A list of the variables’ abbreviations can be found in Appendix A.5. 

13



 

 

An analysis of the multi-level network provides some initial important observations. Firstly, it 

appears that for most of the variables, the forecast error variance is mainly explained by a shock 

within the same variable, which is reflected by the diagonal elements of the interconnectedness 

matrix. However, this statement does not stand for equity funds (EQT). Indeed, it appears that 

most of the spillovers are coming from the variables in the macro network, namely STOXX EUR 

600 and S&P 500.  Another important point is that the equity funds node is the only one in the 

local network which is highly affected by shocks in the macro network. Interestingly, for the MSE 

Equity Total Return Index (MSE), the spillovers received are almost all from within the local 

network. The main source of external spillover for this variable are the mixed funds (MIX) which 

represent also the main spillover transmitters within the local network. Instead, the spillovers 

between the domestic equity funds and the local stock exchange are negligible. Despite 

appearing counterintuitive, the reason behind this could be that domestic equity funds are mainly 

investing into European and international stocks which therefore are the main drivers of the funds’ 

volatility. In relation to the macro variables, STOXX EUR 600 is the variable transmitting the largest 

amount of spillovers followed by the US 10 Year Government Index. The latter is also the macro 

variable that is mostly vulnerable to shocks from the macro network. The main links in the macro 

network occur between the US government (US10) and corporate bonds (IBOXX US), and 

between the STOXX EUR 600 (STOXX600) and the S&P500.  
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Table 1: Interconnectedness Matrix5 

  Local Macro    

 

 

MSE 
MT 

10 
BND DIV EQT MIX OTH 

IBOXX 

EUR 

IBOXX 

US 

STOXX 

600 

S&P 

500 
US 10 

EMU 

10 

Spillovers 

from 

others 

Spillovers 

from 

 local 

Spillovers 

from 

macro 

L
o

c
a
l 

MSE 62.1 0.2 0.1 7.3 0.8 28.5 0.0 0.0 0.0 0.3 0.0 0.0 0.6 37.9 36.9 1.1 

MT 10 0.3 78.2 9.7 0.5 0.2 1.1 1.3 2.4 0.2 0.8 0.0 0.2 5.1 21.8 13.2 8.7 

BND 0.3 6.1 65.1 1.2 0.8 0.3 1.6 13.0 4.0 0.2 0.4 1.7 5.3 34.9 10.3 24.6 

DIV 10.3 0.7 1.9 66.9 3.3 10.1 0.2 1.5 0.1 1.1 1.0 0.4 2.6 33.1 26.5 6.7 

EQT 0.1 0.1 0.0 1.2 21.4 0.3 1.7 0.4 1.8 42.7 24.2 2.8 3.2 78.6 3.5 75.1 

MIX 26.8 0.5 0.1 7.1 1.6 61.4 0.1 0.2 0.0 0.2 0.2 0.1 1.6 38.6 36.3 2.4 

OTH 0.8 1.3 0.4 0.7 2.0 0.7 80.5 0.1 1.2 4.4 7.3 0.2 0.2 19.5 6.0 13.4 

M
a
c
ro

 

IBOXX EUR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.7 6.1 0.4 0.6 4.2 14.9 26.3 0.0 26.3 

IBOXX US 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 51.7 1.6 1.3 34.0 7.1 48.3 0.0 48.3 

STOXX 600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.5 72.5 14.0 5.2 5.9 27.5 0.0 27.5 

S&P 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 2.3 25.0 71.5 0.4 0.8 28.5 0.0 28.5 

US 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 32.8 1.6 0.3 51.4 10.1 48.6 0.0 48.6 

EMU 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.0 8.8 2.3 0.2 12.3 61.4 38.6 0.0 38.6 

 Spillovers 

to others 38.7 8.9 12.3 18.0 8.8 41.0 5.0 41.9 58.9 80.6 49.5 61.4 57.3 
𝑪𝑯 = 𝟑𝟕. 𝟏 

 Net 

Spillovers 0.8 

-

13.0 -22.6 -15.1 -69.8 2.3 -14.5 15.6 10.6 53.1 21.0 12.8 18.8 
𝑪𝑳←𝑴

𝑯 = 𝟏𝟖. 𝟖 

 Spillovers 

to local 38.7 8.9 12.3 18.0 8.8 41.0 5.0 17.6 7.4 49.8 33.2 5.4 18.5 
𝑳𝑪𝑯 = 𝟏𝟖. 𝟗 

 Spillovers 

to macro 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.3 51.5 30.8 16.3 56.0 38.8 
𝑴𝑪𝑯 = 𝟑𝟔. 𝟑 

 
5 The full variable names can be found in Appendix A.5. 
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Dynamic Multi-Level Network 

Next, we study how the spillovers from and to the fund industry evolved over a period of time. 

We fit the same model used earlier but now using rolling samples instead of the full sample to 

capture the connectedness dynamics within the network. We use rolling estimation windows 

equal to 104 weekly observations, which is equivalent to a period of two years, given the large 

number of variables that need to be estimated. Accordingly, we compute two interconnectedness 

indices. The first index represents the average spillovers received by the MSE Equity Total Return 

Index and the Malta Government Bond 10 Year Yield originating from the domestic funds. The 

second index represents the amount of spillovers received by investment funds over time.  

 

The spillover plots (Figures 2a and 2b) show that the connectedness between funds and the global 

network changed significantly over time. From Figure 2a, we observe an increasing trend in 

spillovers from funds to the local network starting in 2014 and reaching its peak at the end of 

2015. This was followed by a sharp drop in the spillovers and a downward trend which persisted 

till mid-2018. One possible explanation for this observation can be the operation of new funds in 

the domestic fund industry which were investing in international markets. In Figure 2b, we observe 

two strong uptrends, the first one starting in January 2014 and reaching its peak in November 

2014 while the second one starting in April 2015 till August 2016. Thereafter, a decreasing trend 

spanning to the beginning of 2018 is observed. In general, one can identify that after 2015, the 

spillover index level is generally above the levels observed in the previous period.  

 

 

In the next stage we analyse the dynamics in the conditional correlation among fund strategies 

to study the hypothesis question on whether the evolution of the spillovers was affected by the 

strength of the herding behaviour among fund managers. 

We start by estimating the univariate and pairwise parameters of the Dynamic Conditional 

Correlation (DCC) GARCH (1,1)6. The univariate models show that in most of the fund strategies 

the assumption of a GARCH effect is supported by the data. Most of the parameters are 

statistically significant apart from the heteroscedasticity parameter 𝛼 in the mixed funds category. 

 
6 Further details are provided in Appendix A.3. 

Figure 2a: Spillover from funds to the local network Figure 2b: Spillover to funds 
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The 𝛽’s are all statistically significant indicating that the univariate volatilities of the fund strategies 

appear to form clusters.  

Looking at the multivariate models, the pairwise parameter estimates (Table 2) show that the 

parameter ‘𝒃’ is significant for most of the equations. This means that there is persistency in the 

conditional correlation among the strategies. The only exception is for the pair mixed funds and 

other funds where the parameter ‘𝒂’, being also non-statistically significant, appears to indicate 

that the correlation remains stable across time. The parameter ‘𝒂’ is also statistically insignificant 

for the pairs diversified and equity funds and diversified and other funds. This indicates that a 

shock at a particular point in time does not seem to have a short-term effect on the conditional 

correlation coefficients. 

 

Table 2: Univariate and Pairwise parameter estimates 

Strategy 𝝁 𝝎 𝜶 𝜷  Pairs 𝒂 𝒃 

Bond 0.07*** 0* 0.1*** 0.86***  Bond_Diversified 0.01** 0.98*** 

Diversified 0.06*** 0.01 0.1* 0.88***  Bond_Equity 0.02* 0.96*** 

Equity 0.13** 0.12** 0.12*** 0.82***  Bond_Mixed 0.02*** 0.98*** 

Mixed 0.08*** 0.01 0.09 0.86***  Bond_Other 0.03*** 0.95*** 

Other 0.03*** 0 0.16*** 0.84***  Diversified_Equity 0.01 0.98*** 

      Diversified_Mixed 0.04* 0.92*** 

      Diversified_Other 0 0.98*** 

      Equity_Mixed 0.01 0.83*** 

      Equity_Other 0.04*** 0.95*** 

      Mixed_Other 0 0.95 

*** significant at the 0.01 level, ** significant at the 0.05 level, * significant at the 0.1 level. 
 

These estimated parameters are then used to obtain the dynamic conditional correlations across 

the sample period which are illustrated in Figure 3.  

 

Figure 3: Dynamic conditional correlations across the sample period 
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The strongest correlation appears to be between the two categories diversified funds and mixed 

funds. Unexpectedly, the linear relationship between equity and other funds changes significantly 

over time, from being positive from 2010 till 2013, turning negative over the period spanning from 

2013 till 2014, thereafter turning significantly positive for the period 2015 - 2017.  

Then the overall correlation among the funds is proxied by averaging all the pairwise correlations 

at each point in time to obtain a unique series. In this way, it is possible to analyse the short and 

long-run dynamics among spillovers and correlations. From Figure 4, it appears that there is a 

strong co-trending between spillover from funds and the correlation up to the beginning of 2016. 

However, the relationship between DCC and spillover to funds cannot be clearly observed from 

Figure 4.  As a result, we run two Autoregressive Distributed Lag (ARDL) (1,1) models7. For one of 

the models we use the spillover from funds as an endogenous variable while for the other model 

we use as endogenous the spillover to funds. In both models, the DCC is used as an exogenous 

variable.  

 

Figure 4: Average DCC and spillovers 

The first step is to check that the variables that we want to analyse in the ARDL model are 

integrated of order 1 (I(1)), that is, difference stationary. Accordingly, we run an Augmented 

Dickey-Fuller (ADF) test for the average DCC, the spillovers from funds and the spillovers to funds. 

The results are presented in Table 3. The unit root hypothesis cannot be rejected for the variables 

in levels but is then rejected for their first difference. Therefore, this confirms that they are I(1).  

Table 3: ADF Test 

 

 ADF Test p-value 

Spillovers from funds 0.69 

Spillovers to funds 0.93 

Average DCC 0.82 

First difference_ Spillover from funds 0.01 

First difference_ Spillover to funds 0.01 

First difference_ Average DCC 0.01 

 

 
7 Further details are provided in Appendix A.4. 
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The next step is to run the two ARDL(1,1) regressions. The results in Table 4 show that while all 

the short-run parameters are not significant, the long-run parameters 𝛽’s are statistically 

significant at the 0.01 level. This means that while a change in the correlation among funds does 

not have any immediate effect on the spillovers transmitted and received by funds, a prolonged 

high correlation among funds could result to a higher amount of spillovers. This confirms both 

the 𝐻1 and 𝐻2 hypotheses, meaning that when the herding behaviour in the domestic fund 

industry is stronger, the local financial market is more vulnerable to shocks in the domestic funds, 

as well as the domestic funds become more vulnerable to shocks in the financial markets. From 

a financial stability point of view, this means that the domestic funds can potentially become a 

transmission channel of shocks to the Maltese equities and bonds when investment managers 

start behaving in the same way.  

Table 4: ARDL parameter estimates 

 

 Parameters Coeff. st_error t_val p-val 

S
p

il
lo

v
e
r 

fr
o

m
 

fu
n

d
s 

𝜶 -0.006 0.006 -1.007 0.314 

𝜽 0.005 0.005 0.961 0.337 

𝝍 -0.023 0.054 -0.420 0.675 

𝜷 0.789 0.227 3.475 0.001 

S
p

il
lo

v
e
r 

to
 

fu
n

d
s 

𝜶 -0.007 0.006 -1.102 0.270 

𝜽 0.010 0.010 1.068 0.286 

𝝍 -0.004 0.049 -0.087 0.931 

𝜷 1.446 0.185 7.835 0.000 

 

Conclusion 

The main objective of this study is to present a new approach to the Diebold and Yilmaz 

methodology which is applied to a complex network of entities with different hierarchical levels. 

Given the popularity that the Diebold and Yilmaz methodology gained during recent years, this 

new approach could support international institutions to analyse more accurately the 

interconnectedness within the global financial sector. Our approach was applied to the Maltese 

investment fund industry to analyse the interconnectedness across the domestic fund industry, 

the local bond and equity markets and the global financial markets. Furthermore, to show the 

relevance from a financial stability perspective, we analysed how herding behaviour among 

investment fund managers may influence the spillover transmission mechanism. From our study, 

we found a long-run relationship between the correlations within the domestic funds and the 

amount of spillovers which they can transmit and receive.  
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Appendix  

Appendix A.1 – Multi-level complex model 

The framework developed above can be extended to more complex scenarios. Let us assume for 

instance that in a country there are two indices, namely a small cap index and a large cap index. 

Moreover, let us assume that the companies in the small cap index (𝒚𝑡) are influenced by the 

companies in the large cap index (𝒙𝒕) and by various global indices (𝒘𝑡). Finally, let us also assume 

that the companies in the small cap index do not have a direct effect on the global indices. 

However, they have a potentially indirect effect due to spillovers between the small cap and large 

cap index, since the companies in the large cap index are considered relevant enough to affect 

the global indices. 

This scenario can be represented by the following system of equations (for simplicity all the VAR 

models are taken with lag 1, but the same can be applied with higher lags): 

{

𝒚𝑡
∗ = 𝚽11𝒚𝑡−1

∗ + 𝚽12𝒙𝑡−1
∗ + 𝜷𝒘𝑡

∗ + 𝝐𝑡
1

𝒙𝑡
∗ = 𝚽21𝒚𝑡−1

∗ + 𝚽22𝒙𝑡−1
∗ + 𝚽23𝒘𝑡−1

∗ + 𝝐𝑡
2

𝒘𝑡
∗ = 𝚽32𝒙𝑡−1

∗ + 𝚽33𝒘𝑡−1
∗ + 𝝐𝑡

3

   

which become: 

{

𝒚𝑡
∗ = 𝚽11𝒚𝑡−1

∗ + (𝚽12 + 𝛃𝚽32)𝒙𝑡−1
∗ + 𝜷𝚽33𝒘𝑡−1

∗ + 𝜷𝝐𝑡
3 + 𝝐𝑡

1

𝒙𝑡
∗ = 𝚽21𝒚𝑡−1

∗ + 𝚽22𝒙𝑡−1
∗ + 𝚽23𝒘𝑡−1

∗ + 𝝐𝑡
2

𝒘𝑡
∗ = 𝚽32𝒙𝑡−1

∗ + 𝚽33𝒘𝑡−1
∗ + 𝝐𝑡

3

 

 

(26) 

with 𝒚𝑡
∗ = 𝒚𝑡 − 𝝁𝑦, 𝒙𝑡

∗ = 𝒙𝑡 − 𝝁𝑥 and 𝒘𝑡
∗ = 𝒘𝑡 − 𝝁𝑤. 

This can be written in matrix form as: 

𝒛𝑡 = (

𝒚𝑡
∗

𝒙𝑡
∗

𝒘𝑡
∗
) = (

𝚽11 𝚽12 + 𝜷𝚽32 𝜷𝚽33 
𝚽21 𝚽22 𝚽23

𝟎 𝚽32 𝚽33 
) (

𝒚𝑡−1
∗

𝒙𝑡−1
∗

𝒘𝑡−1
∗

) + (
𝑰 𝟎 𝜷
𝟎 𝑰  𝟎
 𝟎  𝟎 𝑰

) (

𝝐𝑡
1

𝝐𝑡
2

𝝐𝑡
3

) 

 

 

The noise term 𝝐𝑡 = (

𝝐𝑡
1

𝝐𝑡
2

𝝐𝑡
3

) is assumed to follow the distribution 𝝐𝑡~𝑵(𝟎, 𝚺), with 𝚺 =

[

𝚺11 𝚺12 𝟎
𝚺21 𝚺22  𝚺23

 𝟎 𝚺32 𝚺33

]. The noise term can be redefined as 𝝐𝑡
∗ = (

𝑰 𝟎 𝜷
𝟎 𝑰  𝟎
 𝟎  𝟎 𝑰

) (

𝝐𝑡
1

𝝐𝑡
2

𝝐𝑡
3

) so that the 

covariance matrix becomes equal to 𝚺∗ = (
𝑰 𝟎 𝜷
𝟎 𝑰  𝟎
 𝟎  𝟎 𝑰

) [

𝚺11 𝚺12 𝟎
𝚺21 𝚺22  𝚺23

 𝟎 𝚺32 𝚺33

] (
𝑰 𝟎 𝜷
𝟎 𝑰  𝟎
 𝟎  𝟎 𝑰

)

′

. 

 

Similar to before, the vector autoregressive model becomes equal to: 

𝒛𝑡 = 𝚽𝑖
∗𝒛𝑡−1 + 𝝐𝑡

∗ 
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with  𝚽𝑖
∗ = (

𝚽11 𝚽12 + 𝜷𝚽32 𝜷𝚽33 
𝚽21 𝚽22 𝚽23

𝟎 𝚽32 𝚽33 
). The moving average representation becomes equal 

to: 

𝒛𝑡 = ∑ 𝛚𝑖
∗𝝐𝑡

∗

∞

𝑖=1

 

 

(27) 

with 

 𝛚𝑖
∗ = {

𝟎 ,                                      𝑖 < 0
𝑰 ,                                       𝑖 = 0
𝚽𝑖

∗𝛚𝑖−𝑗
∗ ,                           𝑖 > 0 

   and  𝛚𝑖
∗ = (

𝛚𝑖
∗11 𝛚𝑖

∗12 𝛚𝑖
∗13

𝛚𝑖
∗21 𝛚𝑖

∗22  𝛚𝑖
∗23

 𝛚𝑖
∗31 𝛚𝑖

∗32 𝛚𝑖
∗33

). 

 

Therefore, 

𝒛𝑡 = ∑ 𝛚𝑖
∗𝝐𝑡

∗

∞

𝑖=1

= ∑ (

𝛚𝑖
∗11 𝛚𝑖

∗12 𝛚𝑖
∗13

𝛚𝑖
∗21 𝛚𝑖

∗22  𝛚𝑖
∗23

 𝛚𝑖
∗31 𝛚𝑖

∗32 𝛚𝑖
∗33

) (
𝑰 𝟎 𝜷
𝟎 𝑰  𝟎
 𝟎  𝟎 𝑰

) (

𝝐𝑡
1

𝝐𝑡
2

𝝐𝑡
3

)

∞

𝑖=1

= ∑ 𝛀𝑖𝝐𝑡

∞

𝑖=1

 

 

(28) 

with 𝛀𝑖 = (

𝛚𝑖
∗11 𝛚𝑖

∗12 𝛚𝑖
∗11𝛃 + 𝛚𝑖

∗13

𝛚𝑖
∗21 𝛚𝑖

∗22  𝛚𝑖
∗21𝛃 + 𝛚𝑖

∗23

 𝛚𝑖
∗31 𝛚𝑖

∗32 𝛚𝑖
∗31𝛃 + 𝛚𝑖

∗33

). From this point onwards it is possible to proceed as 

per the generalised case.  
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Appendix A.2 – Moving Average Representation 

For this model, both p and q are taken to be equal to 1. Therefore, the moving average 

representation of 𝒚𝑡  becomes: 

𝒚𝑡 = (∑ 𝜽𝑗

∞

𝑗=0

) 𝒂 + ∑ 𝜽𝑗𝜼𝑡−𝑗 

∞

𝑗=0

+ ∑ 𝜽𝑗𝜷𝒘𝑡−𝑗 

∞

𝑗=0

 

with 𝜽𝑗 =  𝚯𝑗 and  𝜽0 =  𝐈. Moreover, the moving average representation of 𝒘𝑡 can be written 

as: 

𝒘𝒕 = (∑ 𝝓𝑗

∞

𝑗=0

) 𝒄 + ∑ 𝝓𝑗𝝐𝑡−𝑗

∞

𝑗=0

   

with 𝝓𝑗 =  𝚽𝑗 and  𝝓0 =  𝐈. Expanding the 𝜷𝒘𝑡−𝑗 ‘s term in the 𝒚𝑡 equation, we get: 

𝜷𝒘𝑡  = 𝜷 × ( 𝝐𝑡 + 𝚽1𝝐𝑡−1 + 𝚽2𝝐𝑡−2 + 𝚽3𝝐𝑡−3 + 𝚽4𝝐𝑡−4 + ⋯ + (∑ 𝝓𝑗

𝑇

𝑗=0

) 𝒄  

+               

𝚯1𝜷𝒘𝑡−1  = 𝚯1𝜷 × (   𝝐𝑡−1 + 𝚽1𝝐𝑡−2 + 𝚽2𝝐𝑡−3 + 𝚽3𝝐𝑡−4 + ⋯ + (∑ 𝝓𝑗

𝑇−1

𝑗=0

) 𝒄 ) 

+               

𝚯2𝜷𝒘𝑡−2  = 𝚯2𝜷 × (     𝝐𝑡−2 + 𝚽1𝝐𝑡−3 + 𝚽2𝝐𝑡−4 + ⋯ + (∑ 𝝓𝑗

𝑇−2

𝑗=0

) 𝒄 ) 

+               

𝚯3𝜷𝒘𝑡−3  = 𝚯3𝜷 × (       𝝐𝑡−3 + 𝚽1𝝐𝑡−4 + ⋯ + (∑ 𝝓𝑗

𝑇−3

𝑗=0

) 𝒄 ) 

+               

𝚯4𝜷𝒘𝑡−4  = 𝚯4𝜷 × (         𝝐𝑡−4 + ⋯ + (∑ 𝝓𝑗

𝑇−4

𝑗=0

) 𝒄 ) 

+ ⋯               

= 

 

𝜷𝝐𝑡 + (𝜷𝚽1 + 𝚯1𝜷)𝝐𝑡−1 + (𝜷𝚽2 + 𝚯2𝜷 + 𝚯𝜷𝚽)𝝐𝑡−2 + (𝜷𝚽3 + 𝚯𝜷𝚽2 + 𝚯2𝜷𝚽 + 𝚯3𝜷)𝝐𝑡−3

+ (𝜷𝚽4 + 𝚯𝜷𝚽3 + 𝚯2𝜷𝚽2 + 𝚯3𝜷𝚽 + 𝚯4𝜷)𝝐𝑡−4 + ⋯ +  ∑ 𝝁𝑖

∞

𝑖=0

 

where 𝝁𝑖 = 𝚯𝑖𝜷(∑ 𝝓𝑗
𝑡−𝑖
𝑗=0 )𝒄. Finally, we can define the matrix 𝚷𝑖 = ∑ 𝚯𝑖−𝑗𝜷𝚽j𝑖

𝑗=0  and rewrite the 

term ∑ 𝜽𝑗𝜷𝒘𝑡−𝑗 
∞
𝑗=0  as: 

∑ 𝜽𝑗𝜷𝒘𝑡−𝑗 

∞

𝑗=0

= ∑ 𝚷𝑗𝛜𝑡−𝑗 + 𝝁𝑗

∞

𝑗=0
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Appendix A.3 – Dynamic Conditional Correlation (DCC) GARCH Model 

The correlation structure among the different domestic funds’ strategies is modelled through the 

popular DCC GARCH Model proposed by Engle and Sheppard (2001). This is a multivariate 

GARCH model which can be estimated using a two-step approach. The univariate models for 

each variable are estimated in the first step, with the residuals which are then used as inputs for 

the second step, where the correlation structure is estimated.  

More formally, given the set of information ℱ𝑡−1 available at time 𝑡 − 1, the returns of 𝑘 variables 

can be modelled as: 

    𝑟𝑡 =  𝜇 +  𝜀𝑡   

𝜀𝑡  | ℱ𝑡−1 ∼  𝑁(0, 𝐻𝑡)  

with Ht ≡  DtR𝑡Dt, where 𝑅𝑡 is the time varying correlation matrix and 𝐷𝑡 is a 𝑘 × 𝑘 diagonal 

matrix of time varying standard deviations from the univariate GARCH models, such that 𝐷𝑡 =

𝑑𝑖𝑎𝑔(√ℎ1,1,𝑡, √ℎ2,2,𝑡, … , √ℎ𝑘,𝑘,𝑡).  

The elements of 𝐷𝑡 can be determined by the univariate GARCH(p,q) model: 

  ℎ𝑖,𝑡 = 𝜔𝑖 + ∑ 𝛼𝑖,𝑝𝜀𝑖,𝑡−𝑝
2

𝑃𝑖

𝑝=1

+ ∑ 𝛽𝑖,𝑝 ℎ𝑖,𝑡−𝑞

𝑄𝑖

𝑞=1

  

while the dynamic correlation structure is modelled as: 

𝑄𝑡 = (1 − ∑ 𝑎𝑚

𝑀

𝑚=1

− ∑ 𝑏𝑛

𝑁

𝑛=1

)  𝑄̅ +  ∑ 𝑎𝑚

𝑀

𝑚=1

(𝜖𝑡−𝑚𝜖𝑡−𝑚
′ ) + ∑ 𝑏𝑛𝑄𝑡−𝑛

𝑁

𝑛=1

 

𝑅𝑡 = 𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1 

where 𝜖𝑡 =  𝜀𝑡𝐷𝑡
−1 are the residuals standardized by their conditional standard deviations. 

Moreover, the standardized residuals are trivially distributed as 𝜖𝑡 ∼ N(0, 𝑅t). The unconditional 

covariance matrix of the standardized residuals is instead represented by the matrix 𝑄̅. Finally, 

the matrix 𝑄𝑡
∗ is a diagonal matrix of the square root of the diagonal elements of 𝑄𝑡: 𝑄𝑡

∗ =

𝑑𝑖𝑎𝑔(√𝑞1,1,𝑡, √𝑞2,2,𝑡, … , √𝑞𝑘,𝑘,𝑡).  

The estimation of such model is done through a two-step quasi-likelihood estimation. The log-

likelihood function of the estimator can be defined as: 

L =  −
1

2
∑(𝑘 log(2π) + log(|Ht|) + εt

′Ht
−1εt)

T

t=1

 

= −
1

2
∑(𝑘 log(2π) + log(|Dt𝑅𝑡𝐷𝑡|) + εt

′Dt
−1𝑅𝑡

−1𝐷𝑡
−1εt)

T

t=1

 

= −
1

2
∑(𝑘 log(2π) + 2log(|Dt|) + log(|𝑅𝑡|) + 𝜖t

′𝑅𝑡
−1ϵt)

T

t=1

 

In the first step the univariate parameters are estimated replacing the matrix 𝑅𝑡 with the identity 

matrix 𝐼𝑘.  
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𝑄𝐿1(𝜙|𝑟𝑡) = −
1

2
∑(𝑘 log(2π) + log(|Dt𝐼𝑘𝐷𝑡|) + εt

′Dt
−1𝐼𝑘

−1𝐷𝑡
−1εt)

T

t=1

 

= −
1

2
∑(𝑘 log(2π) + 2log(|Dt|) + εt

′Dt
−2εt)

T

t=1

 

= −
1

2
∑ (𝑇 log(2π) + ∑ (log(ℎ𝑖𝑡) +

𝑟𝑖𝑡
2

ℎ𝑖𝑡
)

T

t=1

 )

k

n=1

 

 

with 𝜙 = 𝜇, 𝜔, 𝛼1, … , 𝛼𝑃 , 𝛽1, … , 𝛽𝑃. Then, the second stage is estimated using the correctly 

specified likelihood, condition on the parameters estimated in the first stage likelihood: 

𝑄𝐿1(Φ| 𝜙̂ , 𝑟𝑡) = −
1

2
∑(𝑘 log(2π) + 2log(|Dt|) + log(|𝑅𝑡|) + 𝜖t

′𝑅𝑡
−1ϵt)

T

t=1

 

with Φ = 𝑎1, … , 𝑎𝑃 , 𝑏1, … , 𝑏𝑃. And since the second stage is conditioned on 𝜙̂, the second step 

can be reduced to the maximisation of: 

𝑄𝐿1(Φ| 𝜙̂ , 𝑟𝑡) = −
1

2
∑(log(|𝑅𝑡|) + 𝜖t

′𝑅𝑡
−1ϵt)

T

t=1

 

 

Appendix A.4 – Autoregressive Distributed Lag (ARDL) Model 

To analyse the short-run and long-run dynamics between spillovers to and from the domestic 

funds and the correlation among the domestic funds, the Autoregressive Distributed Lag (ARDL) 

Model is used. Following Pesaran and Shin (1998), the ARDL Model is going to be used in the 

presence of two cointegrated 𝐼(1) variables. Given two cointegrated 𝐼(1) variables 𝑦 and 𝑥, an 

ARDL (1,1) model can be defined as: 

𝑦𝑡 =  𝜙1𝑦𝑡−1 + 𝜃0𝑥𝑡 + 𝜃1𝑥𝑡−1 + 𝑢𝑡 

with 𝑥𝑡 = 𝑥𝑡−1 + 𝜖𝑡 

Under the assumption that 𝑢𝑡 is 𝑖𝑖𝑑, 𝜖𝑡 is a general linear stationary process, 𝑥𝑡is strictly 

exogenous and |𝜙| < 1, then the ARDL regression can be re-formulated as: 

Δ𝑦𝑡 = −(1 − 𝜙1)𝑦𝑡−1 + (𝜃0 + 𝜃1)𝑥𝑡−1 + 𝜃0Δ𝑥𝑡−1 + 𝑢𝑡   

= 𝛼𝑦𝑡−1 + 𝜃𝑥𝑡−1 + 𝜓Δ𝑥𝑡−1 + 𝑢𝑡 

where 𝛼 = −(1 − 𝜙1) ,  𝜃 = 𝜃0 + 𝜃1 and  𝜓 = 𝜃0. 

The long-run equilibrium is reached when 𝑦𝑡 = 𝑦𝑡−1 = 𝑦∗, 𝑥𝑡 = 𝑥𝑡−1 = 𝑥∗ and 𝑢𝑡 =  0. 

Therefore, in long-run equilibrium the ARDL can be re-formulated as: 

𝑦∗ =  𝜙1𝑦∗ + 𝜃0𝑥∗ + 𝜃1𝑥∗ = 𝛽𝑥∗ 

with 𝛽 =  
𝜃0+𝜃1

1−𝜙1
= −

𝜃

𝛼
 . It is possible to sub-divide the parameters of the ARDL into two subgroups: 

𝛼, 𝜃, 𝜃0, and 𝜃1 control for the short-run dynamics, while 𝛽 represents the long-run parameters 
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on 𝑥. Moreover, if the assumptions listed before hold, Pesaran and Shin (1998) find that 

asymptotically: 

 

√∑ 𝑥𝑡
2 

𝑇

𝑡−1

(𝛽̂ − 𝛽) ∼ 𝑁 {0,
𝜎𝑢

(1 − 𝜙1)2} 

 

Appendix A.5 – Descriptive Statistics 

Table 5: List of Variables 

Abbreviation  

MSE MSE Equity Total Return Index 

MT 10 Malta Government Bond 10 Year 

Yield 

BND Bond 

DIV Diversified 

EQT Equity 

MIX Mixed 

OTH Other 

IBOXX EUR IBOXX Euro Corporates (€) 

IBOXX US IBOXX US Corporates (€) 

STOXX 600 STOXX Europe 600 

S&P 500 S&P 500 

US 10 US 10 Year Government Index 

EMU 10 EMU 10 Year Government Index 
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Table 6: Returns 

 Local Macro 

 MSE MT 10 BND DIV EQT MIX OTH IBOXX EUR IBOXX US STOXX 600  S&P 500  US 10 EMU 10 

Count 523 523 523 523 523 523 523 523 523 523 523 523 523 

Mean 0.11 -0.01 0.06 0.09 0.11 0.08 0.02 0.08 0.15 0.16 0.29 0.13 0.10 

Std 1.13 0.07 0.28 0.58 1.34 0.57 0.15 0.35 1.26 2.12 2.12 1.52 0.81 

Skewness 0.12 1.26 -0.56 -0.31 -0.61 0.42 -1.56 -0.51 0.24 -0.63 -0.56 0.25 -0.40 

Kurtosis 4.87 5.62 1.43 5.42 1.75 6.53 27.53 2.33 0.88 2.02 1.56 1.52 0.89 

Min -5.82 -0.24 -1.14 -3.96 -5.65 -2.90 -1.34 -1.75 -4.57 -10.35 -8.31 -4.94 -3.39 

25% -0.48 -0.05 -0.07 -0.22 -0.51 -0.24 0.00 -0.12 -0.66 -0.90 -0.83 -0.73 -0.38 

50% 0.08 -0.01 0.08 0.07 0.26 0.06 0.02 0.10 0.10 0.44 0.42 0.09 0.23 

75% 0.68 0.02 0.23 0.34 0.91 0.38 0.04 0.28 0.96 1.42 1.57 0.99 0.62 

Max 5.93 0.47 0.84 2.11 4.42 3.31 0.97 1.33 5.15 8.34 6.24 6.88 2.92 

Table 7: Log realized volatility 

 Local Macro 

 MSE MT 10 BND DIV EQT MIX OTH IBOXX EUR IBOXX US STOXX 600  S&P 500  US 10 EMU 10 

Count 520 520 520 520 520 520 520 520 520 520 520 520 520 

Mean 0.52 -2.22 -0.80 -0.17 0.75 -0.21 -2.19 -0.55 0.73 1.21 1.22 0.87 0.31 

Std 0.53 0.52 0.53 0.57 0.49 0.55 0.93 0.47 0.48 0.51 0.50 0.54 0.44 

Skewness -0.14 0.09 -0.63 0.11 -0.01 -0.01 0.71 0.07 -0.47 -0.35 -0.32 -0.55 -0.21 

Kurtosis 0.86 0.70 0.84 -0.36 -0.23 1.31 -0.45 0.05 0.81 0.63 0.54 1.41 0.02 

Min -1.50 -3.83 -3.18 -1.84 -0.66 -2.66 -3.61 -2.08 -1.15 -0.75 -0.52 -1.80 -1.10 

25% 0.23 -2.54 -1.11 -0.63 0.44 -0.53 -2.97 -0.87 0.46 0.87 0.93 0.53 0.03 

50% 0.54 -2.22 -0.77 -0.18 0.74 -0.18 -2.57 -0.55 0.72 1.23 1.20 0.89 0.32 

75% 0.83 -1.93 -0.42 0.23 1.10 0.10 -1.54 -0.26 1.05 1.54 1.54 1.23 0.59 

Max 2.12 -0.54 0.30 1.41 2.02 1.55 0.33 0.83 1.77 2.51 2.40 2.00 1.34 

ADF p-value ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01 
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