Payout Restrictions and Bank Risk-Shifting

Thomas Kroen

Princeton University

September 7, 2022

Motivation

Financial Sector 2008:

- Many banks maintained or increased payouts
 - Example: Merrill Lynch raised dividends by 100%
- Same banks defaulted on debt and required public assistance
- How to align incentives across claim holders?

Motivation

Financial Sector 2008:

- Many banks maintained or increased payouts
 - Example: Merrill Lynch raised dividends by 100%
- Same banks defaulted on debt and required public assistance
- How to align incentives across claim holders?

Financial Sector in 2020

- June 2020: Fed imposes payout restrictions
- International scope: Eurozone, UK, Canada, Switzerland
- Little empirical evidence

Motivation

Financial Sector 2008:

- Many banks maintained or increased payouts
 - Example: Merrill Lynch raised dividends by 100%
- Same banks defaulted on debt and required public assistance
- How to align incentives across claim holders?

Financial Sector in 2020

- June 2020: Fed imposes payout restrictions
- International scope: Eurozone, UK, Canada, Switzerland
- Little empirical evidence

How do payout restrictions affect bank equity and debt prices in a recession?

• Effect on risk-taking?

This Paper

Three Theoretical Predictions

- Payout restrictions lower equity value
- Payout restrictions raise debt value
- Omplementarity of payouts and risk-taking

This Paper

Three Theoretical Predictions

- Payout restrictions lower equity value
- Payout restrictions raise debt value
- Omplementarity of payouts and risk-taking

High-frequency empirical evidence consistent with risk-shifting

- 06/25/2020: Equity values fall by 2 percent
- 06/25/2020: CDS spreads fall by 1 bps (counter to bad news story)
- 12/18/2020: Both effects reverse

This Paper

Three Theoretical Predictions

- Payout restrictions lower equity value
- Payout restrictions raise debt value
- Omplementarity of payouts and risk-taking

High-frequency empirical evidence consistent with risk-shifting

- 06/25/2020: Equity values fall by 2 percent
- 06/25/2020: CDS spreads fall by 1 bps (counter to bad news story)
- 12/18/2020: Both effects reverse

Implications for risk-taking

- Riskier lending surges after lifting of restrictions
- Spreads on risky lending fall

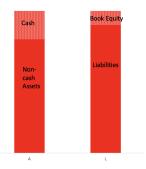
Literature Review

Banking Regulation (Micro and Macro): Acharya et al (2011),

Acharya-Drechsler-Schnabl (2013), Acharya-Le-Shin (2016), Allen et al. (2018), Admati et al. (2012), Atkeson et al. (2018), d'Avernas-Bigio (2019), Baron (2020), Begenau (2020), Begenau-Landvoigt (2021), Bergant-Forbes (2021), Berndt-Duffie-Zhu (2020), Brunnermeier-Sannikov (2014, 2016), Corbae-D'Erasmo (2020), Corbae-Levine (2020), Flannery-Hirtle-Kovner (2017), Floyd-Li-Skinner (2015), Gennaioli et al. (2014), Gropp et al. (2019), Hirtle (2014), Kelly-Lustig-van Nieuwerburgh (2016), Repullo-Suarez (2013), Sarin-Summers (2016), Smets (2014)

Corporate Finance: Payout Policy, Risk-Shifting and Multi-Tasking: Acemoglu-Kremer-Mian (2008), Damodaran (1989), Handjinicolaou-Kalay (1984), Jensen-Meckling (1976), Kahle-Stulz (2020), Kroen (2021), Ma (2020), Mota (2021)

Banking and Regulatory Response to COVID crisis: Acharya-Engle-Steffen (2020), Becker-Benmelech (2021), Chodorow-Reich et al. (2021), Demirguc-Kunt et al. (2020), Greenwald-Krainer-Paul (2021), Haddad-Moreira-Muir (2021), Hardy (2021), Kargar et al. (2020), Schrimpf-Shin-Sushko (2020), Svoronos-Vrbaski (2020)


Model

Setup

- Partial Equilibrium; t = 0, 1
- Assets (c, a) and Liabilities ℓ in place at t = 0, $a \sim U(\underline{a}, \overline{a})$, $\underline{a} > 0$
- Franchise value V > 0 if solvent at t = 1
- Key decision: Dividend $d \in [0, c]$ paid at t = 0

Setup

- Partial Equilibrium; t = 0, 1
- Assets (c, a) and Liabilities ℓ in place at t = 0, $a \sim U(\underline{a}, \overline{a})$, $\underline{a} > 0$
- Franchise value V > 0 if solvent at t = 1
- Key decision: Dividend $d \in [0, c]$ paid at t = 0

Comparison: Unconstrained shareholders vs. Payout restriction (d = 0)

Comparison: Unconstrained shareholders vs. Payout restriction (d = 0)

Property I Risk-shifting region

- Mathematically: V < V*
- There is a region where debt and equity strictly diverge
 - $\textcircled{0} Equity Value \downarrow if payout restriction$

Comparison: Unconstrained shareholders vs. Payout restriction (d = 0)

Property I Risk-shifting region

- Mathematically: V < V*
- There is a region where debt and equity strictly diverge
 - $\textbf{0} \quad \text{Equity Value} \downarrow \text{if payout restriction}$

Add 2nd choice: $a \sim U(\underline{a}, \overline{a})$ vs. $a \sim U(\underline{a} - \epsilon, \overline{a} + \epsilon)$

Comparison: Unconstrained shareholders vs. Payout restriction (d = 0)

Property I Risk-shifting region

- Mathematically: V < V*
- There is a region where debt and equity strictly diverge

Add 2nd choice:
$$a \sim U(\underline{a}, \overline{a})$$
 vs. $a \sim U(\underline{a} - \epsilon, \overline{a} + \epsilon)$

Property II Complementarity of payouts and risk-taking

- No restriction: $d = c, a \sim U(\underline{a} \epsilon, \overline{a} + \epsilon)$
- Payout restriction: $d = 0, a \sim U(\underline{a}, \overline{a})$
- Condition: Intermediate continuation value V and leverage ℓ

Empirical Setting

Data and Institutional Setting

Data

Equity PricesCRSP, TAQDebt PricingTRACE, MarkitAccounting Data and Lending FR-Y9C, Compustat, Thomson One

Data and Institutional Setting

Data

CRSP, TAQ Equity Prices Debt Pricing TRACE, Markit Accounting Data and Lending FR-Y9C, Compustat, Thomson One

Payout Restrictions for Largest US Banks

06/25/2020 4.30 ET 03/25/2021 4.30 ET

 $Div_{it} \leq \min\{Div_{i,t-1}, \overline{\Pi}_{i,t-4}^t\} \& BB_{it} = 0$ 12/18/2020 4.30 ET $Div_{it} + BB_{it} \leq \overline{\Pi}_{i,t-4}^t$ Remaining restrictions lifted for Jun 30, 2021

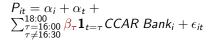
Data and Institutional Setting

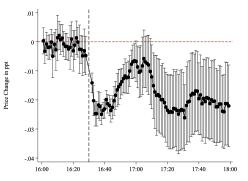
Data

Equity Prices CRSP. TAQ Debt Pricing TRACE. Markit Accounting Data and Lending FR-Y9C, Compustat, Thomson One

Payout Restrictions for Largest US Banks

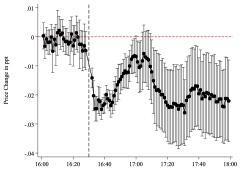
06/25/2020 4.30 ET 03/25/2021 4.30 ET

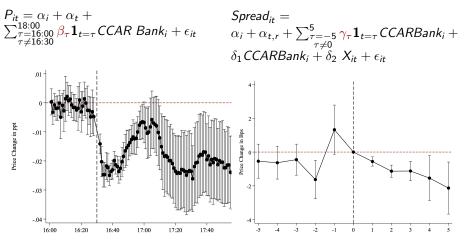

 $Div_{it} \leq \min\{Div_{i,t-1}, \overline{\Pi}_{i,t-4}^t\} \& BB_{it} = 0$ 12/18/2020 4.30 ET $Div_{it} + BB_{it} \leq \overline{\Pi}_{i,t-4}^t$ Remaining restrictions lifted for Jun 30, 2021


Identification Challenges

News about Assets vs. Wealth Redistribution \Rightarrow Debt response Confounding industry-wide shocks \Rightarrow High-frequency approach

Event 1: June 25, 2020

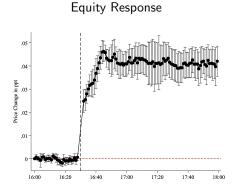

```
P_{it} = \alpha_i + \alpha_t + \sum_{\substack{18:00\\\tau \neq 16:30}}^{18:00} \beta_\tau \mathbf{1}_{t=\tau} CCAR Bank_i + \epsilon_{it}
```



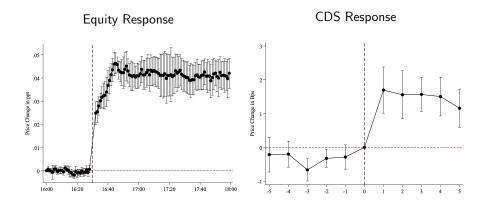
$$P_{it} = \alpha_i + \alpha_t + \sum_{\substack{\tau=16:00\\\tau\neq16:30}}^{18:00} \beta_{\tau} \mathbf{1}_{t=\tau} CCAR Bank_i + \epsilon_{it}$$

$$\begin{aligned} & \textit{Spread}_{it} = \\ & \alpha_i + \alpha_{t,r} + \sum_{\substack{\tau = -5 \\ \tau \neq 0}}^{5} \gamma_{\tau} \mathbf{1}_{t=\tau} \textit{CCARBank}_i + \\ & \delta_1 \textit{CCARBank}_i + \delta_2 \textit{ X}_{it} + \epsilon_{it} \end{aligned}$$

- Equity and Debt Values diverge \Rightarrow Counter to Bad News
- Corporate Bond Yields fall
- Equity decline persists


CAR 11/19

Bond Response Jun 25


Stock Level Response

Event 2: December 18, 2020

Equity Values rise and Debt Values fall

Equity Values rise and Debt Values fall

- Reversal of previous effects
- Corporate bond yields rise
- Equity increase persists

Further Results on Equity and Debt Values

- March 25, 2021: Lifting of remaining restrictions
- International Evidence
 - Eurozone equity response larger
- Heterogeneity Analysis
 - Largest equity drops for least capitalized banks
- Government Guarantees: Break-even Analysis
 - High insurance for short-term debt, no insurance for long-term debt

Effects on Lending

Riskier Lending surges when Restrictions are lifted

- Test if CCAR banks change risk-taking around Dec 18, 2020
- Risk measure: IG vs. below IG

 $log(Loans_{ijbt}) = \alpha_{b,t} + \beta_1 Post_t non IG_{ijb} + \beta_2 non IG_{ijb} + \gamma X_{ijbt} + \epsilon_{ijbt}$

Riskier Lending surges when Restrictions are lifted

- Test if CCAR banks change risk-taking around Dec 18, 2020
- Risk measure: IG vs. below IG

 $log(Loans_{ijbt}) = \alpha_{b,t} + \beta_1 Post_t non IG_{ijb} + \beta_2 non IG_{ijb} + \gamma X_{ijbt} + \epsilon_{ijbt}$

	(1)	(2)	(3)
Post	0.10		
	(0.06)		
nonIG	3.66*	3.73*	2.68
	(1.83)	(1.90)	(1.77)
Post \times nonIG	0.34***	0.37***	0.33***
	(0.08)	(0.08)	(0.08)
Ν	5022	5022	5022
R^2	0.18	0.19	0.21
Bank Controls	x	х	
Bank FE		х	
Time FE		х	
Bank-Time FE			x

Lower Spreads despite Riskier Loans

- Riskier lending and higher interest rates
- Riskier lending but interest rates constant or falling

Lower Spreads despite Riskier Loans

- Riskier lending and higher interest rates
- Riskier lending but interest rates constant or falling

 $Spread_{ijbt} = \alpha_{b,t} + \beta_1 Post_t non IG_{ijb} + \beta_2 non IG_{ijb} + \gamma X_{ijbt} + \epsilon_{ijbt}$

	(1)	(2)	(3)
Post	0.43		
	(3.58)		
nonIG	436.99***	335.76**	358.31*
	(141.36)	(138.72)	(172.14)
Post \times nonIG	-26.40***	-29.09**	-22.35**
	(8.73)	(9.76)	(9.67)
N	3814	3814	3814
R^2	0.37	0.40	0.42
Bank Controls	х	х	
Bank FE		х	
Time FE		х	
Bank-Time FE			х

Conclusion

This Paper

• Study imposing & lifting of payout restrictions on banks

Lessons

- **9** Payout restrictions redistribute between equity and debtholders
 - With restrictions, equity values fall and debt values rise
 - Higher capital buffers (\$60 billion Tier-1 capital)
- Payout restrictions mitigate risk-taking

Outlook

- Trade-off: Safer banks vs. excessively cautious banks
- Expectations about payout restrictions in next crisis?

Backup

Model Details

• $\ell \in [c + \underline{a}, c + \overline{a}]$

- If default: fraction $\phi < 1$ of loss re-imbursed to debtholders

Solvency at t = 1 requires $a \ge \hat{a}(d)$ where:

$$\hat{a}(d) = \ell + d - c$$

Model Details

• $\ell \in [c + \underline{a}, c + \overline{a}]$

• If default: fraction $\phi < 1$ of loss re-imbursed to debtholders

Solvency at t = 1 requires $a \ge \hat{a}(d)$ where:

$$\hat{a}(d) = \ell + d - c$$

- If default: fraction $\phi < 1$ of loss $\ell + d c a$ re-imbursed to debtholders
 - Reduced-form government guarantees
- Shareholders:

•
$$\max_d \underbrace{d}_{t=0} + \underbrace{Pr(a \ge \hat{a}(d))}_{\text{Survival Probability}} \underbrace{(E[a - \hat{a}|a \ge \hat{a}(d)] + V)}_{t=1}$$

• Derive equilibrium debt value as a function of d

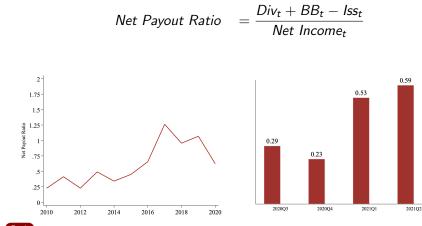
Model Details II

Payoff remains convex in $d \implies d = 0$ or d = c

$$\begin{array}{c|c} U(\underline{a},\overline{a}) & U(\underline{a}-\epsilon,\overline{a}+\epsilon) \\ \hline d=0 & EV(0,safe) & EV(0,risky) \\ \hline d=c & EV(c,safe) & EV(c,risky) \end{array}$$

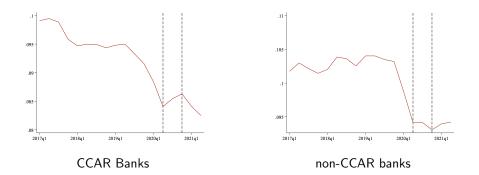
Conditions for Complementarity:

EV(c, risky) is unconstrained optimal choice
EV(0, safe) > EV(0, risky)


Technically:

$$\underbrace{ \ell = \max\{\frac{\bar{a}+\underline{a}}{2}, \underline{a}+c\} < \ell < \frac{\bar{a}+\underline{a}}{2}+c }_{ 2 < V < \bar{V} }$$

$$\underbrace{ V < V < \bar{V} }_{ 4 < \bar{U} - \underline{a} - \frac{c}{2} }_{ 2 < \bar{u} - \overline{a} - \underline{a} }$$



Evolution of Payouts

Back

Leverage falls when Payouts are restricted

Leverage falls for CCAR banks when payout restrictions are imposed

▶ No such development for large banks outside CCAR

Summary Statistics Banks

	CCAR B	anks 2019	Large non-	CCAR Banks 2019
	mean	sd	mean	sd
Total Assets	675.86	796.98	74.46	62.39
Total Liabilities	604.48	717.28	67.07	58.34
Capital Ratio	11.26	1.65	12.90	4.43
RoE	0.03	0.02	0.04	0.03
Dividends	0.61	0.81	0.07	0.07
Share Repurchases	1.77	2.59	0.19	0.33
Issuance	0.20	0.49	0.04	0.12
Net Payout Ratio	0.92	0.60	0.65	0.89
Observations	88		61	

Average over 2019 summary statistics for banks

	CCAR B	anks 2020 Q3	Large n	on-CCAR Banks 2020 Q3
	mean	sd	mean	sd
Total Assets	757.82	922.89	91.18	92.80
Total Liabilities	685.12	842.18	83.18	86.61
Capital Ratio	11.82	2.03	12.40	4.12
RoE	0.03	0.01	0.03	0.03
Dividends	0.58	0.76	0.08	0.08
Share Repurchases	0.04	0.13	0.03	0.09
Issuance	0.10	0.23	0.00	0.00
Net Payout Ratio	0.23	0.35	0.09	1.00
Observations	22		16	

Balance Sheet variables in billions. RoE is quarterly.

2020 Q3 Summary statistics for banks Back

Summary Statistics I

Variable	Obs	Mean	Std. Dev.	P10	P50	P90
Normalized Price	57295	1.001	.038	.986	1	1.011
Shares Outstanding in 1,000s	57436	409611.1	988584.5	12934	108613	948380
Size of Trade	57436	4531.284	32203.92	2	75	4630.667
Market Value in \$1,000	57436	3.02e+07	1.30e+08	29984.55	1057751	5.87e+07

TAQ Summary statistics: June 25, 2020

Variable	Obs	Mean	Std. Dev.	P10	P50	P90
Normalized Price	85372	1.003	.022	.996	1	1.012
Shares Outstanding in 1,000s	85906	366738.7	1041450	18732	99236	789392
Size of Trade	85906	24022.6	155797.2	3	125	17827
Market Value in \$1,000	85906	3.18e+07	1.34e+08	85190.4	2687889	6.60e+07

TAQ Summary statistics: December 18, 2020

Summary Statistics II

	Financi	al Sector (excl. CCAR Banks)	CCAR	Banks
	mean	sd	mean	sd
Spread - 1Y	0.77	1.41	0.35	0.20
Spread - 2Y	0.94	1.47	0.48	0.26
Spread - 3Y	1.12	1.60	0.56	0.29
Spread - 5Y	1.44	1.74	0.77	0.38
Spread - 10Y	1.74	1.74	1.05	0.48
Spread - 20Y	1.73	1.58	1.19	0.55
Spread - 30Y	1.76	1.56	1.22	0.53
Observations	5497		350	

CDS spreads around 06/25/2020

	Financia	al Sector(excl. CCAR Banks)	CCAR	Banks
	mean	sd	mean	sd
Spread - 1Y	0.64	1.25	0.26	0.10
Spread - 2Y	0.78	1.31	0.36	0.17
Spread - 3Y	0.95	1.47	0.44	0.22
Spread - 5Y	1.27	1.65	0.65	0.32
Spread - 10Y	1.58	1.64	0.92	0.38
Spread - 20Y	1.61	1.54	1.04	0.43
Spread - 30Y	1.63	1.50	1.07	0.42
Observations	7700		495	

CDS spreads around 12/18/2020

Summary Statistics III

	Economy	(excl. CCAR Banks)	CCAR	Banks
	mean	sd	mean	sd
Daily Close Price	105.97	11.47	103.95	11.13
Daily Close Yield	3.30	2.19	2.76	1.47
Maturity in Years	9.49	10.08	6.35	6.56
Observations	3507585		642250	

Corporate Bond Trade Summary Statistics

	mean	sd
Loan Amount (Million Dollars)	126.63	300.51
Loan Spread (bps)	234.84	146.20
Leveraged Loan Flag	0.65	0.48
Observations	51127	

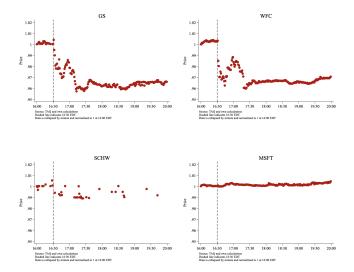
Syndicated Loans: Summary Statistics

Empirical Strategy

Equity Response

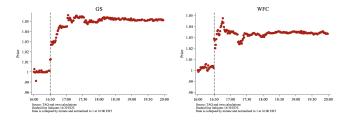
- Use high-frequency data around announcements (at 16.30 EDT)
- Normalize prices to one at 16:00

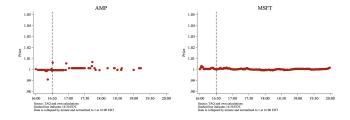
$$P_{it} = \alpha_i + \alpha_t + \sum_{\substack{\tau = 16:00\\\tau \neq 16:30}}^{18:00} \beta_\tau \mathbf{1}_{t=\tau} \mathsf{CCAR} \; \mathsf{Bank}_i + \epsilon_{it}$$


CDS Response

- US \$-denominated CDS on senior unsecured debt
- Daily Event-Study

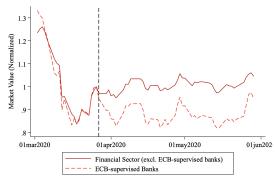
$$Spread_{it} = \alpha_i + \alpha_{t,r} + \sum_{\substack{\tau = -5 \\ \tau \neq 0}}^{5} \gamma_{\tau} \mathbf{1}_{t=\tau} CCARBank_i + \delta_1 CCARBank_i + \delta_2 X_{it} + \epsilon_{it}$$




High Frequency Equity Market Evidence

Stock Price Reaction around Fed announcement for Goldman Sachs, Wells Fargo, Charles Schwab, Microsoft Back

High Frequency Equity Market Evidence Dec 18, 2020



Stock Price Reaction around Fed announcement for Goldman Sachs, Wells Fargo, Ameriprise, Microsoft Back

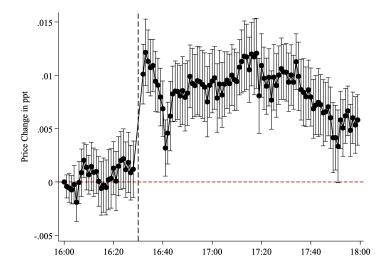
Eurozone: Large Announcement Effect on 03/27/2020

- Dividends and share buybacks fully suspended from 03/27/2020 to 12/15/2020
 - Prolonged, with exceptions, until September 2021
- New aspects: Selling pressure by dividend-affine investors?

Source: Compustat Global and own calculations

Market values normalized on 03/26/2020. Dashed line indicates 03/27/2020.

Evidence from the UK: Announcement Effect on 03/31/2020



Source: Compustat Global and own calculations

Market values normalized on 03/30/2020. Dashed line indicates 03/31/2020.

Financial Firms vs. Large Banks

High-frequency Evidence Mar 25, 2020

CAR over time

$$AR_{it} = R_{it} - (\hat{\alpha}_i + \hat{\beta}_i R_{m,t})$$
$$CAR_{it} = \sum_{\tilde{t}=1}^{t} AR_{i,\tilde{t}}$$

CAR after 06/25/2020 Weighted Regression (Banks only)

Date	Coefficient	SE
06/26/2020	0135***	(.0050)
06/29/2020	0305***	(.0037)
06/30/2020	0336***	(.0047)
07/01/2020	0351***	(.0047)
07/02/2020	0380***	(.0053)
07/06/2020	0350***	(.0066)
07/07/2020	0423***	(.0073)
07/08/2020	0423***	(.0090)
07/09/2020 07/09/2020 07/10/2020	0422*** 0211**	(.0090) (.0099) (.0087)

CAR 12/18/2020

CAR after 12/18/2020 Weighted Regression (Banks Only)

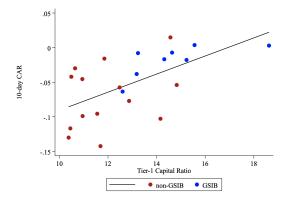
Date	Coefficient	SE
12/21/2020	.03196***	(.0049)
12/22/2020 12/23/2020	.01844*** .02493***	(.0047) (.0055)
12/24/2020 12/28/2020	.02299*** .02279***	(.0051) (.0053)
12/29/2020	.02646***	(.0055)
12/30/2020 12/31/2020	.02332*** .02873***	(.0054) (.0053)
01/04/2021 01/05/2021	.02893*** .02701***	(.0067) (.0072)
	.02701	(.0012)

Higher Frequency Bond Market Evidence

	(1)	(2)			
Post	0.04**				
	(0.02)				
CCAR Bank	-0.89***				
	(0.19)				
CCAR Bank x Post	-0.09***	-0.08***			
	(0.03)	(0.02)			
Constant	3.02***	2.95***			
	(0.09)	(0.00)			
Ν	47171.00	47126.00			
R^2	0.01	0.79			
Firm FE		х			
Time FE		х			
* * *p < .01, *	* * * p < .01, * * p < .05, * p < .1				

Daily Differences-in-Differences Estimation around 06/25/2020

Bond Response 12/18/2020


	(1)	(2)
Post	-0.03**	
	(0.01)	
CCAR Bank	-0.42***	
	(0.15)	
CCAR Bank x Post	0.04**	0.05***
	(0.02)	(0.02)
Constant	2.16***	2.11***
	(0.06)	(0.00)
Ν	33576	33574
R^2	0.00	0.64
Firm FE		х
Time FE		х
* * *p < .01, * *	p < .05, *p <	.1

Corporate Bonds: Daily Differences-in-Differences Estimation around 12/18/2020

Heterogeneity Analysis

- Risk-shifting incentives strongest for banks with low capitalization
- GSIB vs. non-GSIB

Heterogeneity in 10-day CAR by Tier-1 Capital Ratio after 06/25/2020

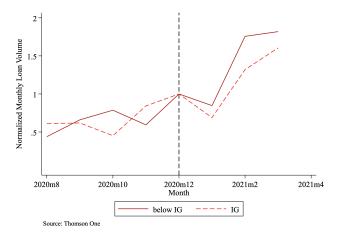
Inferring Change in Government Guarantees

- Risk-shifting also between equity holders and public sector
 - Attenuates debt response ΔDV by a degree ϕ
- Break-even analysis: $\Delta EV = \Delta DV + \Delta GG$

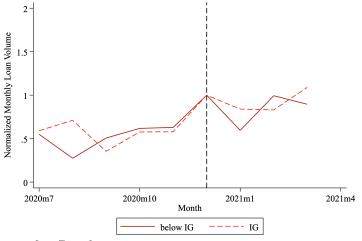
Three Assumptions

- **3** types of debt: $DV^{ST, fully insured}, DV^{ST, partly insured}, DV^{LT}$
- **2** Degree of insurance measured by: ϕ^{ST} , ϕ^{LT}

Findings


•
$$\phi^{ST} = .9044, \ \phi^{LT} = -.37$$

- $\Delta GG = 25.37 billion on 06/25/2020
- Reversal in December 2020


Lending of CCAR banks

- Use Thomson Reuters monthly syndicated loan data
 - Data allows to separate IG from non-IG loans

Lending for non-CCAR Banks

Source: Thomson One

