Credit Allocation and Macroeconomic Fluctuations

Karsten Müller
NUS

Emil Verner
MIT

2021 Ieke van den Burg Prize Ceremony
1 October 2021
Rapid credit expansions are often, \textit{but not always}, followed by economic downturns (Schularick-Taylor, 2012; Mian et al. 2017; Greenwood et al., 2020)
Motivation

Rapid credit expansions are often, *but not always*, followed by economic downturns (Schularick-Taylor, 2012; Mian et al. 2017; Greenwood et al., 2020)

But how credit interacts with business cycles remains poorly understood

- Why do some credit expansions end badly, while others are linked to growth spurts?
- How can we tell apart “good” from “bad” booms (Gorton & Ordoñez, 2020)?
- Does it matter who gets the borrowed money during credit booms?
Motivation

Rapid credit expansions are often, *but not always*, followed by economic downturns (Schularick-Taylor, 2012; Mian et al. 2017; Greenwood et al., 2020)

But how credit interacts with business cycles remains poorly understood

- Why do some credit expansions end badly, while others are linked to growth spurts?
- How can we tell apart “good” from “bad” booms (Gorton & Ordoñez, 2020)?
- Does it matter who gets the borrowed money during credit booms?

This paper: role of *sectoral allocation of credit* for understanding linkages between credit booms, macroeconomic fluctuations, and financial crises
Why focus on the allocation of credit across sectors?

Motivated by models of credit cycles with sectoral heterogeneity (e.g. Schneider-Tornell, 2004)

- Main distinction: tradable (T) vs. non-tradable (NT) and household sectors
- Key frictions: (1) sensitivity to credit supply shocks; (2) sensitivity to household demand
Why focus on the allocation of credit across sectors?

Motivated by models of credit cycles with sectoral heterogeneity (e.g. Schneider-Tornell, 2004)

- Main distinction: tradable (T) vs. non-tradable (NT) and household sectors
- Key frictions: (1) sensitivity to credit supply shocks; (2) sensitivity to household demand

Channels linking NT and HH credit to economic downturns

- Fueling unsustainable demand booms (e.g. Schmitt-Grohé-Uribe, 2016; Mian-Sufi-Verner, 2020)
- Contributing to financial fragility (e.g. Schneider-Tornell, 2004; Kalantzis, 2015)
- Contributing to intersectoral misallocation (e.g. Reis, 2013; Benigno-Fornaro, 2014)
Why focus on the allocation of credit across sectors?

Motivated by models of credit cycles with sectoral heterogeneity (e.g. Schneider-Tornell, 2004)

- Main distinction: tradable (T) vs. non-tradable (NT) and household sectors
- Key frictions: (1) sensitivity to credit supply shocks; (2) sensitivity to household demand

Channels linking NT and HH credit to economic downturns

- Fueling unsustainable demand booms (e.g. Schmitt-Grohé-Uribe, 2016; Mian-Sufi-Verner, 2020)
- Contributing to financial fragility (e.g. Schneider-Tornell, 2004; Kalantzis, 2015)
- Contributing to intersectoral misallocation (e.g. Reis, 2013; Benigno-Fornaro, 2014)

Yet prominent theories of credit cycles do not emphasize borrower heterogeneity (e.g. Brunnermeier-Sannikov, 2014; Bordalo-Gennaioli-Shleifer, 2016)

- Whether the allocation of credit matters empirically is an open question
To test for a role of sectoral credit allocation, we construct a new cross-country panel database from more than 600 individual sources, many newly digitized.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Start</th>
<th>Countries</th>
<th>Sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIS</td>
<td>1940</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>IMF GDD</td>
<td>1950</td>
<td>83</td>
<td>2</td>
</tr>
<tr>
<td>Jordà et al. (2016)</td>
<td>1870</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>Müller and Verner (2020)</td>
<td>1940</td>
<td>116</td>
<td>2–60 (mean=16)</td>
</tr>
</tbody>
</table>
This paper

To test for a role of sectoral credit allocation, we construct a new cross-country panel database from more than 600 individual sources, many newly digitized.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Start</th>
<th>Countries</th>
<th>Sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIS</td>
<td>1940</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>IMF GDD</td>
<td>1950</td>
<td>83</td>
<td>2</td>
</tr>
<tr>
<td>Jordà et al. (2016)</td>
<td>1870</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>Müller and Verner (2020)</td>
<td>1940</td>
<td>116</td>
<td>2–60 (mean=16)</td>
</tr>
</tbody>
</table>

We use these data to study the link between sectoral credit, business cycles, and crises.
Main results

1. Stark differences in macro outcomes across sectoral credit expansions
 • Credit to non-tradable and household sectors predict slower medium-run growth
 • Credit to tradable sector predicts stable or even stronger growth
Main results

1. Stark differences in macro outcomes across sectoral credit expansions
 - Credit to non-tradable and household sectors predict slower medium-run growth
 - Credit to tradable sector predicts stable or even stronger growth

2. Mechanisms consistent with role of NT and HH credit in multi-sector credit cycle models
 - NT and HH credit predict demand booms and busts
 - NT and HH credit predict higher risk of financial crises
 - NT and HH credit predict lower productivity growth, could suggest intersectoral misallocation
Main results

1. Stark differences in macro outcomes across sectoral credit expansions
 • Credit to non-tradable and household sectors predict slower medium-run growth
 • Credit to tradable sector predicts stable or even stronger growth

2. Mechanisms consistent with role of NT and HH credit in multi-sector credit cycle models
 • NT and HH credit predict demand booms and busts
 • NT and HH credit predict higher risk of financial crises
 • NT and HH credit predict lower productivity growth, could suggest intersectoral misallocation

Takeaway: whether credit booms are “good” or “bad” depends on what credit is used for
• Distinguishing varieties of firm credit expansions is important
Related literature

1. **Macro-financial linkages**
 - **Credit and crises**: e.g. Borio and Lowe (2002); Büyükarabacak & Valev (2008); Reinhart and Rogoff (2009); Gourinchas and Obstfeld (2012); Schularick and Taylor (2012); Jordà, Schularick, and Taylor (2016); Baron and Xiong (2017); López-Salido, Stein, Zakrajšek (2017); Krishnamurthy and Muir (2017); Mian, Sufi, and Verner (2017, 2020); Gorton and Ordoñez (2019); Brunnermeier, Palia, Karthik, and Sims (2020); Greenwood, Hanson, Shleifer, and Sørensen (2020); Giroud and Mueller (2020); Richter and Diebold (2021)
 - **Credit and growth**: e.g. Goldsmith (1969); King and Levine (1993); Rajan and Zingales (1998); Levine, Loyaza, and Beck (2000); Beck et al. (2012)

2. **International macroeconomics**
 - e.g. Mendoza (2002); Schneider and Tornell (2004); Tornell and Westermann (2005); Mendoza and Terrones (2008); Benigno and Fornaro (2014); Kalantzis (2015); Schmitt-Grohé and Uribe (2016); Bleck and Liu (2018)

→ Whether credit expansions end badly depends on what firm credit is used for, along lines emphasized by open economy models
A new database on sectoral credit

> 600 sources, 1/3 newly digitized
Mainly: statistical yearbooks, central banks

Previously unpublished data
provided by central banks and regulators

Systematic coding of classification changes
help from 150 employees of national authorities

Extensive documentation
data appendix, spreadsheets, code routines

Sectoral credit database
116 countries
1940-2014
Sector classification: ISIC Rev. 4
Covers all domestic credit

Forthcoming
More countries
Update until 2021
Website to explore data
Data and code
Comparing total credit values with BIS data
New facts about allocation of credit

(a) Booming household, stalling firm credit

Private credit in % of GDP

- Household credit
- Financial sector credit
- Non-financial corporate credit

Sample: 51 advanced and 46 emerging economies.
New facts about allocation of credit

(a) Booming household, stalling firm credit

Private credit in % of GDP
- Household credit
- Financial sector credit
- Non-financial corporate credit

Sample: 51 advanced and 46 emerging economies.

(b) Structural change in corporate credit

Sector share of corporate credit
- Other sectors
- Transport/Communication
- Trade, Accomm., Food
- Construction/RE
- Manufacturing/Mining
- Agriculture

Sample: 35 advanced economies.
The 1980s credit boom in Japan

Credit to GDP
Index (1985=100)

- Households
- Real estate
- Accom., Food
- Construction
- Manufacturing

Similar pattern across most credit booms and crises in advanced and emerging economies
The Korean “growth miracle”

Banking reform in 1965 led to credit expansion by state-owned banks toward export-activities.
Empirical framework

Credit variables

• Tradable sector: agriculture; mining; manufacturing
• Non-tradable sector: construction/real estate; retail and wholesale trade/accom./food; transport/comm.
• Households
Empirical framework

Credit variables

• Tradable sector: agriculture; mining; manufacturing
• Non-tradable sector: construction/real estate; retail and wholesale trade/accom./food; transport/comm.
• Households

What are key differences between T and NT sectors?

<table>
<thead>
<tr>
<th>1) Sensitivity to demand:</th>
<th>Tradable</th>
<th>Non-tradable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity to final demand</td>
<td>0.15</td>
<td>0.36</td>
</tr>
<tr>
<td>Exports/value added</td>
<td>0.78</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Empirical framework

Credit variables

• Tradable sector: agriculture; mining; manufacturing
• Non-tradable sector: construction/real estate; retail and wholesale trade/accom./food; transport/comm.
• Households

What are key differences between T and NT sectors?

<table>
<thead>
<tr>
<th></th>
<th>Tradable</th>
<th>Non-tradable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Sensitivity to demand:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximity to final demand</td>
<td>0.15</td>
<td>0.36</td>
</tr>
<tr>
<td>Exports/value added</td>
<td>0.78</td>
<td>0.11</td>
</tr>
<tr>
<td>2) Financing constraints:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small firm share</td>
<td>0.79</td>
<td>0.90</td>
</tr>
<tr>
<td>Mortgage share</td>
<td>0.45</td>
<td>0.61</td>
</tr>
</tbody>
</table>
Empirical framework

Credit variables

- Tradable sector: agriculture; mining; manufacturing
- Non-tradable sector: construction/real estate; retail and wholesale trade/accom./food; transport/comm.
- Households

What are key differences between T and NT sectors?

<table>
<thead>
<tr>
<th></th>
<th>Tradable</th>
<th>Non-tradable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Sensitivity to demand:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximity to final demand</td>
<td>0.15</td>
<td>0.36</td>
</tr>
<tr>
<td>Exports/value added</td>
<td>0.78</td>
<td>0.11</td>
</tr>
<tr>
<td>2) Financing constraints:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small firm share</td>
<td>0.79</td>
<td>0.90</td>
</tr>
<tr>
<td>Mortgage share</td>
<td>0.45</td>
<td>0.61</td>
</tr>
<tr>
<td>3) Productivity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor productivity</td>
<td>$56,263</td>
<td>$43,406</td>
</tr>
<tr>
<td>Labor productivity growth</td>
<td>3.2%</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Sources: WIOT, Eurostat, various central banks, Mano & Castillo (2015)
Empirical framework

Impulse responses from Jordà (2005) local projections:

\[\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^{J} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{h,j}^T \Delta d_{it-j}^T + \sum_{j=0}^{J} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} \]

\[+ \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \quad h = 1, \ldots, 10 \quad J = 5 \]
Empirical framework

Impulse responses from Jordà (2005) local projections:

\[\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^{J} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} \]

\[+ \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \quad h = 1, \ldots, 10 \quad J = 5 \]

\(y = \log(\text{real GDP}) \)
Empirical framework

Impulse responses from Jordà (2005) local projections:

\[
\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^{J} \beta_{hj}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{hj}^T \Delta d_{it-j}^T + \sum_{j=0}^{J} \beta_{hj}^{HH} \Delta d_{it-j}^{HH} \\
+ \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \quad h = 1, \ldots, 10 \quad J = 5
\]

Country fixed effects
Empirical framework

Impulse responses from Jordà (2005) local projections:

\[\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^J \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^J \beta_{h,j}^T \Delta d_{it-j}^T + \sum_{j=0}^J \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} \]

\[+ \sum_{j=0}^J \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \quad \text{for } h = 1, \ldots, 10 \quad J = 5 \]

\[d^{NT} = \text{Credit to the non-tradable sector / GDP} \]
Empirical framework

Impulse responses from Jordà (2005) local projections:

\[
\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^J \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^J \beta_{h,j}^T \Delta d_{it-j}^T + \sum_{j=0}^J \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} \\
+ \sum_{j=0}^J \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \quad h = 1, \ldots, 10 \quad J = 5
\]

d^T = \text{Credit to the tradable sector / GDP}
Empirical framework

Impulse responses from Jordà (2005) local projections:

\[\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^{J} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} \]

\[+ \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \quad h = 1, \ldots, 10 \quad J = 5 \]

\(d^{HH} = \text{Credit to households} / \text{GDP} \)
Empirical framework

Impulse responses from Jordà (2005) local projections:

\[
\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^{J} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} \\
+ \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \quad h = 1, \ldots, 10 \quad J = 5
\]

Prediction horizon: 10 years
Empirical framework

Impulse responses from Jordà (2005) local projections:

\[
\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^{J} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} \\
+ \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \quad h = 1, \ldots, 10 \quad J = 5
\]

Lag length: 5 years
Empirical framework

Impulse responses from Jordà (2005) local projections:

\[\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^{J} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} \]

\[+ \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \quad h = 1, \ldots, 10 \quad J = 5 \]

Inference: Driscoll-Kraay or two-way clustered standard errors (country and year)

Note on interpretation: Impulse responses ≠ causal effects

- Conditional on seeing a credit expansion, what happens to GDP (on average)?
Real GDP and T vs. NT sector firm credit expansions

\[\Delta h y_{it+h} = \alpha_i^h + \sum_{j=0}^{5} \beta_{h,j}^{NT} d_{it-j}^{NT} + \sum_{j=0}^{5} \beta_{h,j}^{T} d_{it-j}^{T} + \sum_{j=0}^{5} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h} \]

In the paper, we show these patterns are robust and hold when controlling for output shares
Similar when controlling for household debt expansion

\[
\Delta h_y_{it+h} = \alpha_i^h + \sum_{j=0}^{5} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{5} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{5} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} + \sum_{j=0}^{5} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}
\]
Unemployment spikes following NT credit expansions

\[
\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^{5} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{5} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{5} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} + \sum_{j=0}^{5} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}
\]
Splitting firm credit along sector characteristics

$$\Delta_3 y_{it+h} = \alpha_i^h + \beta_{h}^{HIGH} \Delta_3 d_{it}^{HIGH} + \beta_{h}^{LOW} \Delta_3 d_{it}^{LOW} + \epsilon_{it+h}, \quad h = 0, 1, \ldots, 5$$

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_3 d_{it}^k$</td>
<td>(t-3,t)</td>
<td>(t-2,t+1)</td>
<td>(t-1,t+2)</td>
<td>(t,t+3)</td>
<td>(t+1,t+4)</td>
<td>(t+2,t+5)</td>
</tr>
<tr>
<td>High proximity to HH</td>
<td>0.23*</td>
<td>-0.0097</td>
<td>-0.23*</td>
<td>-0.35**</td>
<td>-0.39**</td>
<td>-0.33**</td>
</tr>
<tr>
<td></td>
<td>(0.100)</td>
<td>(0.11)</td>
<td>(0.10)</td>
<td>(0.083)</td>
<td>(0.075)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>Low proximity to HH</td>
<td>0.39**</td>
<td>0.30**</td>
<td>0.20</td>
<td>0.19</td>
<td>0.22</td>
<td>0.26*</td>
</tr>
<tr>
<td></td>
<td>(0.094)</td>
<td>(0.11)</td>
<td>(0.13)</td>
<td>(0.14)</td>
<td>(0.15)</td>
<td>(0.12)</td>
</tr>
</tbody>
</table>

Panel A: Sorting by proximity to household demand

Panel B: Sorting by small firm share

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High small firm share</td>
<td>0.21*</td>
<td>-0.048</td>
<td>-0.27*</td>
<td>-0.40**</td>
<td>-0.43**</td>
<td>-0.38*</td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
<td>(0.099)</td>
<td>(0.11)</td>
<td>(0.13)</td>
<td>(0.15)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>Low small firm share</td>
<td>0.38**</td>
<td>0.23*</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.11)</td>
<td>(0.15)</td>
<td>(0.17)</td>
<td>(0.19)</td>
<td>(0.19)</td>
</tr>
</tbody>
</table>

Similar patterns when splitting along: export/VA, housing input share, or mortgage debt share
Real GDP around major credit booms

1. Identify credit booms: based on detrended total credit/GDP
2. Split by composition of boom: NT/HH-biased or T-biased boom
Mechanisms

Recap: potential channels linking NT and HH credit to lower medium-run growth

1. **Credit-driven demand boom and bust (e.g. Schmitt-Grohé-Uribe, 2016)**

 → NT/HH credit predict reallocation toward NT sector, real exchange rate appreciation

2. **Differences in financial fragility across sectors (e.g. Schneider-Tornell, 2004)**

 → NT/HH credit predict financial crises, sectoral losses

3. **Lower productivity growth through misallocation across sectors (e.g. Reis, 2013)**

 → NT/HH credit predict sluggish productivity growth

 → T credit predicts higher productivity growth
1. Sectoral credit and demand booms

\[\Delta_3 y_{it} = \alpha_i^h + \beta_h^{NT} \Delta_3 d_{it}^{NT} + \beta_h^T \Delta_3 d_{it}^T + \beta_h^{HH} \Delta_3 d_{it}^{HH} + \epsilon_{it} \]

<table>
<thead>
<tr>
<th>\Delta_3 d_{it}^k</th>
<th>\Delta_3 \ln \left(\frac{E_{NT}^{NT}}{E_T^{NT}} \right)</th>
<th>\Delta_3 \ln (RER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tradables</td>
<td>-0.18</td>
<td>-0.27</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>Non-tradables</td>
<td>0.44**</td>
<td>0.43^</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Households</td>
<td>0.44**</td>
<td>0.30*</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Observations</td>
<td>992</td>
<td>1,755</td>
</tr>
<tr>
<td># Countries</td>
<td>45</td>
<td>73</td>
</tr>
<tr>
<td>R^2</td>
<td>0.14</td>
<td>0.03</td>
</tr>
</tbody>
</table>

- NT and HH sector credit associated with reallocation of real activity towards NT, real appreciation
- Consistent with credit expansion boosting demand (Mian-Sufi-Verner, 2020)
2. Differences in financial fragility across sectors

Established finding: total credit/GDP expands before crises

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

Household debt expands earlier than firm debt

Change in credit/GDP

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

Household debt expands earlier than firm debt

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

Firm credit expansions mainly driven by NT sector

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

Firm credit expansions mainly driven by NT sector

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

Firm credit expansions mainly driven by NT sector

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

NT sector expansions not only driven by housing

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

NT sector expansions not only driven by housing

![Graph showing change in credit/GDP over years since banking crisis, with notes: Crisis dates from BVX (2020) and LV (2018).]
2. Differences in financial fragility across sectors

NT sector expansions not only driven by housing

Change in credit/GDP

Years since banking crisis

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

NT sector expansions not only driven by housing

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

T sector credit growth muted before crises

Change in credit/GDP

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

T sector credit growth muted before crises

Change in credit/GDP

Note: Crisis dates from BVX (2020) and LV (2018).
2. Differences in financial fragility across sectors

\[\text{Crisis}_{it \to it+h} = \alpha_i^h + \beta_h^{NT} \Delta_3 d_{it}^{NT} + \beta_h^T \Delta_3 d_{it}^T + \beta_h^{HH} \Delta_3 d_{it}^{HH} + \epsilon_{it+h}, \quad h = 1, \ldots, 4 \]

<table>
<thead>
<tr>
<th>Dependent variable: Crisis within...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Tradables</td>
</tr>
<tr>
<td>(0.004)</td>
</tr>
<tr>
<td>Non-tradables</td>
</tr>
<tr>
<td>(0.003)</td>
</tr>
<tr>
<td>Households</td>
</tr>
<tr>
<td>(0.003)</td>
</tr>
</tbody>
</table>

Observations	1,527	1,531	1,534	1,536
# Countries	70	70	70	70
# Crises	46	45	45	44
AUC	0.74	0.72	0.70	0.68
SE of AUC	0.03	0.03	0.02	0.02

- 1 SD higher non-tradable sector credit → crisis probability 0.063 pp higher (baseline: ≈0.03)
2. Differences in financial fragility across sectors

Sectoral credit losses after crises: the Spanish banking crisis of 2008

- Consistent with higher financial fragility of NT firms and households (e.g. Schneider-Tornell, 2004)
- Suggests sectoral losses are important for understanding systemic banking distress
3. Lower productivity growth

\[\Delta_3 \text{Labor Productivity}_{it+h} = \alpha_i + \beta^{NT} \Delta_3 d_{it}^{NT} + \beta^T \Delta_3 d_{it}^T + \beta^{HH} \Delta_3 d_{it}^{HH} + \epsilon_{it}, \quad h = 0, \ldots, 5 \]

<table>
<thead>
<tr>
<th>(\Delta_3 d_{it}^k)</th>
<th>Dependent variable: Labor productivity growth over...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (t-3,t)</td>
</tr>
<tr>
<td>Tradables</td>
<td>0.188*</td>
</tr>
<tr>
<td></td>
<td>(0.094)</td>
</tr>
<tr>
<td>Non-tradables</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>(0.141)</td>
</tr>
<tr>
<td>Households</td>
<td>-0.137**</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,423</td>
</tr>
<tr>
<td># Countries</td>
<td>67</td>
</tr>
<tr>
<td>R²</td>
<td>0.01</td>
</tr>
</tbody>
</table>

- 1 SD higher NT credit growth → 0.5% lower productivity growth, similar for estimated TFP growth
- Could reflect misallocation of resources across sectors (e.g. Reis, 2013; Benigno-Fornaro, 2014)
Conclusion

Sectoral allocation of credit matters for understanding macro-financial linkages

- Credit to non-tradable/household sector \rightarrow lower growth
- Credit to tradable sectors \rightarrow stable/higher growth
- Channels: (1) credit-driven demand boom and bust; (2) financial fragility; (3) lower productivity
Conclusion

Sectoral allocation of credit matters for understanding macro-financial linkages

- Credit to non-tradable/household sector \rightarrow lower growth
- Credit to tradable sectors \rightarrow stable/higher growth
- Channels: (1) credit-driven demand boom and bust; (2) financial fragility; (3) lower productivity

New perspective on “finance-growth” and “credit booms gone bust” views
- What credit is used for matters for whether booms end badly
Conclusion

Sectoral allocation of credit matters for understanding macro-financial linkages
- Credit to non-tradable/household sector → lower growth
- Credit to tradable sectors → stable/higher growth
- Channels: (1) credit-driven demand boom and bust; (2) financial fragility; (3) lower productivity

New perspective on “finance-growth” and “credit booms gone bust” views
- What credit is used for matters for whether booms end badly

Implications
- Heterogeneity in firm credit matters for understanding credit cycles
- Housing and household debt important but not the entire story; other firm sectors also important
- Taken at face value suggests role for stronger sectoral regulations (caveats apply)
Credit Allocation and Macroeconomic Fluctuations

Karsten Müller
NUS

Emil Verner
MIT

2021 Ieke van den Burg Prize Ceremony
1 October 2021