

No. 8 / August 2015

Identifying early warning indicators for real estate-related banking crises

Stijn Ferrari¹ Mara Pirovano² Wanda Cornacchia³

- 2 National Bank of Belgium
- 3 Banca d'Italia

The authors would like to thank Saleem Bahaj, Frank Dierick, Sebastian Frontczak, Julia Giese, Christian Glebe, Mads Harmsen, Abdelaziz Rouabah and Luminita Tatarici for their useful comments and suggestions.

Disclaimer: The views expressed in the Occasional Papers are those of the authors and do not necessarily reflect the official stance of the ESRB or its member organisations. In particular, any views expressed in the Occasional Papers should not be interpreted as warnings or recommendations by the ESRB as provided for in Art. 16 of Regulation No. 1092/2010 of 24 November 2010, which are subject to a formal adoption and communication process. Reproduction is permitted provided that the source is acknowledged.

Contents

Executive summary	3
Introduction	4
Section 1 Data description	5
1.1. Real estate-related banking crises	6
1.2. Potential early warning indicators	7
1.3. Graphical evaluation of early warning indicators	10
Section 2 Evaluation methodology	11
2.1 Signalling approach	12
2.2 Evaluation criteria adopted in this paper	13
Section 3 Statistical evaluation of early warning indicators	14
3.1 Non-parametric approach	15
3.2 Parametric approach	24
3.3 Country-level evaluation of best models	35
Section 4 Robustness analysis	44
4.1 Parameter of the policymaker's loss function	44
4.2 Out-of-sample analysis	45
Section 5 Policy discussion and conclusions	49
List of tables	51
List of figures	51
Annex A	52
References	68

Executive summary

This Occasional Paper presents a formal statistical evaluation of potential early warning indicators for real estate-related banking crises. Relying on data on real estate-related banking crises for 25 EU countries, a signalling approach is applied in both a non-parametric and a parametric (discrete choice) setting. Such an analysis evaluates the predictive power of potential early warning indicators on the basis of the trade-off between correctly predicting upcoming crisis events and issuing false alarms.

The results in this paper provide an analytical underpinning for decision-making based on guided discretion with regard to the activation of macro-prudential instruments targeted to the real estate sector. After the publication of the ESRB Handbook and the Occasional Paper on the countercyclical capital buffer, it represents a next step in the ESRB's work on the operationalisation of macro-prudential policy in the banking sector.

This Occasional Paper highlights the important role of both real estate price variables and credit developments in predicting real estate-related banking crises. The results indicate that, in addition to cyclical developments in these variables, it is crucial to monitor the structural dimension of real estate prices and credit. In multivariate settings macroeconomic and market variables such as the inflation rate and short-term interest rates may add to the early warning performance of these variables. Overall, the findings indicate that combining multiple variables improves early warning signalling performance compared with assessing each indicator separately, both in the non-parametric and the parametric approach. Combinations of the abovementioned indicators lead to lower probabilities of missing crises while at the same time not issuing too many false alarms. In addition to EU level, they also perform relatively well at individual country level.

Even though the best performing indicators have relatively good signalling abilities at the individual country level, national authorities are encouraged to perform their own complementary analyses in a broader framework of systemic risk detection, which augments potential early warning indicators and methods with other relevant inputs and expert judgement.

Introduction

Systemic risks stemming from excessive developments in real estate markets have significantly contributed to financial instability in the past, as for example in Denmark, Sweden and the United Kingdom in the early 1990s, as well as in the recent financial crisis. Unfavourable developments in the real estate sector have played an important role in major financial crises. Financial and economic busts preceded by an excessive real estate boom are particularly harmful from a financial stability perspective since they are longer and costlier than the average downturn.¹ The rapid credit growth that accompanies such booms is associated with an increase in household and financial sector leverage which can lead to risks to financial stability and the real economy, weakening its ability to recover in the aftermath of a crisis. Furthermore, real estate is the asset in which the largest fraction of household wealth is invested, and the construction sector has key supply-side effects on growth. Against this backdrop, designing and operationalising macro-prudential instruments aimed at real estate markets is a key issue for European authorities.

Some practical country experience on addressing systemic concerns originating from the real estate sector is already available, including in EU Member States.² The ESRB strongly encourages countries to develop sound macro-prudential policy strategies to frame macro-prudential policy actions, and to seek further harmonisation in the application of such measures. Macro-prudential policy strategies involve linking the ultimate objectives of macro-prudential policy to instruments and indicators. Instruments such as risk weights for real estate exposures, limits to loan-to-value and debt service-to-income ratios are considered important macro-prudential tools to target real estate risks. The operationalisation of such instruments requires identifying sound leading indicators and associated thresholds signalling well in advance excessive developments in the real estate sector. Such indicators could then serve as a starting point for decision making based on guided discretion with regard to the activation of macro-prudential instruments.

First steps on the work in this area have been taken under the aegis of the ESRB Instruments Working Group for the preparation of the ESRB Handbook on the operationalisation of macroprudential policy in the banking sector. Chapter 3 of the ESRB Handbook provides operational guidance on the implementation of real estate instruments for macro-prudential purposes, and presents a graphical analysis of potential indicators that could warn against the build-up of vulnerabilities in the real estate sector.

This Occasional Paper extends the graphical analysis presented in the Handbook to a formal statistical evaluation of potential early warning indicators for real estate-related banking crises, focusing on the activation phase of macro-prudential instruments targeted to the real estate sector. In particular, an extensive analysis of potential early warning indicators for real estate-related banking crises is provided using a wide range of variables capturing both structural and cyclical concepts related to credit and real estate price developments, as well as variables related to macroeconomic, sectorial (banking sector, construction sector) and market developments, covering 25 member states

¹ See Claessens et al. (2008).

² For a review of the macro-prudential measures recently introduced in Europe to contain risks emerging in the real estate sector, see Ciani et al. (2014) and the overview of macro-prudential policy actions notified to the ESRB (https://www.esrb.europa.eu/mppa/html/index.en.html).

of the European Union.³ Building on a great body of literature on early warning models, a signalling approach – which evaluates the predictive power of potential early warning indicators on the basis of the trade-off between correctly predicting upcoming crisis events and issuing false alarms – is applied in both a non-parametric⁴ and parametric⁵ setting.

The analysis presented in this study highlights the important role of both real estate price variables and credit developments in predicting real estate-related banking crises. The results indicate that, in addition to cyclical developments in these variables, it is crucial to monitor the structural dimension of real estate prices and credit.⁶ In multivariate settings macroeconomic and market variables such as the inflation rate and short-term interest rates may add to the early warning performance of these variables.⁷ Overall, the findings indicate that combining multiple variables improves early warning signalling performance compared with assessing each indicator separately, both in the non-parametric and the parametric approach. Combinations of the abovementioned indicators lead to low probabilities of missing crises, while at the same time not issuing too many false alarms. In addition to EU level, they also perform relatively well at individual country level.

The remainder of the paper is organised as follows: Section 1 provides a description of the data and a graphical evaluation of potential early warning indicators. Section 2 outlines the signalling framework as well as the evaluation criteria adopted in this paper to evaluate early warning indicators for real estate-related banking crises. Section 3 presents the resulting ranking and evaluation of early warning indicators obtained by applying both a non-parametric and a parametric approach. In this section, a country level evaluation of the best indicators and logit model is also performed. In Section 4, a number of robustness checks related to the specification of the policymaker's loss function and out-of-sample evaluation are performed. Finally, Section 5 concludes with a policy discussion of the empirical findings.

Section 1 Data description

The statistical evaluation of potential early warning indicators for real estate banking crises requires two types of variables: a crisis dummy that identifies the banking crises stemming from excessive developments in real estate markets, and economic variables that signal the build-up of risks preceding the coming crises (early warning indicators).

³ Due to lack of data for a large number of variables, Bulgaria, Croatia and Romania are not included in the evaluation.

⁴ The non-parametric approach follows the seminal work by Kaminsky and Reinhart (1999) on leading indicators of banking and currency crises. For applications to banking crises, see for example Borio and Lowe (2002), Borio and Drehmann (2009), Drehmann et al. (2010, 2011), Alessi and Detken (2011), Drehmann and Juselius (2013) and Detken et al. (2014).

⁵ See for example Demirguc-Kunt and Detragiache (1998), Babecky et al. (2012), Schularick and Taylor (2012), Behn et al. (2013) and Detken et al. (2014).

⁶ Ferrari and Pirovano (2014) similarly find that both structural and cyclical developments in credit and real estate prices are important in signalling real estate-related banking crises. Claessens et al. (2011) uncover a strong connection between credit and housing market cycles (also see Drehmann et al., 2012).

⁷ Other early warning indicators for boom/bust episodes in asset and/or real estate prices include interest rates and money developments (e.g. Agnello and Schuknecht, 2011; Alessi and Detken, 2011; Borgy et al., 2014; Gerdesmeier et al., 2012), as well as global liquidity and credit developments (Agnello and Schuknecht, 2011; Alessi and Detken, 2011). Real estate price developments are also found to be associated to credit conditions such as loan-to-value ratios (e.g. Crowe et al. 2011).

1.1. Real estate-related banking crises

In the context of the ATC's Instruments Working Group work stream on Real Estate Instruments, a database on real estate-related banking crises was compiled for the 28 EU Member States before and during the global financial crisis.⁸ This database builds on the ESCB Heads of Research (HoR) Group's banking crises database, which defines a banking crisis as episodes characterised by significant signs of financial distress in the banking system, such as bank runs in relevant institutions, losses in the banking system (non-performing loans above 20% or bank closures of at least 20% of banking system assets) or significant public intervention in response to or with the aim of avoiding the realisation of losses in the banking system.⁹ The HoR database has been narrowed down by the IWG Expert Group on Countercyclical Capital Buffers (CCB) by (1) excluding crises that were not systemic, (2) excluding systemic banking crises that were not associated with a domestic credit/financial cycle, and (3) adding periods where domestic developments related to the credit/financial cycle could well have caused a systemic banking crisis had it not been for policy action or an external event that dampened the financial cycle. The resulting CCB database has then been further adjusted on the basis of the IWG work stream on Real Estate Instruments members' judgement, in order to reflect only systemic banking crises stemming from real estate.¹⁰

According to this database, although 16 countries did not experience any real estate-related banking crisis since 1970, nine of the remaining 12 countries have experienced one crisis. In addition, three countries (Denmark, Sweden and the United Kingdom) experienced two crises, resulting in a total of 15 real estate-related banking crises in our sample (Figure 1). Real estate-related banking crises have mostly occurred at the beginning of the 1990s and during the global financial crisis (Figure 2). In particular, between Q2 2009 and Q3 2010 up to ten countries experienced simultaneously a real estate-related banking crisis. Real estate crises can vary according to the real estate segment they originate from: residential, commercial or both. In our dataset, two crises are classified as "only residential real estate-related", while the remaining ones are labelled as "both residential and commercial"¹¹.

⁸ The work of this work stream resulted in Chapter 3 on real estate instruments of The ESRB Handbook on Operationalising Macro-prudential Policy in the Banking Sector.

⁹ The underlying criteria closely follow the methodology applied by Laeven and Valencia (2012).

¹⁰ Periods of banking distress resulting from the real estate sector could alternatively be analysed on the basis of a continuous financial stress index. The challenges in determining real estate-related stress in such analysis would, however, be similar to those arising in the context of a binary crisis variable used in our analysis. That is, financial stress emerging from other sources than real estate should be filtered out/accounted for. One option could be to analyse the behaviour of real estate prices during such periods of stress to determine whether or not the financial stress is related to the real estate sector. But overall, the construction of such a real estate-related financial stress index is expected to contain a degree of expert judgement as well.

¹¹ Table A1 in the Appendix provides details on the crisis episodes experienced by the 28 EU countries.

Figure 1: Number of real estate-related crises by country

Figure 2: Number of countries in crisis per period

AT = Austria; BE = Belgium; BG = Bulgaria; CR = Croatia; CY = Cyprus; CZ = Czech Republic; DK = Denmark; EE = Estonia; FI = Finland; FR = France; DE = Germany; GR = Greece; HU = Hungary; IE = Ireland; IT = Italy; LV = Latvia; LT = Lithuania; LU = Luxembourg; MT = Malta; NL = Netherlands; PL = Poland; PT = Portugal; RO = Romania; SK = Slovak Republic; SI = Slovenia; ES = Spain; SE = Sweden; UK = United Kingdom.

1.2. Potential early warning indicators

Data on potential early warning indicators, i.e. economic variables able to inform on the build-up of risks in the run-up to a crisis, were collected for the 28 EU Member States. The data were obtained from public databases (ECB, Eurostat, BIS, Bloomberg, OECD) and, where necessary, corrected by national experts.¹² The longest available data series cover the period from 1970Q1 to 2013Q1 (cf. Table A2 in Annex A). Given the substantial lack of data for many variables, Bulgaria, Romania and Croatia were dropped from the sample.

Besides the variables' levels, transformations such as their annual growth rate and the deviation from their long-term trends ("gaps")¹³ have also been considered for several variables (cf.

¹² National experts include members of the Instruments Working Group Expert Group on guidance on setting countercyclical buffer rates and the Instruments Working Group work stream on Real Estate Instruments.

¹³ The long-term trends have been calculated with a one-sided (recursive) Hodrick-Prescott filter with lambda 400,000.

Table 1). This results in a dataset consisting of 5 categories of variables: structural credit variables, cyclical credit variables, real estate price variables, and other variables. Whereas structural credit variables relate to levels of credit (i.e. measures of credit to GDP), cyclical credit variables relate to their growth rates and gaps.

Occasional Paper No. 8 August 2015 Identifying early warning indicators for real estate-related banking crises

Table 1: Overview of variables in the four categories

Structural credit variables (Nominal) HH credit to GDP (Nominal) HH mortgage loans to GDP (Nominal) NFC credit to GDP (Nominal) total credit to GDP (Nominal) bank credit to GDP Debt service ratio Debt to income ratio

Cyclical credit variables

HH credit growth (nominal and real) NFC credit growth (nominal and real) Total credit growth (nominal and real) Bank credit growth (nominal and real) (Nominal) HH credit to GDP gap (Nominal) HH mortgage loans to GDP gap (Nominal) NFC credit to GDP gap (Nominal) total credit to GDP gap (Nominal) bank credit to GDP gap

Structural and cyclical real estate price variables

(Nominal) RRE price to income gap (Nominal) RRE price to rent gap RRE price growth (nominal and real) CRE price growth (nominal and real) RRE price gap (nominal and real) CRE price gap (nominal) Other variables

Macroeconomic variables: Inflation Real GDP growth Unemployment rate Real effective exchange rate (level and growth) Real M3 stock growth Current account deficit to GDP Government debt to GDP EC consumer survey

Credit conditions variables: Average mortgage rate Rates mortgage fixed Rate mortgage floating Spreads on HH mortgage rate Spread on NFC loan rate Share floating rate loans

Market variables:

Equity prices growth (nominal and real) Long term gov't bond yield (nominal and real) 3-month money market rate (nominal and real)

Construction sector variables: GFCF dwellings to GDP GFCF other buildings to GDP Value added construction to GDP

Banking sector variables: Leverage ratio Bank deposit liabilities to total assets Banks total assets to GDP Bank capital reserves to total assets

Notes: HH = "households"; NFC = "non-financial corporations"; RRE = "residential real estate"; CRE= "commercial real estate"; GFCF = "gross fixed capital formation"; gaps are deviations from long-term trend; RRE price to income and price to rent gaps are calculated as deviation from mean.

Similarly, the real estate variables include purely cyclical indicators (growth rates and gaps) as well as indicators that contain a structural dimension (price to income and price to rent gaps¹⁴).

The other variables category includes macroeconomic, banking sector, market, credit conditions and construction sector variables. Table 1 lists all the variables we consider by category; many of these have been found to be useful in predicting banking crises in previous studies. Summary statistics of the variables are included in Table A3 in Annex A. Since many variables represent similar concepts and/or are considered in different transformations, the dataset is by construction characterised by high correlation between variables. In particular as presented in Table A4 in Annex A, correlation is higher than 80% between a number of real estate price variables and within the cyclical credit variables category. These correlations will be accounted for in the variable selection procedures later in the paper.

1.3. Graphical evaluation of early warning indicators

Plotting the evolution of variables for crisis countries around crisis events, one can gauge whether the indicator signals the occurrence of excessive developments in the run-up to a crisis. A clearly upward or downward evolution of an indicator before a crisis can be considered as a preliminary indication of its ability to predict upcoming distress events.

Figure 3 depicts the evolution of representative indicators pertaining to the four categories considered in this study around crisis events. The green vertical line represents the onset of a real estate-related banking crisis; the solid lines show the simple average of indicators for countries experiencing real estate-related banking crises, in the window ranging from 20 quarters before to 20 quarters after the occurrence of a distress event.

Whereas variables related to the structural dimension of credit exhibit a continuous increasing trend that starts relatively long before the onset of crisis events and continues until one year after the onset of these crises, cyclical indicators of credit show potential leading properties closer to, but nevertheless well ahead of crisis events. The two representative indicators depicted in the second panel of Figure 3, real bank credit growth and the household credit to GDP gap, start steadily increasing around the 15th quarter preceding crisis events, peaking two years later and then start decreasing, becoming even negative after the onset of the crisis. In contrast to real bank credit growth, the household credit to GDP gap remains rather stable up to six quarters after the onset of the crisis, before it drops sharply.

A similar pattern is followed by indicators related to real estate price developments, pictured in the third panel of Figure 3. Both the residential real estate price to rent gap and the real growth of residential real estate price increase in the run-up to a crisis, peak and start decreasing before the onset of the crisis, and continue this downward tendency in its aftermath. As expected, the purely cyclical indicator (real growth of residential real estate prices) reacts much more sharply than the indicator containing the structural component (residential real estate price to rent gap).

¹⁴ Despite the fact that the price to income gap and price to rent gap ratios are expressed as normalised indices, they contain a structural component that results from cumulative changes in prices and is no longer present in the growth rates and gaps of the price variables. To remove any dependence on the base year used to calculate the index, we consider the residential real estate price to income gap and residential real estate price to rent gap ratios in the deviation from their mean.

The last panel of Figure 3 reveals that macroeconomic developments also seem to have early warning ability, since upswings in the economic cycle and rapid growth in the stock of broad money in the economy are precursors of banking distress events related to the real estate market.

Source: BIS. OECD. Eurostat and authors' calculations

Section 2 Evaluation methodology

While graphical analysis may provide a first indication on the early warning qualities of an indicator, a large body of literature exists on the statistical evaluation of potential early warning indicators. Following Kaminsky and Reinhart (1999), a methodology that is broadly applied in the early warning literature is the signalling approach. This section briefly outlines the signalling approach and presents the evaluation criteria adopted in the remainder of this paper. The results obtained from applying the

signalling approach in both a non-parametric and a parametric setting are discussed in the next section.

2.1 Signalling approach

The predictive power of potential early warning indicators is evaluated on the basis of the likelihood that the indicator considered is able to correctly predict upcoming crisis events, while at the same time not issuing too many false alarms. Signals obtained from several both non-parametric and parametric combinations of indicators (see Section 3) can be evaluated using a similar set of statistical quantities.

The so-called "Confusion Matrix" (Table 2) classifies the four possible outcomes in a signalling framework. After a signal has been issued (i.e. an indicator or model output breaching a threshold), it is classified as correct if a crisis follows within the relevant horizon (A); if a crisis does not follow, then the signal results in a false alarm (B). A non-issued signal (i.e. an indicator or model output not breaching a threshold) is correct when a crisis does not follow (D) and it is incorrect when a crisis does occur (C).

Table 2: Confu	usion Ma	atrix
	Crisis	No crisis
Signal is issued	А	В
Signal is not issued	С	D

On the basis of the Confusion Matrix, a number of key ratios can be calculated. The true positive rate (TPR) is the fraction of correctly predicted crises $\left(\frac{A}{A+C}\right)$. The ratio $\left(\frac{C}{A+C}\right)$ or 1-TPR is denoted as the Type I error rate, which represents the fraction of missed crises. The noise or false positive ratio (FPR) represents the fraction of false alarms, i.e. signals wrongly issued $\left(\frac{B}{B+D}\right)$. The FPR is also referred to as the Type II error rate.

From these quantities, the predictive power of an indicator or model can be assessed through different metrics, such as the noise to signal ratio $\left(\frac{\text{TPR}}{\text{FPR}}\right)$ and a policymaker's loss function $L = \theta\left(\frac{C}{A+C}\right) + (1-\theta)\left(\frac{B}{B+D}\right)$, where parameter θ represents the policymaker's relative preference for missing crises (Type I error) versus issuing false alarms (Type II error). Finally, the relative usefulness of an indicator or model expresses the policymaker's gain from using the indicator or model for predicting crises compared to disregarding the indicator or model and always issuing a signal or never issuing a signal: $RU = \frac{\min[\theta, (1-\theta)] - L}{\min[\theta, (1-\theta)]}$.

The above metrics are all calculated for a given threshold, above which the indicator or model issues a signal. As such, they permit calculation of the optimal threshold for an indicator. In particular, the threshold that minimises an objective function such as the noise-to-signal ratio (potentially conditional on the TPR being sufficiently large) or the policymaker's loss function (which for a given indicator or model is equivalent to maximising the relative usefulness) is selected. Optimal threshold identification

involves a trade-off between missing crises (Type I error) and issuing false alarms (Type II error): a lower (higher) threshold decreases (increases) the probability of missing a crisis (Type I error rate) but at the same time increases (decreases) the probability of issuing a false alarm (Type II error rate).

Figure 4: The ROC curve

Recent early warning applications have evaluated the predictive power of indicators and models on the basis of their AUROC (Area Under the Receiver Operating Characteristic). The ROC (Receiver Operating Characteristic) curve plots the indicator or model's TPR against the FPR for every possible value of the threshold, as depicted by the solid blue line in Figure 4. The area under the ROC-curve or AUROC ranges from 0 to 1: a value larger than 0.5 (corresponding to a ROC curve situated to the left of the red dashed line in Figure 4) indicates that an indicator issues informative signals, while for a fully informative indicator the AUROC is 1.

The AUROC is a robust evaluation criterion, as it assesses predictive ability for all possible thresholds. Therefore, it does not rely on favourable values of the evaluation metrics for one specific, potentially very narrow, threshold range. On the other hand, policymakers may be interested in receiving guidance on when an indicator or combination of indicators is reaching excessive values, which requires the calculation of optimal thresholds. As both Type I and Type II errors entail a cost (either in terms of not enacting macro-prudential instruments due to the failure of foreseeing a crisis or erroneously activating instruments on the basis of a false alarm), evaluation of an indicator or model in combination with a given threshold is of relevance too for guiding policymakers' decisions.

2.2 Evaluation criteria adopted in this paper

A Confusion Matrix and the associated evaluation metrics require a predefined evaluation horizon. The prediction horizon needs to be chosen long enough before potential crises so that the policymaker still has time to take preventive action. On the other hand, the evaluation horizon should not be too long either, as this may blur the indicators' signalling power.

For our analysis we consider a prediction horizon of 12 to 5 quarters. Observations included in windows of 12 to 5 quarters before a real estate-related banking crisis determine the sample from which TPR and Type I errors are computed. Observations outside these windows serve as a basis for the calculation of Type II errors or false alarms.¹⁵

As a benchmark, optimal thresholds are calculated on the basis of maximising the relative usefulness for the policymaker with preference parameter $\theta = 0.5$. For the reporting of our results, we provide robust rankings of the indicators or models based on their AUROC. For reasons of robustness, we only consider in-sample evaluation indicators and models with sufficient data and crisis coverage (including at least 13 real estate-related banking crises¹⁶). Robustness checks with respect to the preference parameter θ , out-of-sample evaluation, and data and crisis coverage are provided either in the main text (Section 4) or Annex.

Section 3 Statistical evaluation of early warning indicators

This section applies the signalling approach outlined above in both a non-parametric and parametric (discrete choice) setting. Two key characteristics distinguish the two approaches. First of all, the two methodologies differ in the assumptions related to the statistical distribution of the variables being assessed. Non-parametric models make no assumption regarding the probability distribution of the data, while parametric models are based on a parametrised probability distribution. Discrete choice models assume a probability distribution of the error term (be it the normal distribution in the case of probit or the logistic distribution in the case of logit), whose shape is defined by parameters such as the mean and variance.

A second element distinguishing the two approaches is the level of aggregation at which thresholds are defined in order to obtain the early warning signal. The non-parametric approach, as used in this study, considers indicators one (or a few) at a time and derives a separate threshold for each indicator. In a univariate setting, a signal is issued when a single indicator breaches its threshold; in a multivariate setting, a signal is issued when all indicators in the multivariate combination breach simultaneously their own thresholds or alternatively when one of the two or three indicators breaches its predefined threshold. On the other hand, the parametric approach aggregates information on a (potentially large) set of indicators in a single metric (i.e. the probability of a real estate-related banking crises occurring within the prediction horizon), for which a threshold is defined. In contrast to the non-parametric approach, no separate thresholds are obtained for the individual indicators in the model.

In what follows, we evaluate the potential early warning indicators and models according to their capacity to warn against the imminent occurrence of a real estate-related banking crisis.

¹⁵ Observations in windows of 4 quarters before to 12 quarters after the start of a real estate-related banking crisis as well as any remaining observations during such crises were dropped from the sample. Furthermore, the last three years of the sample (i.e. from 2010 Q1 onwards) were dropped as it is impossible to determine for these observations whether or not they are followed by a crisis.

¹⁶ This ensures crisis coverage beyond the recent financial crisis.

3.1 Non-parametric approach

In the non-parametric approach, signals are derived directly from the indicators' historical distribution both inside and outside the relevant pre-crisis windows.¹⁷ Both univariate and multivariate approaches have been implemented.

3.1.1 Univariate non-parametric signalling

In the univariate non-parametric approach a signal is issued as soon as a single indicator breaches a predefined threshold. This threshold is optimised by trading off Type I and Type II errors by means of the relative usefulness criterion.¹⁸ The signals issued by the indicator are then evaluated on the basis of the metrics presented in Section 3. The variables are considered one by one when checking how well each of them predicts the crisis.

Table 3 lists the top 10 indicators covering a sufficiently large data sample ranked according to their AUROC (the results for the full set of indicators with sufficient data coverage is presented in Table A5 in Annex A). The best early warning indicators, based on AUROC, belong to the categories related to real estate prices (both structural and cyclical) and cyclical credit. This confirms the initial insights provided by the earlier graphical evaluation. The confidence intervals around the AUROC¹⁹ estimates indicate that difference in performance (in terms of AUROC) of the top ten indicators is not statistically significant. However, as indicated by the average result across all indicators in the sample, the top ten indicators do have AUROCs that are statistically larger than those of many of the lower ranked indicators (also see Table A5 in Annex A).

The two most reliable early warning indicators for real estate-related banking crises are real estate price variables that contain a structural dimension. The indicator with the highest AUROC (0.84) is the nominal RRE price to income gap. A signal is issued when the nominal RRE price to income gap (in deviation from its mean) exceeds 13.98, resulting in a relative usefulness of 0.53. These numbers reveal that the indicator has a high "informative content". The nominal RRE price to income gap exhibits a Type I error of 0.35, and a low Type II error equal to 0.12. Therefore, while incurring a 35% probability of missing a forthcoming crisis, when a signal is issued there is only a 12% probability that a crisis is wrongly predicted. The nominal RRE price to rent gap quite closely follows the nominal RRE price to income gap both in terms of AUROC (0.83) and relative usefulness (0.50). When issuing a signal above a value of 6.95, it performs well in correctly predicting crises (in 74% of the cases) while at the same time not issuing false alarms too often (24% of cases).

Indicators of cyclical residential real estate price dynamics (in nominal and real terms) immediately follow. Whereas the real RRE price gap trades off very precise signals (only 8% probability of issuing

¹⁷ The observations on the 25 countries in our sample are equally weighted, so they are treated equally.

¹⁸ To this end, a grid search is performed. The grid is bounded by the minimum and maximum indicator value in the sample, and possible thresholds are equally spaced between the minimum and the maximum. The search grid for the univariate case contained 10,000 thresholds. For each of these possible thresholds in the grid, the indicator's relative usefulness is calculated. The threshold that maximises relative usefulness is selected as the optimal threshold.

¹⁹ The confidence interval around the AUROC are calculated as in Detken et al (2014), applying Hanley and McNeil (1982)'s formula for the calculation of AUROC's standard errors, which allows for the possibility that the number of crisis and no crisis events are not the same.

a false alarm) with a somewhat higher risk of missing a crisis (42%), the nominal RRE price gap show a more equal division of Type I and Type II error rates (28% and 23%, respectively).

While the top four indicators relate to real estate prices, the following six concern cyclical developments in credit, both total and sectorial. The real growth of credit to non-financial corporations, of total credit and of total credit granted by the banking sector have high informative content, while they exhibit different performances in terms of Type I and Type II errors: total credit growth has a very low probability of missing a crisis (14%) but risks of false alarms are slightly higher (42%). On the other hand, signals issued by real NFC credit growth are more precise in terms of false alarm rates (18%), albeit identifying crises less often (38% Type I error). Finally, deviations from the trend in various measures of credit to GDP are useful indicators, with the total credit to GDP gap and the household credit to GDP gap striking a relatively good compromise between Type I and Type II errors.

Indicator	Threshold	Type I error	Type II error	Relative usefulness	AUROC	AUROC CI
Nominal RRE price to income gap	13.98	0.35	0.12	0.53	0.84	[0.79, 0.88]
Nominal RRE price to rent gap	6.95	0.26	0.24	0.50	0.83	[0.79, 0.88]
Nominal RRE price gap	5.24	0.28	0.23	0.50	0.81	[0.76, 0.86]
Real RRE price gap	13.86	0.42	0.08	0.50	0.79	[0.74, 0.84]
Real NFC credit growth	11.02	0.38	0.18	0.44	0.78	[0.74, 0.83]
Nominal total credit to GDP gap	6.46	0.20	0.31	0.49	0.78	[0.73, 0.84]
Real total credit growth	6.76	0.14	0.42	0.44	0.78	[0.73,0.83]
Nominal HH credit to GDP gap	2.77	0.25	0.33	0.43	0.78	[0.73, 0.83]
Nominal bank credit to GDP gap	2.91	0.17	0.42	0.42	0.77	[0.72, 0.82]
Real bank credit growth	8.78	0.28	0.30	0.42	0.76	[0.71, 0.82]
Average for all indicators	-	0.31	0.41	0.28	0.63	[0.58, 0.68]

The categories of structural credit variables (e.g. household credit to GDP, the ratio of credit to nonfinancial corporations to GDP or the ratio of total credit to GDP) and other variables, including macroeconomic variables (e.g. real GDP growth, the growth of real M3 or the current account to GDP), market (e.g. the real three-month money market rate and the long term government bond yield) and credit condition (e.g. share of fixed or floating mortgage rates, spreads on loan rates to households and non-financial corporations) variables, are generally not among the top performers. Table A5 in Annex A shows that a number of these indicators nevertheless appears to have reasonable early warning capacities, with AUROCs well (and significantly) above 0.5 and still acceptable Type I and/or Type II errors.

Overall, although none of the top ten indicator errors are on the high side, there is substantial heterogeneity in performance in terms of Type I and Type II errors. Such heterogeneity suggests that gains in performance can be obtained combining multiple indicators, which will be the subject of the next section.

3.1.2 Multivariate non-parametric signalling

In the multivariate non-parametric approach several indicators are considered jointly and a signal is issued when one or more indicators breach their predefined threshold. These thresholds are again optimised by maximising relative usefulness. As the multivariate non-parametric signalling approach faces dimensionality problems, we only consider the bivariate and trivariate case.²⁰ The signals issued by the indicator combinations are then evaluated on the basis of the metrics presented in Section 3 and ranked according to their AUROC.

3.1.2.1 Simultaneous breach of thresholds

The first case we consider requires all two or three indicators to breach their predefined thresholds at the same time in order for a signal to be issued. Table 4a presents the top ten pairs of indicators ranked according to their AUROC. The best performing pair is the one including the nominal RRE price gap and the price to rent gap. A signal is issued when the former is higher than 1.98 and at the same time the latter exceeds -8.61. This pair results in a relative usefulness for the policymaker that is substantially higher than the one associated with the best performing univariate indicator (0.61 compared to 0.53). In terms of AUROC, the improvement is only small (from 0.84 to 0.85) and the confidence intervals indicate that the difference in performance is not statistically significant.

In general, the best performing pairs contain a combination of a structural real estate price variable (either the RRE price to income gap or the RRE price to rent gap) with a cyclical real estate price or credit variable. Compared to the univariate case in Table 3, there is less heterogeneity in Type I and Type II errors across the different pairs; for most top ten pairs, the proportion of missed crises is lower than the share of false alarms. Furthermore, the range of Type I and Type II error rates is generally lower than in the univariate case.

²⁰ The dimensionality problem stems from both the number of possible indicator combinations and the number of grid points to be searched when multiple indicators are combined. In the trivariate case, we limit the number of indicator combinations by selecting a subset of indicators based on correlations among indicators and economic intuition. The grid search is limited to an equally spaced grid of size 500 in the bivariate case and size 80 in the trivariate case.

Table 4a:	Table 4a: Bivariate non-parametric analysis: best 10 indicator pairs (simultaneous breach)										
Indicator 1	Indicator 2	Threshold 1	Threshold 2	Type I error	Type II error	Relative usefulness	AUROC	AUROC CI			
Nominal RRE price gap	Nominal RRE price to rent gap	1.98	-8.61	0.05	0.34	0.61	0.85	[0.81 ,0.90]			
Real RRE price gap	Nominal RRE price to rent gap	1.13	-2.67	0.09	0.31	0.60	0.85	[0.80, 0.90]			
Real total credit growth	Nominal RRE price to rent gap	5.16	-3.39	0.13	0.25	0.63	0.85	[0.80, 0.89]			
Real NFC credit growth	Nominal RRE price to rent gap	4.00	-5.53	0.11	0.30	0.60	0.85	[0.80, 0.89]			
Real bank credit growth	Nominal RRE price to rent gap	5.52	-3.39	0.16	0.25	0.59	0.83	[0.78, 0.88]			
Real total credit growth	Nominal RRE price to income gap	5.22	-2.44	0.18	0.24	0.59	0.83	[0.78, 0.87]			
Nominal bank credit to GDP gap	Nominal RRE price to rent	2.66	-0.56	0.21	0.23	0.55	0.82	[0.78, 0.87]			
Nominal bank credit to GDP gap	Nominal RRE price to income gap	2.40	-1.66	0.22	0.23	0.55	0.82	[0.78, 0.87]			
Nominal HH credit to GDP gap	Nominal RRE price to rent gap	2.52	2.56	0.26	0.18	0.57	0.82	[0.77, 0.87]			
Real NFC credit growth	Nominal RRE price to income gap	3.94	-2.44	0.20	0.25	0.55	0.82	[0.77, 0.87]			
Average for all indicators pairs		-	-	0.30	0.31	0.39	0.64	[0.58, 0.69]			

Table 5a similarly presents the ten best performing trivariate indicator combinations based on AUROC. The relative usefulness for the policymaker associated with the best performing combination (real total credit growth, real RRE price gap and price to rent gap) further increases to 0.68, while AUROC increases (again, not significantly) to 0.86.

The best triplets consist of combinations of a cyclical credit variable with both a cyclical and a structural real estate variable. The RRE price to rent gap is part of all top ten combinations. Overall, combining multiple indicators improves the performance of the signal at least in one dimension (Type I or Type II errors), if not in both. For example, supplementing the second best performing pair (real RRE price gap and nominal RRE price to rent gap) presented in Table 4a with real total credit growth results in a substantial decrease of the Type II error from 0.31 to 0.23, while the Type I error increases only slightly (from 9% to 10%). Similarly, adding nominal bank credit to GDP gap to this indicator pair reduces the Type I error from 9% to 4%, while keeping the Type 2 error virtually unchanged (32% instead of 31%).

Occasional Paper No. 8 August 2015 Identifying early warning indicators for real estate-related banking crises

Indicator 1	Indicator 2	Indicator 3	Threshold 1	Threshold 2	Threshold 3	Type I error	Type II error	Relative useful- ness	AUROC	AUROC CI
Real total credit growth	Real RRE price gap	Nominal RRE price to rent gap	5.21	-0.10	-6.07	0.10	0.23	0.68	0.86	[0.82, 0.91]
Real NFC credit growth	Real RRE price gap	Nominal RRE price to rent gap	3.70	-0.10	-6.68	0.11	0.25	0.64	0.86	[0.81, 0.90]
Real bank credit growth	Real RRE price gap	Nominal RRE price to rent gap	6.10	-0.10	-6.07	0.16	0.20	0.63	0.85	[0.80, 0.89]
Nominal bank credit to GDP gap	Real RRE price gap	Nominal RRE price to rent gap	-0.69	-0.10	-6.68	0.04	0.32	0.64	0.84	[0.79, 0.89]
Nominal total credit to GDP gap	Real RRE price gap	Nominal RRE price to rent gap	5.33	-0.10	-6.68	0.16	0.20	0.63	0.83	[0.79, 0.88]
Nominal HH credit to GDP gap	Real RRE price gap	Nominal RRE price to rent gap	0.35	0.75	-3.14	0.10	0.27	0.63	0.83	[0.78, 0.88]
Real HH credit growth	Real RRE price gap	Nominal RRE price to rent gap	3.05	0.75	-6.68	0.06	0.33	0.61	0.83	[0.78, 0.88]
Real total credit growth	Real RRE price growth	Nominal RRE price to rent gap	3.70	-1.87	-2.71	0.12	0.25	0.63	0.83	[0.78, 0.88]
Real NFC credit growth	Real RRE price growth	Nominal RRE price to rent gap	4.03	-1.62	-2.71	0.18	0.22	0.60	0.83	[0.78, 0.88]
Nominal bank credit to GDP gap	Real RRE price growth	Nominal RRE price to rent gap	0.95	-1.87	-2.67	0.15	0.24	0.61	0.82	[0.77, 0.87]
Average fo	or all indicato	r triplets	-	-	-	0.27	0.24	0.48	0.69	[0.63, 0.74]

Table 5a: Trivariate non-parametric analysis: best 10 combinations (simultaneous breach)

Comparing the results of the univariate and the multivariate analysis, it shows that combining multiple indicators can lead to different thresholds for the same indicator. For example, eight out of ten best bivariate combinations include the RRE price to rent gap, whose optimal threshold changes considerably according to the indicator it is paired with, ranging from -8.61 to 5.16. The same remark can be made when looking at trivariate combinations.

It can furthermore be noticed that adding more variables results, in general, in lower thresholds for a given variable. Such lower (and even slightly negative²¹) thresholds can be explained considering that milder developments exhibited by more than one indicator might be sufficient to create a vulnerability, whereas an indicator considered individually needs to assume high values before it becomes worrisome. As a consequence, when an indicator is considered in isolation, it triggers a signal only when it reaches relatively higher values than when combined with one (or two) other indicators that may be showing signs of overheating. Although the decrease in threshold values in this first case of simultaneous breach is therefore intuitive and not unexpected, it may nevertheless be difficult for policymakers to act on such low threshold values.

3.1.2.2 Single breach of thresholds

In the second case, a signal is issued when one of the two or three indicators breaches its predefined threshold.

Table 4b shows the ten best bivariate indicator combinations in terms of AUROC. While in general the type of indicators included in the best pairs is similar to those included in the best pairs in Table 4a and the top two pairs coincide, only three out of ten indicator pairs appear in both tables²². In addition to the indicator type combinations in Table 4a (a structural real estate price variable with a cyclical real estate price or credit variable), Table 4b also includes combinations of a cyclical real estate variable with both cyclical and structural (debt service ratio) credit indicators.

The most notable difference between Tables 4a and 4b is the larger magnitude of the thresholds in the latter. In contrast to the simultaneous breach condition, which requires lower thresholds for sufficient signals to be issued, single breach multivariate thresholds are similar to or even higher than the univariate thresholds. Compared to the latter, adding an indicator in the single breach case adds flexibility in capturing imminent crises, as either one of two indicators needs to cross its threshold. The fact that the signalling burden is shared by two indicators rather than one, allows increasing thresholds in order to achieve a reduction in false alarm rates.

Regarding statistical performance, the best indicator pair remains the combination of nominal RRE price gap and nominal RRE price to rent gap, however. In the single breach case, a signal is given when either the former exceeds 10.50 or the latter exceeds 31.50, or both. On average, the single breach case results – because of the higher thresholds – in higher Type I errors and lower Type II errors, but overall performance in terms of relative usefulness and AUROC is very similar to the simultaneous breach case.

²¹ When placing these negative threshold levels in the context of the large variability in some of the indicators as summarised in Table A4 in Annex A, it could be argued that they are still broadly commensurate with the indicators' average levels.

²² Namely, nominal RRE price gap and nominal RRE price to rent gap, real RRE price gap and nominal RRE price to rent gap, real total credit growth and nominal RRE price to rent gap.

Table	e 4b: Bivaria	te non-parar	netric analys	is: best	10 indica	ator pairs (s	single bre	
Indicator 1	Indicator 2	Threshold 1	Threshold 2	Type I error	Type II error	Relative usefulness	AUROC	AUROC CI
Nominal RRE price gap	Nominal RRE price to rent gap	10.50	31.50	0.31	0.11	0.58	0.85	[0.80 ,0.89]
Real RRE price gap	Nominal RRE price to rent gap	13.84	31.50	0.28	0.10	0.62	0.84	[0.80, 0.89]
Real NFC credit growth	Nominal RRE price gap	11.92	11.81	0.25	0.17	0.58	0.83	[0.78, 0.88]
Real RRE price growth	Nominal RRE price to rent gap	8.38	27.53	0.17	0.23	0.60	0.83	[0.78, 0.88]
Real total credit growth	Nominal RRE price gap	11.19	10.36	0.23	0.21	0.56	0.82	[0.78, 0.87]
Real NFC credit growth	Nominal RRE price to rent gap	11.92	26.55	0.26	0.18	0.56	0.82	[0.77, 0.87]
Nominal total credit to GDP gap	Nominal RRE price to income	6.64	24.89	0.09	0.35	0.57	0.82	[0.77, 0.87]
Real NFC credit growth	Real RRE price gap	11.81	16.30	0.27	0.15	0.59	0.82	[0.77, 0.87]
Nominal NFC credit growth	Nominal RRE price gap	18.73	11.81	0.27	0.13	0.60	0.82	[0.77, 0.87]
Debt service ratio	Nominal RRE price gap	0.67	24.59	0.24	0.09	0.67	0.82	[0.77, 0.87]
Average for all indicators pairs		-	-	0.27	0.34	0.38	0.64	[0.59, 0.70]

Table 5b shows the ten best trivariate indicator combinations in terms of AUROC; five out of ten indicator combinations also appear in Table 5a²³. While the predominant role of structural and cyclical real estate variables remains unchanged compared to the simultaneous breach case, there is now also a more important role for structural credit variables (debt service ratio and nominal bank credit to GDP).

On average, the trivariate approach results in both lower Type I and Type II errors than the bivariate approach. A trade-off between error types may exist at the level of the indicator combinations, however. For example, the best performing triplet adds real NFC credit growth to real RRE price gap and nominal RRE price to rent gap (the second best pair in Table 4b), thereby increasing the Type II error from 10% to 18% but decreasing the Type I error from 28% to 15%. Whereas AUROC remains unchanged, this increases the relative usefulness to the policymaker from 0.62 to 0.66.

²³ Namely, the combinations of indicators where indicator 1 is, respectively, real NFC credit growth, real total credit growth, real bank credit to GDP gap and nominal total credit to GDP gap.

Occasional Paper No. 8 August 2015 Identifying early warning indicators for real estate-related banking crises

Table 5b: Trivariate non-parametric analysis: best 10 combinations (single breach)										
Indicator 1	Indicator 2	Indicator 3	Threshold 1	Threshold 2	Threshold 3	Type I error	Type II error	Relative useful- ness	AUROC	AUROC CI
Real NFC credit growth	Real RRE price gap	Nominal RRE price to rent gap	12.33	14.42	30.08	0.15	0.18	0.66	0.85	[0.80, 0.89]
Real total credit growth	Real RRE price gap	Nominal RRE price to rent gap	11.41	14.42	27.97	0.16	0.20	0.63	0.84	[0.80, 0.89]
Real bank credit growth	Real RRE price gap	Nominal RRE price to rent gap	11.86	13.57	31.06	0.16	0.20	0.63	0.84	[0.79, 0.89]
Real NFC credit growth	Real RRE price gap	Nominal RRE price to income gap	12.70	14.42	31.86	0.19	0.17	0.65	0.83	[0.78, 0.88]
Debt service ratio	Nominal total credit to GDP gap	Nominal RRE price to income gap	0.67	40.73	23.55	0.24	0.10	0.66	0.83	[0.79, 0.88]
Nominal bank credit to GDP gap	Real RRE price gap	Nominal RRE price to rent gap	10.82	14.42	30.08	0.17	0.19	0.63	0.82	[0.78, 0.87]
Real total credit growth	Real RRE price gap	Nominal RRE price to income gap	11.51	13.57	31.86	0.19	0.21	0.61	0.82	[0.78, 0.87]
Nominal bank credit to GDP	Real RRE price gap	Nominal RRE price to rent gap	162.82	13.57	30.08	0.28	0.12	0.60	0.82	[0.77, 0.87]
Nominal total credit to GDP gap	Real RRE price gap	Nominal RRE price to rent gap	13.30	14.42	28.55	0.15	0.23	0.61	0.82	[0.77, 0.87]
Debt service ratio	Real RRE price gap	Nominal RRE price to income gap	0.68	27.24	23.72	0.24	0.10	0.66	0.82	[0.77, 0.87]
Average	for all indicat	or triplets	-	-		0.24	0.28	0.48	0.70	[0.65, 0.76]

. . ----

3.1.2.3 **Summary**

Overall, the multivariate non-parametric signalling analysis shows that combining more variables results in better signalling performance. Including more variables potentially results in a higher true positive rate (or lower Type I error), as it allows capturing more factors underlying pre-crisis developments. Besides, more indicators add an additional level of confirmation that the imbalances in the economy are building up and therefore the amount of false alarms may be reduced. More generally, when multiple thresholds can be chosen optimally, this adds flexibility to the framework in

managing the trade-off between correctly predicting crises and limiting the amount of false alarms. Frameworks that give a signal when either one of two or three indicators breaches its threshold perform similar to frameworks that require all two or three indicators to breach their threshold at the same time, but have the advantage of resulting in politically more acceptable threshold levels.

3.2 Parametric approach

3.2.1 The discrete choice model

The discrete choice framework provides an alternative approach for considering potential early warning indicators in a multivariate, parametric setting. In particular, instead of obtaining thresholds for each individual indicator, the discrete choice approach maps a number of indicators into a single metric, i.e. the predicted probability of a real estate-related crisis occurring within the assumed prediction horizon. Imposing more structure on the aggregation process reduces the dimensionality problem faced in the multivariate non-parametric signalling approach; only one optimal threshold is obtained and a signal is issued when the predicted crisis probability exceeds this threshold.

In what follows, we consider the following discrete choice (logit) model:

$$\Pr(y_{it} = 1 | \alpha_i, X_{K,it}) = F(\alpha_i + X'_{K,it}\beta_K),$$

where y_{it} represents our response variable (taking the value 1 for observations 12 to 5 quarters before real estate-related banking crises and 0 otherwise), the matrix $X_{K,it} = (x_{1,it}, ..., x_{k,it})$ collects the potential explanatory variables (including a constant term) and the vector $\beta_K = (\beta_1, ..., \beta_k)$ their corresponding regression coefficients. $F(\cdot)$ represents a logistic function of the form $F(z) = (1 + e^{-z})^{-1}$, which maps the indicators into the predicted crisis probability. The logit models are estimated as population averaged regressions, so that $\alpha_i = \alpha$.²⁴ Since this model assumes independence over *i* and *t*, we use robust standard errors to take into account possible misspecifications.

We proceed in two steps. First, we estimate and statistically evaluate early warning performance of logit models for all possible uni, bi and trivariate indicator combinations.²⁵ This allows us to compare the ranking of (combinations of) indicators and their signalling properties across methodologies (non-parametric vs parametric) when considering the same number of indicators. Second, we estimate

²⁴ As an alternative we could have estimated the logit models with country fixed effects. However, this would have led to excluding from the estimations countries for which the binary dependent variable is zero for the entire sample period, thereby eliminating from the estimation countries which never experienced a crisis in the sample considered. To exploit the maximum amount of information at our disposal, we opted for population average regressions.

²⁵ Like for the non-parametric approach, we limit the number of indicator combinations in the trivariate case, by selecting a subset of indicators based on the indicators' correlations and economic intuition.

and statistically evaluate the early warning performance of logit models for all potential combinations of a subset of indicators in order to obtain the overall best logit model.²⁶

3.2.2 Uni, bi and trivariate indicator combinations

In this section, we estimate and statistically evaluate early warning performance of logit models for all uni, bi- and trivariate indicator combinations. In particular, we compare the ranking of (combinations of) indicators and the predictive abilities of the discrete choice approach with those of the nonparametric approach in warning against the imminent occurrence of real estate-related banking crisis events when the two methodologies are applied on an equal number of variables.

²⁶ Some of the potential explanatory variables are characterised by a high degree of persistence. Panel unit root tests (not shown, but available upon request) indeed reveal the presence of non-stationarity for some explanatory variables. However, while non-stationarity affects the standard errors of the estimated coefficients, it does not affect their unbiasedness (see Cameron and Trivedi (2005), p.705, Greene (2012), p.946 and Berg and Coke (2004) in the context of panel probit early-warning systems). This implies that the logit model predictions are not influenced by the potential presence of non-stationary explanatory variables (since the estimated coefficients are still unbiased) and that our analysis based on the signals derived from these model predictions is robust to the non-stationarity of the explanatory variables.

Occasional Paper No. 8

August 2015 Identifying early warning indicators for real estate-related banking crises

Table 6: Univariate, bivariate and trivariate logit regressions (t-values in parentheses)

	Univariate 1	Univariate 2	Univariate 3	Bivariate 1	Bivariate 2	Bivariate 3	Trivariate 1	Trivariate 2	Trivariate 3
Nominal RRE price to income gap	0.086*** (4.097)			0.093*** (4.069)	0.080*** (2.923)				
Nominal RRE price to rent gap		0.049*** (4.312)		. ,	. ,	0.056*** (4.835)	0.067*** (4.960)	0.056*** (4.209)	0.038*** (3.066)
Nominal RRE price gap		(0.137*** (5.157)			(1000)	(1000)	()	(0.000)
Debt service ratio			(5.157)	4.455*** (4.724)					
Real NFC credit growth				(4.724)		0.140*** (4.172)	0.180*** (6.046)		0.158*** (3.852)
HH credit to GDP						(4.172)	(0.040)		0.040**
Real 3-month money mkt rate					0.164*				(2.571)
Real total credit growth					(1.787)			0.097***	
Nominal 3-month money mkt rate							0.294***	(3.176) 0.255***	
Constant	-3.567*** (-5.734)	-2.737*** (-5.365)	-3.300*** (-6.168)	-4.691*** (-5.421)	-3.203*** (-3.522)	-3.203*** (-3.522)	(-3.424) -5.436*** (-6.471)	(-3.568) -4.430*** (-5.403)	-6.432*** (-6.087)
Type I error	0.35	0.26	0.28	0.24	0.13	0.17	0.06	0.06	0.21
Type II error	0.12	0.24	0.23	0.13	0.27	0.22	0.30	0.27	0.11
Relative usefulness	0.53	0.50	0.50	0.63	0.60	0.60	0.64	0.67	0.68
AUROC	0.84	0.83	0.81	0.89	0.88	0.87	0.91	0.90	0.90
AUROC CI	[0.79, 0.88]	[0.79 <i>,</i> 0.88]	[0.76, 0.86]	[0.85, 0.93]	[0.84, 0.92]	[0.83, 0.92]	[0.87,0.95]	[0.86,0.90]	[0.86,0.94]

* significant at 0.1; ** significant at 0.05; *** significant at 0.01

Table 6 shows the estimation results of the three best performing uni, bi and trivariate logit models in terms of AUROC.²⁷ Whereas the three best performing univariate logits contain structural and cyclical indicators related to developments in real estate prices, the bivariate case either combines a structural real estate price indicator (either the RRE price to income gap or price to rent gap) with variables related to cyclical developments in credit to non-financial corporations, the real short-term money market rate or the debt service ratio. In the trivariate logits, a structural real estate price variable (the nominal RRE price to rent gap) is combined with indicators of credit growth, structural credit and with the real short-term money market rate. The coefficients on all explanatory variables carry the expected sign and are highly significant.²⁸ The statistics reported in the bottom rows of Table 6 reveal that trivariate models perform better in terms of relative usefulness and AUROC: more specifically, they combine a very low Type I error with a reasonably low Type II error.

Table 7 compares the ranking of indicators and their performance resulting from parametric logit estimation with the best performing non-parametric combinations of indicators reported in Section 3.1.²⁹ Not surprisingly, the results of the non-parametric and parametric approach are identical in the univariate setting. The two approaches agree in ranking the nominal RRE price to income gap, the nominal RRE price to rent gap and the nominal RRE price gap as the three best performing indicators. In addition, the evaluation metrics reported in the last four columns of Table 7 show that the performance of the two univariate approaches is identical.

The other parts of Table 7 present a comparison of multivariate models. In contrast to the univariate case, the two approaches lead to different results, both in terms of best indicators and of signalling performance. While, in general, the two methodologies in the bi and trivariate setting agree on the presence of a structural real estate price variable in each combination (RRE price to rent gap or price to income gap), the non-parametric approach privileges combinations with indicators related to cyclical credit and/or real estate price developments, whereas the parametric approach adds cyclical credit variables, structural credit variables (debt service ratio, household credit to GDP) and/or the short-term interest rate. It is noteworthy that cyclical real estate variables are not present in the best three bi and trivariate logit models.

²⁷ For each model, the optimal threshold on the implied predicted crisis probability is obtained by maximising the relative usefulness of the model. A grid search was performed over a grid of size 100, bounded by the model's minimum and maximum predicted crisis probability in the sample.

²⁸ For an interpretation of the estimated coefficients, see the description of the overall best logit models in Section 3.2.

²⁹ The best three non-parametric bi and trivariate combinations are selected across both the simultaneous and single breach cases. The overall best three cases happen to coincide with the best three combinations from the simultaneous breach case.

Table 7: Comparison of top 3 non-parametric and discrete choice models

•			Type I	Type II	Relative	AUROC	AUROC CI
	iverieto non nevernotrio		error	error	Usefulness		
Un	ivariate non-parametric						
Nominal RRE price to inco			0.35	0.12	0.53	0.84	[0.79, 0.88]
Nominal RRE price to rent	gap		0.26	0.24	0.50	0.83	[0.79, 0.88]
Nominal RRE price gap			0.28	0.23	0.50	0.81	[0.76, 0.86]
Average			0.31	0.41	0.28	0.63	[0.58, 0.68]
l	Univariate parametric						
Nominal RRE price to inco	me gap		0.35	0.12	0.53	0.84	[0.79, 0.88]
Nominal RRE price to rent	gap		0.26	0.24	0.50	0.83	[0.79, 0.88]
Nominal RRE price gap			0.28	0.23	0.50	0.81	[0.76, 0.86]
Average			0.30	0.40	0.30	0.65	[0.60, 0.71]
Bi	variate non-parametric						
Nom RRE price gap	Nominal RRE price to rent gap ratio		0.05	0.34	0.61	0.85	[0.81, 0.90]
Real RRE price gap	Nominal RRE price to rent gap ratio		0.09	0.31	0.60	0.85	[0.80, 0.90]
Real total credit growth	Nominal RRE price to rent gap ratio		0.13	0.25	0.63	0.85	[0.80, 0.90]
Average			0.30	0.31	0.39	0.64	[0.58, 0.69]
	Bivariate parametric						
Debt service ratio	Nominal RRE price to income gap		0.24	0.13	0.63	0.89	[0.85, 0.93]
Real 3-month money mkt rate	Nominal RRE price to income gap		0.13	0.27	0.60	0.88	[0.84, 0.92]
Real NFC credit growth	Nominal RRE price to rent gap ratio		0.17	0.22	0.60	0.87	[0.83, 0.92]
Average			0.30	0.31	0.39	0.73	[0.68, 0.78]
Tri	variate non-parametric						
Real total credit growth	Real RRE price gap	Nominal RRE price to rent gap	0.10	0.23	0.68	0.86	[0.82, 0.91]
Real NFC credit growth	Real RRE price gap	Nominal RRE price to rent gap	0.11	0.25	0.64	0.86	[0.81, 0.90]
Real bank credit growth	Real RRE price gap	Nominal RRE price to rent gap	0.16	0.20	0.63	0.85	[0.80, 0.89]
Average			0.27	0.24	0.48	0.63	[0.63, 0.74]
	Trivariate parametric						
Real NFC credit growth	3-month money mkt rate	Nominal RRE price to rent gap	0.06	0.30	0.64	0.91	[0.87, 0.95]
Real total credit growth	3-month money mkt rate	Nominal RRE price to rent gap	0.06	0.27	0.67	0.90	[0.86, 0.90]
Real NFC credit growth	Household credit to GDP	Nominal RRE price to rent gap	0.21	0.11	0.68	0.90	[0.86, 0.94]
Average			0.28	0.23	0.49	0.80	[0.75, 0.85]

Concerning the signalling performance of the two methodologies, Table 7 reveals that both the nonparametric and parametric approach result in broadly similar performance when they are applied using the same number of indicators. Differences in relative usefulness are small overall, and the increase in AUROC values obtained using the parametric approach is not significant. In addition, no specific pattern can be found in terms of the differences in the percentage of missed crises and false alarms from a comparison of the two methodologies.

3.2.3 Overall best logit model

As mentioned, imposing more structure on the aggregation process, the discrete choice approach suffers less from the dimensionality problem faced in the multivariate non-parametric signalling approach. This means that a larger number of variables can easily be included. Nevertheless, one should be aware of the fact that one of the most difficult tasks in econometric estimation is the choice of explanatory variables to include in a model. If insufficient variables are considered, an omitted variable problem will arise resulting in biased estimates. But if redundant or highly correlated regressors are included, the outcome is inflated standard errors and erratic changes in coefficient signs for small perturbations of the model or the data.

To choose the relevant variables to include as regressors in the logit analysis, we could in principle try all possible combinations. However, doing so would result in a large number of possible models soon becoming computationally impracticable. To circumvent dimensionality problems given by the large number of potential combinations of variables, we use information concerning the correlation structure of regressors and economic intuition to consider only the combinations of variables with the highest informative content. In particular, other than excluding combinations of highly correlated variables, we favour either nominal or real specifications based on the results of the univariate analysis. Furthermore, we exclude the presence of combinations of variables pertaining to the same category (e.g. two structural credit variables in the same regression model). This procedure leads to the selection of 25 possible explanatory variables, listed in Table 8.

Structural credit variables	Real estate price variables
(Nominal) HH credit to GDP	(Nominal) RRE price to income gap
(Nominal) NFC credit to GDP	(Nominal) RRE price to rent gap
(Nominal) total credit to GDP	RRE price growth (nominal and real)
(Nominal) bank credit to GDP	RRE price gap (real)
Debt service ratio	Other variables
Cyclical credit variables	Inflation
HH credit growth (real)	Real GDP growth
NFC credit growth (real)	Unemployment rate
Total credit growth (real)	Real effective exchange rate growth
Bank credit growth (real)	Current account deficit to GDP
(Nominal) HH credit to GDP gap	Long term gov't bond yield (nominal)
(Nominal) NFC credit to GDP gap	3-month money market rate (nominal)
(Nominal) total credit to GDP gap	Equity prices growth (real)
(Nominal) bank credit to GDP gap	

Table 8: Potential explanatory variables for logit regressions

^a: HH = "households"; NFC = "non-financial corporations"; RRE = "residential real estate"; GFCF = "gross fixed capital formation"

This procedure leads us to estimate more than 13,000 logit models (containing up to five explanatory variables), for which we obtain the corresponding predicted values. These predicted values represent the probability of a real estate-related banking crisis occurring within the assumed prediction horizon. For each model, the optimal threshold on the predicted crisis probability is obtained by maximising the relative usefulness of the model.³⁰ The regression results for the ten best models ranked according to their AUROC are presented in Table 9 below.³¹

³⁰ A grid search was performed over a grid of size 100, bounded by the model's minimum and maximum predicted crisis probability in the sample.

³¹ Estimation results for the best ten models in Table 9 with country fixed effects included are qualitatively very similar, with most coefficient estimates somewhat larger and even more significant than in the population average model. Signalling performance (restricted to the subset of countries that experienced at least one crisis) is somewhat worse than for the population average model. See Table A9 in Annex A.

Occasional Paper No. 8

August 2015 Identifying early warning indicators for real estate-related banking crises

Table 9: Regression results panel logit models (t-values in parentheses)

v i	Model1	Model2	Model3	, Model4	Model5	Model6	Model7	Model8	Model9	Model10
Deal total gradit growth	0.166***	0.242***	WIDUEIS	WOUE14	0.196***	WIDUEID	0.122***	IVIOUEIO	WIDUEI9	WIDUEITO
Real total credit growth	(4.849)	(4.616)								
Nominal bank credit to GDP	(4.849)	(4.010)	0.048***		(3.644)	0.035***	(4.479)	0.056***		
Nominal bank credit to GDP										
DDC review to yourt own	(6.078) 0.037***	0.042***	(5.824)	0.040***	0.024***	(4.518)		(5.513) 0.044***	0 0 1 * * *	
RRE price to rent gap		0.042***	0.031**	0.049***	0.034***	0.051***			0.051***	
2 month money relations	(2.787) 0.426***	(2.578) 0.544***	(1.974)	(3.542)	(3.145)	(3.651)	0.347***	(2.804) 0.455***	(3.861) 0.445***	0 227***
3-month money mkt rate			0.401***	0.409***	0.471***	0.390***				0.327***
	(5.633)	(5.242)	(5.728)	(4.334)	(5.044)	(4.336)	(2.685)	(5.087)	(4.892)	(2.379)
Inflation	-0.302***	-0.378***	-0.284***	-0.264**	-0.257***	-0.296***	-0.333**	-0.324**	-0.287***	-0.336**
	(-2.760)	(-2.971)	(-2.597)	(-2.184)	(-2.148)	(-2.646)	(-2.434)	(-2.499)	(-2.294)	(-1.966)
Household credit to GDP		0.085***		0.060***						
		(4.211)		(3.497)						
Real bank credit growth			0.131***							
			(4.713)							
Real NFC credit growth				0.218***		0.200***			0.234***	0.159***
				(5.619)		(5.783)			(6.223)	(4.780)
Nominal total credit to GDP					0.038***				0.028***	
					(5.363)				(3.604)	
Debt service ratio							7.216***			6.805***
							(6.207)			(6.655)
RRE price to income gap							0.116***			0.116***
The process moorne Bab							(3.683)			(3.841)
Roal HH credit growth							(5.065)	0.113***		(3.641)
Real HH credit growth								(7.856)		
Constant	-10.224***	-12.115***	-9.543***	-9.746***	-11.977***	-9.100***	-8.021***	-10.583***	-10.683***	-7.968***
Constant	(-14.079)									
Turnelaure	, ,	(-4.906)	(-11.367)	(-6.215)	(-6.626)	(-10.652)	(-5.378)	(-9.638)	(-6.924)	(-5.969)
Type I error	0.02	0.18	0.12	0.18	0.14	0.06	0.17	0.06	0.11	0.13
Type II error	0.20	0.07	0.15	0.11	0.12	0.21	0.08	0.20	0.19	0.12
Relative usefulness	0.78	0.74	0.74	0.71	0.74	0.73	0.75	0.74	0.71	0.75
AUROC	0.95	0.94	0.94	0.94	0.94	0.94	0.94	0.93	0.93	0.93
AUROC CI	[0.92, 0.98]	[0.91, 0.97]	[0.91, 0.97]	[0.91, 0.97]	[0.91, 0.97]	[0.90, 0.97]	[0.90, 0.97]	[0.90, 0.97]	[0.90, 0.97]	[0.90, 0.97]

* significant at 0.1; ** significant at 0.05; *** significant at 0.01

Among the 25 considered regressors, 12 appear in the best ten models, including structural (bank credit to GDP, household credit to GDP, total credit to GDP, debt service ratio) and cyclical credit indicators (real total credit growth, real bank credit growth, real NFC and real household credit growth), structural real estate price indicators (nominal RRE price to income gap and price to rent gap), a macroeconomic indicator (inflation) and a market indicator (three-month money market rate). Indicators of cyclical developments in real estate prices do not appear in the best ten regression models.³²The results again point towards a high importance of structural real estate price variables in identifying periods of vulnerability in the run-up of a real estate crisis. In fact, all ten best models feature either the RRE price to rent gap or RRE price to income gap among the chosen explanatory variables. Such indicators of residential real estate price overvaluation are positively associated with the probability of occurrence of a real estate-related distress event.

Furthermore, vulnerable periods are characterised by both a structural and cyclical increase in credit. In fact, a combination of one structural and one cyclical credit indicator appears in every model in Table 9, with highly statistically significant coefficients. While a marked expansion of credit during the upturn of the cycle might signal overheating in the real estate sector and can be associated with a loosening of credit standards which can expose banks to credit risk, a structurally high level of credit in the economy is a symptom of excessive leverage, which can significantly exacerbate the impact of a downturn. The more households are burdened by loan repayments, the less their resilience to the negative wealth effect resulting from a steep fall in house prices. This results in higher credit risk for banks amid falling debt servicing capabilities of households.

The results presented in Table 9 also reveal that accounting for inflation and for the level of the shortterm money market rate is important. In fact, these two variables appear in all the best ten regression models, with a highly statistically significant coefficient. While increasing levels of the three-month money market rate seem to increase the probability of a crisis, high inflation is found to dampen the probability of a distress event related to the real estate sector. A possible explanation for the former relates to the increased debt burden of variable rate mortgages when interest rates increase, whereas the latter can be explained by the debt deflation effect of increasing price level, which has positive effect on balance sheets of leveraged borrowers by reducing the real burden of debt. More generally, increasing interest and inflation rates are commensurate with periods of economic prosperity, during which underestimation of risks and herd behaviour may result in the creation of imbalances.

The performance of the best logit models can be evaluated looking at the statistics reported in the bottom lines of Table 9. AUROCs range from 0.93 to 0.95, indicating a very high informative power of these models. Also, Type I and Type II error rates are very small: the overall best model results in a probability of missing a crisis of only 2%, whereas it issues false alarms with a 20% probability.

³² This may be due to the fact that only one real estate variable at a time is allowed in the regression specifications. On the other hand, the best three trivariate logit models (where no restriction was imposed on the number of real estate variables included in the regression) did not include a cyclical real estate price either. Hence, it turns out that real estate variables containing a structural component have a stronger contribution to predictive ability than purely cyclical real estate price variables.

Although the performance in terms of Type I and Type II errors varies across models, error rates of both types never exceed 21%.³³

A comparison with the statistical performance of the non-parametric and parametric models in Table 6 reveals that the overall best logit models significantly improve performance: moving from values around 0.5 in the univariate case to values around 0.75 for relative usefulness, and a rise in AUROC from values slightly above 0.80 in the univariate case to levels larger than 0.93. The AUROCs of the best ten logit models are in fact significantly larger than those of many of the uni, bi and trivariate non-parametric and parametric indicator combinations.

To gauge the consistency of the signals issued across the ten best logit models, Figure 5 depicts the number of models (ranging from 0 to 10) issuing a signal in each quarter, together with the start of real estate-crisis events and the correspondent pre-crisis period. For all crisis countries except France and Slovenia, all ten best logit models correctly signal the imminent occurrence of a real estate-related crisis during the pre-crisis horizon. In France's case, only five models issue a signal in the pre-crisis period.³⁴

For the Netherlands and Spain the models agree in issuing a false alarm earlier in the sample, while in the case of France, nine models out of ten wrongly issue a warning in 2007 Q3. Some false alarms can also be observed in countries which do not experience a crisis, notably in Germany (in the beginning of the 1980s), Italy (around 1992) and Portugal (2008), and to a lesser extent in Austria, Belgium, Greece and Slovakia. However, signals issued by the best ten models are consistent, since a large fraction of models issue warnings at the same time.

³³ The sample on which the analysis has been performed is unbalanced; in fact, Table A2 in Annex A shows that the data availability of different variables is very heterogeneous. Therefore, though each cover at least 13 crises, the samples used for estimating the different models depend on the variables included. To test the robustness of our results, we consider only periods in which all variables are non-missing for a given country, thereby running each regression on the same sample. This restricted data sample, which covers ten crises (eight coinciding with the recent financial crisis, two with crises in the early nineties), results in similar estimates and performance to the models in Table 9. The results of the ten best models resulting from this robustness exercise are presented in Table A10 in Annex A.

³⁴ A possible explanation may be that in France the property bubble of the early 1990s was concentrated in the Paris area (see for example <u>https://www.tresor.economie.gouv.fr/File/326927)</u>.

Occasional Paper No. 8 August 2015 Identifying early warning indicators for real estate-related banking crises

Occasional Paper No. 8

August 2015 Identifying early warning indicators for real estate-related banking crises

3.3 Country-level evaluation of best models

The results presented so far refer to the pooled set of the 25 EU countries for which we have sufficient data coverage. However, financial cycles are likely to be heterogeneous across countries, and the application of macro-prudential policies occurs at national level. In this section, we assess how well the indicators and models estimated on pooled EU-wide data perform at individual country level. We furthermore show that estimating country-specific thresholds may improve signalling performance at the level of individual countries.

3.3.1 Country level evaluation of the best trivariate non-parametric combination of indicators

Table 10 provides information on the country-level true and false positive rates as well as the relative usefulness corresponding to the best trivariate non-parametric combination of indicators in Table 5, highlighting in bold countries which experienced at least one crisis episode.³⁵ The good ability of this

³⁵ For the best trivariate combination of indicators, a signal is issued when all three indicators breach their individual thresholds. On the other hand, no signal is issued when either one of the three indicators in the combination does not breach its threshold.

combination to identify vulnerability periods preceding a real estate-related crisis is evident from the high values attained by the true positive rate. For 7 out of 11 crisis countries, pre-crisis periods are perfectly identified, while lower, but still satisfactory true positive rates can be observed for Denmark and the Netherlands (81% and 75%, respectively). The only two countries for which the pre-crisis period is poorly identified are Hungary and France, where the true positive rate settles at 0 and 38%, respectively. In the case of Hungary this is driven by the very short availability of time series of the three variables concerned, while for France the low value of the true positive rate can be attributable to the peculiarity of the real estate crisis, concentrated in the Paris area.

At the same time, although the picture concerning false alarms is more heterogeneous across countries, the overall probability that this model wrongly issues a signal is quite low. For non-crisis countries, the best trivariate combination leads to a very small share of false alarms: only in Belgium's case does the probability of false alarms reach 32%, the highest value in the sample. The other 12 non-crisis countries settle on values between zero (seven countries) and 24% (Italy). The share of wrongly identified crises is slightly higher for crisis countries, ranging from 2% (Sweden) to 27% (Finland).

In terms of relative usefulness for the policymaker, the performance of the best trivariate nonparametric combination is quite heterogeneous, ranging from 0.15 (France) to 0.98 (Sweden). Since in Hungary both the true and the false positive rates are equal to zero, the relative usefulness of the signal is zero.

by country													
Country	TPR	FPR	Relative usefulness										
Austria		0.08											
Belgium		0.32											
Cyprus		0											
Czech Republic		0											
Denmark	0.81	0.13	0.69										
Estonia		0											
Finland	1	0.27	0.73										
France	0.38	0.22	0.15										
Germany		0.06											
Greece		0.10											
Hungary	0	0	0										
Ireland	1	0.19	0.81										
Italy		0.24											
Latvia	1	0.12	0.88										
Lithuania	1	0.11	0.90										
Luxembourg		0											
Malta		0											
Netherlands	0.75	0.18	0.57										
Poland		0											
Portugal		0.12											
Slovakia		0											
Slovenia		0											
Spain	1	0.26	0.75										
Sweden	1	0.02	0.98										
United Kingdom	1	0.16	0.84										

Table 10: Signalling performance of best trivariate non-parametric combination of indicators, by country

3.3.2 Country level evaluation of the best logit model

Figure 6 plots the predicted crisis probabilities of the best logit model by country (cf. Model 1 in Table 9), as well as the first quarter of real estate-related banking crises and the corresponding pre-crisis period. The model predictions clearly peak in the pre-crisis period, although the signal is somewhat weaker for France. In Slovenia, the model seems to warn against the occurrence of vulnerabilities too late, but data are not available throughout most of the pre-crisis period for Slovenia. Figure 6 also shows that false alarms are sporadic: unjustified signals can be observed in Denmark, Germany, Greece, Ireland, Italy, the Netherlands, Portugal, Spain and the UK.

Figure 6: Predictions of best logit model and actual crisis start, by country

A formal evaluation of the country-specific performance of the best logit model is presented in Table 11, where information on the true positive and false positive rates as well as the relative usefulness is provided. The model exhibits a true positive rate of 100% in 8 out of 10 crisis countries, while in Sweden and the UK the fraction of correctly identified crises amounts to 94%. This implies an overall very good ability of the model to identify the occurrence of a vulnerable, pre-crisis period.

In countries that did not experience a crisis, the false positive rate is below 30% (with the exception of the 44% registered in Portugal), with particularly low levels observed for Austria (2.5%), Belgium (2.4%), the Czech Republic (0%) and Slovakia (4.8%). Only in Cyprus does the model wrongly issue a signal in 100% of cases; this has, however, to be interpreted considering the very short time period in which predictions are available (cf. Figure 6). Among crisis countries, values of the false positive rates lower than 10% are observed for Finland and Sweden, whereas other countries settle between 13% (France) and 46% (Denmark).

In terms of relative usefulness for the policymaker, the best logit model performs very well, with values between 0.54 and 0.96.

Overall, both the non-parametric and discrete choice methodologies lead to models with relatively good signalling performance for most individual countries. In particular, the risk of missing a crisis is quite limited. While the parametric approach seems to be better in identifying periods of vulnerability, it issues wrong signals more often than the non-parametric trivariate approach. In terms of relative usefulness, the picture is mixed; while strong improvements are observed for some countries (especially France and the Netherlands), the opposite is observed for other countries (especially Latvia and Lithuania).

Country	Optimal threshold	TPR	FPR	Relative usefulness
Austria	0.0616		0.02	
Belgium	0.0616		0.03	
Cyprus	0.0616		1	
Czech Republic	0.0616		0	
Denmark	0.0616	1	0.46	0.54
Estonia	0.0616			
Finland	0.0616	1	0.04	0.96
France	0.0616	1	0.13	0.87
Germany	0.0616		0.12	
Greece	0.0616		0.26	
Hungary	0.0616			
Ireland	0.0616	1	0.29	0.71
Italy	0.0616		0.15	
Latvia	0.0616	1	0.44	0.56
Lithuania	0.0616	1	0.33	0.67
Luxembourg	0.0616			
Malta	0.0616			
Netherlands	0.0616	1	0.15	0.86
Poland	0.0616			
Portugal	0.0616		0.44	
Slovakia	0.0616		0.05	
Slovenia	0.0616			
Spain	0.0616	1	0.37	0.63
Sweden	0.0616	0.94	0.08	0.86
United Kingdom	0.0616	0.94	0.23	0.71

Table 11: Signalling performance of best logit model, by country

3.3.3 Country-specific thresholds of best logit model

The results presented in the previous section reveal a degree of cross-country heterogeneity in the country-level performance of the best logit model on the basis of a pooled threshold. In this section, we assess whether country-level early-warning precision can be increased by computing country-specific optimal thresholds based on the prediction of the best (pooled) logit model³⁶. Again, the optimal threshold is chosen as the one yielding the highest relative usefulness for the policymaker.

Figure 7 depicts the country-specific thresholds together with the predictions of the best logit model (which remain unchanged in comparison to Figure 6), the pre-crisis periods and the onset of real estate-related crises related to this exercise.

³⁶ The optimal threshold for each country is calculated using the same methodology as for the pooled threshold. Cf. footnote 30.

Figure 7: Country-specific thresholds and predicted probabilities of best logit model

As it is readily noticeable, country-specific, optimal thresholds differ substantially from the pooled threshold for the best logit model (equal to 0.06), except for Finland and France. For most of the crisis countries, the optimal threshold is higher than the pooled one, most notably for Ireland and Spain. Only Sweden exhibits an optimal country-specific threshold lower than the pooled one.

While the true positive rate for crisis countries is still very high, a strong reduction in the false positives rate can be noticed, due to the negative relationship between the value of the threshold and the Type II error. In particular, the share of wrongly predicted crises now ranges from 1% (UK) to 17% (Denmark), well below that corresponding to signals obtained using the pooled threshold (from 2% to 46%). This is due to the much higher optimal threshold for some countries (e.g. Ireland, Spain, Latvia), which allows a better balancing of the true and the false positive rates, thereby making the signal more precise. For all countries, the relative usefulness is at high levels and at least as large as with the pooled threshold.

Country	Optimal threshold	TPR	FPR	Relative usefulness
Austria				
Belgium				
Cyprus				
Czech Republic				
Denmark	0.18	0.81	0.17	0.64
Estonia				
Finland	0.06	1	0.04	0.96
France	0.06	1	0.13	0.87
Germany				
Greece				
Hungary				
Ireland	0.83	1	0.01	0.99
Italy				
Latvia	0.25	1	0	1
Lithuania	0.16	0.88	0	0.88
Luxembourg				
Malta				
Netherlands	0.11	1	0.07	0.93
Poland				
Portugal				
Slovakia				
Slovenia				
Spain	0.77	1	0	1
Sweden	0.04	1	0.13	0.88
United Kingdom	0.16	0.94	0.01	0.93

Table 12: Signalling performance of best logit model with country-specific thresholds

While this analysis of country-specific thresholds is based on only one or two crises per country and therefore is not necessarily robust, it shows that obtaining country-specific thresholds is an important area for future research on improving early warning signalling performance.

Section 4 Robustness analysis

This section provides an account of the sensitivity of the results to assumptions related to the policymaker's loss function as well as to the choice of countries in the sample.

4.1 Parameter of the policymaker's loss function

The results presented so far are based on optimal thresholds calculated by optimising a policymaker's loss function, for which the preference parameter (θ) representing the relative preference between missing crises and issuing false alarms was set at 0.5. This implies the policymaker is indifferent between incurring a Type I and a Type II error.³⁷ However, with the recent financial crisis still fresh in their memory, policymakers might be more adverse towards missing crises, since they might associate the cost of banking crises larger than the cost society would incur in case of macro-prudential policies unwarrantedly implemented. On the other hand, policymakers might be inclined towards inaction bias, since the cost of policy action arises in the short term, while its benefits can only been reaped after a time lag.³⁸

Tables 13 and Table 14 show the signalling performance of the best trivariate non-parametric combination of indicators and the best logit model obtained for different values of θ , where θ >0.5 implies that the policymaker has a stronger preference towards minimising the Type I error. The tables reveal that, as expected, the choice of the preference parameter influences the optimal thresholds and, consequently, the signalling performance of the model in both the non-parametric and parametric framework. In general, setting θ above 0.5 leads to lower thresholds and, therefore, to lower Type I errors and higher Type II errors. Note that the ranking of the indicators and models based on AUROC in the previous sections is not influenced by the choice of the loss function's preference parameter as the AUROC is calculated for every possible threshold value and therefore independently of θ .

 $^{^{37}}$ It should be noted though that following an extension suggested by Sarlin (2013) and applied by for instance Behn et al. (2014), the loss function can account for the relative frequency of pre-crisis and tranquil periods, in addition to the policymaker's preference parameter. Given the lower relative frequency of pre-crisis periods, a higher weight on Type I errors does not necessarily result in a higher overall weight on Type I errors in the loss function in this framework. Our benchmark case of θ =0.5 could be considered a "reduced form" specification of the Sarlin (2013) extension.

³⁸ The reader is referred to Chapter 9 of the ESRB Handbook on "Operationalising Macro-Prudential Policy in the Banking Sector" for an extensive discussion of inaction bias, and how it can be overcome using a solid signalling framework.

Table 13: Signalling performance of best trivariate non-parametric combination for different values of theta

θ	var1	var2	var3	Thre s1	thre s2	thre s3	Type I	Type II	Rel. usefuln ess	AUROC	AUROC CI
0.5	Real total credit growth	Real RRE price gap	Nominal RRE price to rent gap	5.21	-0.10	-6.07	0.10	0.23	0.68	0.86	[0.82,0.91]
0.7	Real total credit growth	Real RRE price gap	Nominal RRE price to rent gap	2.56	-0.96	-9.16	0	0.37	0.63	0.86	[0.82,0.91]
0.9	Real total credit growth	Real RRE price gap	Nominal RRE price to rent gap	2.55	-0.96	-9.16	0	0.37	0.63	0.86	[0.82,0.91]

Table 14: Signalling performance of best logit model (Model1) for different values of theta

			U	1 1		
θ	threshold	Type I	Type II	Relative usefulness	AUROC	AUROC CI
0.5	0.0615	0.02	0.20	0.78	0.95	[0.92,0.98]
0.7	0.0566	0.01	0.22	0.76	0.95	[0.92, 0.98]
0.9	0.0456	0	0.27	0.73	0.95	[0.92, 0.98]

4.2 Out-of-sample analysis

Due to the limited number of crisis observations it is not possible to do an out-of-sample exercise along the time dimension (out-of-sample predictive ability). Instead, an out-of-sample exercise along the cross-country dimension is performed in this section.

The sample of countries and crises considered in the analysis can have strong repercussions on the results, especially in a sample where crises are scarce. This section presents the results of the logit analysis performed excluding a set of countries from the estimation, and then comparing the model predictions with actual outcomes for the full sample of countries. In addition, we use the model estimated on the reduced set of countries to perform an out-of-sample evaluation of the model for the excluded countries.

To conduct this exercise we could exclude one country at a time from the sample, re-estimate the logit model and consider how it performs out of sample for the excluded country. However, in what follows we opt for a somewhat "stricter" approach in which we exclude from the sample the three countries that experienced two crisis periods (i.e. Denmark, Sweden and the UK) and re-run the estimations of the best ten logit models.

Table 15 illustrates the results of this exercise, confirming the robustness of the models to changes in the composition of the sample. All variables retain their sign and statistical significance, with the exception of inflation, which is no longer statistically significant in five out of ten models. The magnitudes of the regression coefficients change only negligibly. Furthermore, comparing the bottom lines of Table 15 with those in Table 9, one notices that the early warning performance of the models remains broadly unchanged.

August 2015 Identifying early warning indicators for real estate-related banking crises

Table 15: Regression results panel logit models (t-values in parentheses): DK, SE and UK excluded

	Model1	Model2	Model3	Model4	Model5	Model6	Model7	Model8	Model9	Model10
Real total credit growth	0.170***	0.274***			0.191***		0.140***			
	(4.093)	(3.841)			(3.283)		(3.103)			
Nominal bank credit to GDP	0.050***		0.050***			0.038***		0.062***		
	(4.894)		(4.634)			(4.242)		(3.926)		
RRE price to rent gap	0.034***	0.032*	0.026*	0.041***	0.036***	0.047***		0.038***	0.053***	
	(2.969)	(1.941)	(1.767)	(3.328)	(3.514)	(4.287)		(2.376)	(4.186)	
3-month money mkt rate	0.417***	0.646***	0.414***	0.458***	0.436***	0.404***	0.340**	0.471***	0.453***	0.301*
	(5.013)	(7.187)	(5.469)	(3.996)	(3.961)	(3.378)	(2.082)	(5.008)	(3.516)	(1.683)
Inflation	-0.269**	-0.467***	-0.234*	-0.267	-0.217	-0.286*	-0.321	-0.275	-0.288*	-0.304
	(-2.066)	(-4.005)	(-1.761)	(-1.569)	(-1.417)	(-1.901)	(-1.930)	(1.604)	(-1.679)	(-1.512)
Household credit to GDP		0.107***		0.075***						
		(3.381)		(3.091)						
Real bank credit growth			0.148***							
			(4.297)							
Real NFC credit growth				0.258***		0.227***			0.266***	0.160***
				(4.378)		(4.036)			(3.855)	(3.280)
Nominal total credit to GDP					0.035***				0.026***	
					(3.903)				(2.837)	
Debt service ratio							18.401***			14.749***
							(2.642)			(2.320)
RRE price to income gap							0.098***			0.095***
							(3.141)	0 10 6 * * *		(3.084)
Real HH credit growth								0.126***		
Constant	-10.819***	-13.970***	-10.802***	-11.359***	-12.015***	-10.149***	-10.104***	(7.147) -12.151***	-11.477***	-9.044***
Constant	(-9.102)	(-3.954)	(-7.425)	(-4.796)	(-4.947)	(-6.745)	(-3.995)	(-6.661)	(-4.260)	-9.044 (-4.248)
Type I error	0.01	. ,	, ,	. ,	. ,	. ,	, ,	, ,	. ,	. ,
Type II error	0.01	0.16 0.10	0.11 0.17	0.16 0.13	0.14 0.12	0.06 0.22	0.17 0.09	0.04 0.23	0.12 0.19	0.15 0.11
Relative usefulness	0.22	0.10 0.74	0.17 0.72	0.13 0.71	0.12 0.73	0.22 0.72	0.09	0.23 0.73	0.19 0.70	0.11 0.74
AUROC	0.77	0.74 0.94	0.72 0.94	0.71 0.94	0.73 0.94	0.72 0.94	0.75 0.91	0.73 0.93	0.70 0.93	0.74 0.91
AUROC CI										
AURULU	[0.90, 0.99]	[0.90, 0.98]	[0.89, 0.98]	[0.89, 0.98]	[0.89, 0.98]	[0.89, 0.98]	[0.86, 0.95]	[0.89, 0.98]	[0.89, 0.98]	[0.86, 0.95]

To gauge the ability of the model to identify pre-crisis periods in the countries excluded from the estimation sample, Figure 8 depicts the predicted probabilities corresponding to the best logit model in Table 15, together with the pre-crisis period and the optimal threshold of the model. The model is able to correctly identify all pre-crisis periods, even in Denmark, Sweden and the UK, with predicted probabilities peaking and breaching the optimal threshold. Only in the case of the second Swedish crisis, predicted probabilities peak somewhat late, but still breaching the threshold within the chosen pre-crisis period. Overall, this confirms the out-of-sample performance of the best logit model, and the validity of the results for countries not included in the estimation sample.

A more formal evaluation of the country-specific properties of the model estimated on the sample of 22 countries is presented in Table 16. The ability of the model to identify upcoming crisis events is very similar to that of the best logit model estimated over the full sample (cf. Table 11), also for the out-of-sample countries. The performance of the model in terms of false positive rates and relative usefulness is comparable to the baseline results, once again confirming their robustness.

Figure 8: Predictions of best logit model and actual crisis start, by country – out of sample

Country	Optimal threshold	TPR	FPR	• "out-of-sample" Relative usefulness
Austria	0.0393	•	0.03	
Belgium	0.0393		0.03	
Cyprus	0.0393		1	
Czech Republic	0.0393		0	
Denmark	0.0393	1	0.48	0.52
Estonia	0.0393			
Finland	0.0393	1	0.06	0.94
France	0.0393	1	0.13	0.87
Germany	0.0393		0.19	
Greece	0.0393		0.27	
Hungary	0.0393			
Ireland	0.0393	1	0.29	0.71
Italy	0.0393		0.15	
Latvia	0.0393	1	0.48	0.52
Lithuania	0.0393	1	0.33	0.67
Luxembourg	0.0393			
Malta	0.0393			
Netherlands	0.0393	1	0.13	0.87
Poland	0.0393			
Portugal	0.0393		0.43	
Slovakia	0.0393		0.05	
Slovenia	0.0393			
Spain	0.0393	1	0.35	0.65
Sweden	0.0393	0.88	0.08	0.80
United Kingdom	0.0393	0.94	0.24	0.70

Table 16: Signalling performance of best logit model – "out-of-sample"

Section 5 Policy discussion and conclusions

The operationalisation of macro-prudential instruments requires the identification of sound leading indicators capable of signalling the build-up of vulnerabilities and systemic risk in a timely manner, including excessive developments in the real estate market which could potentially lead to bank distress. This paper presents a comprehensive statistical evaluation of early warning indicators for real estate-related systemic banking crises. Relying on data on real estate-related banking crises for 25 EU countries, both non-parametric and discrete choice analyses are applied in a signalling framework aimed at evaluating the early warning performance of a set of indicators.

Our analysis shows that, although monitoring single indicators may provide valuable information on real estate-related vulnerabilities, multivariate models that combine the information of several indicators exhibit a better signalling performance. Combining more variables results in lower Type I

errors, as it allows for capturing more factors underlying pre-crisis developments. Furthermore, more indicators give an additional level of confirmation that imbalances in the economy are building up and hence the amount of false alarms may be reduced.

In addition, the results in the paper indicate that multivariate logit models may be more suitable for combining the information of several indicators than the non-parametric signalling method. First, multivariate logit models generally tend to present better signalling performance than non-parametric models. Second, multivariate non-parametric indicator combinations are also characterised by low threshold values in case of a simultaneous breach of thresholds. It may be difficult for policymakers to decide and communicate on the activation of macro-prudential instruments based on such low threshold values.

The overall best logit models point towards the high importance of structural real estate price variables (price to rent gap; price to income gap) in identifying periods of vulnerability in the run-up to a real estate-related banking crisis. Vulnerable periods are also characterised by both a structural and cyclical increase in credit. Finally, accounting for inflation and the level of short-term money market rates is found to be important.

The aforementioned best performing indicators and models provide an analytical underpinning for decision-making based on guided discretion concerning the activation of macro-prudential instruments targeted to the real estate sector. National authorities are encouraged to perform their own complementary analyses in a broader framework of systemic risk detection which augments potential early warning indicators and methods with other relevant inputs and expert judgement. Indeed, country-specific optimal thresholds result in a strong reduction of false alarms, improving early warning signalling performance. Therefore, the development of methodologies for obtaining country-specific thresholds is an important area for future research aimed at improving early warning signalling performance. More specifically, methods that account for country specificities as well as interactions between structural and cyclical elements should be further explored. Furthermore, methods that exploit information on the depth of crises may provide additional insights into the development of early warning frameworks.

Finally, regardless the indicators and methods used, early warning signals always imply a trade-off for policymakers between missing crisis events (Type I errors) and issuing false alarms (Type II errors). In our robustness analysis we departed from the initial assumption of policymaker indifference between Type I and II errors by increasing the weight given to Type I errors in the policymaker's loss function. If policymakers consider the cost of banking crises to be larger than the output loss society would incur if macro-prudential policies were to be implemented based on a false alarm, their aversion towards missing crises will be greater. This results in lower thresholds which correctly identify a large share of crisis events, but which, on the other hand, result in many false alarms being issued, with a lower relative usefulness overall for the policymaker. Whatever their relative aversion towards missing crises, national authorities are encouraged to integrate and interpret early warning signals within a broader risk assessment framework, where both quantitative and qualitative information is met with expert judgement. More generally, the macro-prudential decision process should incorporate both the potential costs and benefits of policy (in)action, where possible accounting for the uncertainties on signals received at the risk assessment stage.

List of tables

Table 1: Overview of variables in the four categories
Table 2: Confusion Matrix12
Table 3: Univariate non-parametric analysis: best 10 indicators16
Table 4a: Bivariate non-parametric analysis: best 10 indicator pairs (simultaneous breach)18
Table 5a: Trivariate non-parametric analysis: best 10 combinations (simultaneous breach)19
Table 4b: Bivariate non-parametric analysis: best 10 indicator pairs (single breach)2
Table 5b: Trivariate non-parametric analysis: best 10 combinations (single breach)23
Table 6: Univariate, bivariate and trivariate logit regressions (t-values in parentheses)
Table 7: Comparison of top 3 non-parametric and discrete choice models
Table 8: Potential explanatory variables for logit regressions
Table 9: Regression results panel logit models (t-values in parentheses)
Table 10: Signalling performance of best trivariate non-parametric combination of indicators, by country
Table 11: Signalling performance of best logit model, by country40
Table 12: Signalling performance of best logit model with country-specific thresholds43
Table 13: Signalling performance of best trivariate non-parametric combination for different values o theta48
Table 14: Signalling performance of best logit model (Model1) for different values of theta48
Table 15: Regression results panel logit models (t-values in parentheses): DK, SE and UK excluded
Table 16: Signalling performance of best logit model – "out-of-sample"

List of figures

Figure 1: Number of real estate-related crises by country	7
Figure 2: Number of countries in crisis per period	7
Figure 3: Evolution of potential indicators around real estate-related crisis periods	11
Figure 4: The ROC curve	13
Figure 5: Signals from the best 10 models and actual crisis onset	34
Figure 6: Predictions of best logit model and actual crisis start, by country	38
Figure 7: Country-specific thresholds and predicted probabilities of best logit model	41
Figure 8: Predictions of best logit model and actual crisis start, by country – out of sample	48

Annex A: Tables and Figures

Table A1: Real estate-related banking crisis periods in EU member states

Country			Crisis pe												
	Before th	e global finan	cial crisis	During the	e global fina	ncial crisis									
	Start	End	Real Estate	Start	End	Real Estate									
AT				ng to definit											
BE		no cris	sis accordin	ng to definit	tion										
BG		no cris	sis accordin	ig to definit	tion										
CR		no cris	sis accordin	ig to definit	tion										
CY		no cris	sis accordin	ig to definit	tion										
CZ		no cris	is accordin	ig to defini	tion										
DK	1987q1	1993q4	3	2008q3	ongoing	3									
EE		no cris	sis accordin	ig to definit	tion										
FI	1991q3	1995q4	3												
FR	1993q3	1995q4	3												
DE		no cris	sis according to definition												
GR	no crisis according to definition														
HU	2008q3 ongoing 3														
IE				2008q3	ongoing	3									
IT		no cris	sis accordin	ig to definit	tion										
LV				2008q4	2010q3	3									
LT				2008q4	2010q4	3									
LU		no cris	sis accordin	ng to definit	tion										
MT		no cris	sis accordin	ng to definit	tion										
NL				2008q3	ongoing	3									
PL		no cris	sis accordin	ng to definit	tion										
РТ		no cris	sis accordin	ng to definit	tion										
RO		no cris	sis accordin	ng to defini	tion										
SK		no cris	sis accordin	ng to definit	tion										
SI				2008q1	ongoing	1									
ES	2009q2 2013q2 3														
SE	1990q3	1993q4	3	2008q3	2010q4	1									
UK	1990q3	1994q2	3	2007q3	ongoing	3									

1: Residential real estate crisis

2: Commercial real estate crisis

3: Residential and commercial real estate crisis

Crisis periods include:

(a) systemic banking crisis associated with the credit cycle, and

(b) periods where domestic developments related to the credit/financial cycle could well have caused a systemic banking crisis had it not been for policy action/an external event that dampened the credit cycle.

Up to two crisis periods have been identified per country; the table provides the starting date (year, quarter) and end date (year, quarter) of each crisis period

Country names:

 $\begin{array}{l} \mathsf{AT} = \mathsf{Austria}; \ \mathsf{BE} = \mathsf{Belgium}; \ \mathsf{BG} = \mathsf{Bulgaria}; \ \mathsf{CR} = \mathsf{Croatia}; \ \mathsf{CY} = \mathsf{Cyprus}; \ \mathsf{CZ} = \mathsf{Czech} \ \mathsf{Republic}; \ \mathsf{DK} = \mathsf{Denmark}; \ \mathsf{EE} = \mathsf{Estonia}; \\ \mathsf{FI} = \mathsf{Finland}; \ \mathsf{FR} = \mathsf{France}; \ \mathsf{DE} = \mathsf{Germany}; \ \mathsf{GR} = \mathsf{Greece}; \ \mathsf{HU} = \mathsf{Hungary}; \ \mathsf{IE} = \mathsf{Ireland}; \ \mathsf{IT} = \mathsf{Italy}; \ \mathsf{LV} = \mathsf{Latvia}; \ \mathsf{LT} = \mathsf{Lithuania}; \\ \mathsf{LU} = \mathsf{Luxembourg}; \ \mathsf{MT} = \mathsf{Malta}; \ \mathsf{NL} = \mathsf{Netherlands}; \ \mathsf{PL} = \mathsf{Poland}; \ \mathsf{PT} = \mathsf{Portugal}; \ \mathsf{RO} = \mathsf{Romania}; \ \mathsf{SK} = \mathsf{Slovak} \ \mathsf{Republic}; \ \mathsf{SI} = \\ \mathsf{Slovenia}; \ \mathsf{ES} = \mathsf{Spain}; \ \mathsf{SE} = \mathsf{Sweden}; \ \mathsf{UK} = \mathsf{United} \ \mathsf{Kingdom}. \end{array}$

Tab	ole A2: Data availability	' by		Мс	ore tha	han 80 observations			S		Betw	veen 8	0 and	30 ob	serva	tions		L	.ess tl	nan 3	0 obse	ervatio	ns		country					
		AT	BE	BG	СҮ	CZ	DE	DK	EE	ES	FI	FR	GR	HR	HU	IE	IT	LT	LU	LV	MT	NL	PL	РТ	RO	SE	SI	SK	UK	
	Total credit to GDP	16 9	13 0	61	77	69	16 9	16 9	37	16 9	16 9	16 9	42	53	69	12 9	16 9	69	40	69	16 1	16 9	69	14 1	49	16 9	45	36	16 9	
ŧ	Bank credit to GDP	16 9	13 0	0	77	69	16 9	16 9	64	16 9	15 6	16 9	42	65	69	12 9	15 3	69	12 9	69	16 1	16 9	69	14 1	49	16 9	69	36	16 9	
Structural credit	HH credit to GDP	69	13 0	61	35	69	16 9	16 9	37	12 9	16 9	14 1	42	65	69	44	16 9	69	32	63	37	11 9	69	13 3	49	12 9	69	37	16 9	
Struc	NFC credit to GDP	69	12 9	61	35	69	16 9	16 9	37	12 9	16 9	14 1	42	65	69	44	16 9	69	32	63	37	11 8	69	13 3	49	12 9	69	37	14 8	
	Debt service ratio	17 1	13 2	64	79	70	17 0	39	65	17 1	17 1	17 1	45	7	71	13 1	17 1	72	13 0	72	16 4	17 0	31	14 3	24	17 1	36	28	17 1	
	Total credit growth	16 8	16 6	60	76	76	16 8	16 8	33	16 8	16 8	16 8	16 8	49	89	16 3	16 8	73	36	64	16 0	16 8	80	16 8	49	16 8	41	32	16 8	
	Bank credit growth	16 8	16 6	0	76	76	16 8	16 8	60	16 8	15 2	16 8	16 8	72	89	16 3	14 9	73	12 8	64	16 0	16 8	80	16 8	68	16 8	73	32	16 8	
	HH credit growth	65	12 6	60	31	65	16 5	16 8	33	12 5	16 8	13 7	69	72	89	40	16 8	73	28	59	33	11 5	65	12 9	49	12 5	73	33	16 8	
credit	NFC credit growth	65	12 5	60	31	65	16 5	16 8	33	12 5	16 8	13 7	69	72	89	40	16 8	73	28	59	33	11 4	65	12 9	49	12 5	73	33	14 4	
Cyclical credit	Total credit to GDP gap	14 9	11 0	41	57	49	14 9	14 9	17	14 9	14 9	14 9	22	33	49	10 9	14 9	49	20	49	14 1	14 9	49	12 1	29	14 9	25	16	14 9	
	Bank credit to GDP gap	14 9	11 0	0	57	49	14 9	14 9	44	14 9	13 6	14 9	22	45	49	10 9	13 3	49	10 9	49	14 1	14 9	49	12 1	29	14 9	49	16	14 9	
	HH credit to GDP gap	49	11 0	41	15	49	14 9	14 9	17	10 9	14 9	12 1	22	45	49	24	14 9	49	12	43	17	99	49	11 3	29	10 9	49	17	14 9	
	NFC credit to GDP gap	49	10 9	41	15	49	14 9	14 9	17	10 9	14 9	12 1	22	45	49	24	14 9	49	12	43	17	98	49	11 3	29	10 9	49	17	12 8	

	Residential RE price to income gap	52	17 3	0	0	20	13 2	12 8	0	16 8	15 2	14 0	64	0	60	14 4	17 2	57	72	56	52	17 2	41	72	0	17 2	24	32	15 2
Structural RE price	Residential price to rent gap	52	14 8	0	13	20	17 2	17 2	0	16 8	17 2	17 2	64	0	0	17 2	17 2	32	24	56	0	17 2	0	88	0	13 2	24	32	17 2
Struct																													
	Residential RE price growth	48	16 9	0	21	16	16 8	16 8	0	16 4	16 8	16 8	60	0	56	16 8	16 8	53	20	52	28	16 8	32	96	0	16 8	20	28	16 8
	Commercial RE price growth	59	60	0	0	59	59	59	0	59	59	59	54	9	59	69	59	32	59	0	0	59	59	40	0	59	16	41	10 1
	Residential RE price gap	32	15 3	0	0	0	15 2	15 2	0	14 8	15 2	15 2	44	0	40	15 2	15 2	37	0	36	0	15 2	0	80	0	15 2	0	0	15 2
price	Commercial RE price gap	43	44	0	0	43	43	43	0	43	43	43	38	0	43	53	43	16	43	0	0	43	43	24	0	43	0	25	85
Cyclical RE price	Residential RE price to income gap growth	48	16 9	0	0	16	12 8	12 4	0	16 4	14 8	13 6	60	0	56	14 0	16 8	53	68	52	48	16 8	37	68	0	16 8	20	28	14 8
0	Residential price to rent gap growth	48	14 4	0	9	16	16 8	16 8	о	16 4	16 8	16 8	60	0	0	16 8	16 8	28	20	52	0	16 8	0	84	0	12 8	20	28	16 8
	Residential RE price to income gap gap	50	17 1	0	0	18	13 0	12 6	0	16 6	15 0	13 8	62	0	58	14 2	17 0	55	70	54	50	17 0	39	70	0	17 0	22	30	15 0
	Residential price to rent gap gap	50	14 6	0	11	18	17 0	17 0	0	16 6	17 0	17 0	62	0	0	17 0	17 0	30	22	54	0	17 0	0	86	0	13 0	22	30	17 0
	Inflation	16 8	16 9	60	12 8	84	16 8	16 8	68	16 8	16 8	16 8	16 8	80	12 8	16 8	16 8	76	16 8	64	16 8	16 8	88	16 8	68	16 8	89	84	16 8
Other variables	Real GDP growth	16 8	12 9	60	68	64	16 8	16 8	68	68	16 8	16 8	41	64	68	12 8	16 8	68	68	68	14 7	16 8	68	13 6	48	76	68	76	16 8
Other v	Unemployment rate	17 2	17 3	64	52	80	17 2	17 2	52	17 2	17 2	17 2	74	60	84	92	17 2	60	11 2	60	52	17 2	83	17 2	64	17 2	68	79	17 2
	Real effective exchange rate	14	14	80	12	88	16	14	72	12	16	12	12	80	12	14	12	72	14	72	14	14	12	14	85	14	72	88	14

growth	8	9		8		0	8		8	8	9	6		9	6	6		8		8	8	3	8		8			8
Real M3 stock growth	16 8	16 9	32	25	40	16 8	46	16	16 8	16 8	16 8	12 8	1	36	16 8	16 8	32	16 8	36	28	16 8	32	16 8	29	41	32	24	52
Current account to GDP	12 4	73	64	56	72	16 8	10 0	72	92	17 2	76	45	52	72	12 8	17 2	72	72	72	16 4	17 2	56	80	52	12 4	72	76	16 8
Government debt to GDP	17 2	13 3	52	52	52	52	52	52	52	17 2	69	52	49	52	62	17 2	52	52	52	52	16 9	52	13 2	57	52	52	52	52
EC consumer survey	70	93	47	47	47	93	93	66	93	69	93	93	0	53	93	93	47	45	73	41	93	47	93	47	70	68	56	93
Long term gov' t bond yield	11 2	13 3	40	60	51	13 2	16 8	55	13 2	10 1	13 2	82	56	48	98	16 8	48	11 2	48	56	16 8	48	10 8	31	10 4	44	48	11 6
Real 3-month money market rate	16 8	16 9	55	56	80	16 8	16 8	68	14 4	13 2	16 8	13 1	48	65	16 8	16 8	56	0	63	71	16 8	72	16 8	68	12 0	59	68	16 8
Real equity price growth	16 8	10 8	0	30	72	16 8	16 8	63	10 8	16 8	16 6	10 8	48	84	16 8	16 8	49	52	53	65	16 8	83	96	59	16 8	71	74	16 8
HH mortgage loans	63	63	37	30	45	63	41	49	63	63	63	42	0	41	62	63	37	63	41	33	63	37	63	34	46	37	29	57
Leverage ratio	62	63	36	29	44	62	50	20	62	62	62	60	0	40	62	62	36	62	10	32	62	36	62	33	45	36	28	0
Bank deposit liabilities to total assets	62	63	36	29	44	62	50	20	62	62	62	60	0	40	62	62	36	62	10	32	62	36	62	33	45	36	28	56
Banks total assets to GDP	62	63	36	29	44	62	50	20	62	62	62	42	0	40	62	62	36	62	10	32	62	36	62	33	45	36	28	56
Bank capital reserves to total assets	62	63	36	29	44	62	50	20	62	62	62	60	0	40	62	62	36	62	10	32	62	36	62	33	45	36	28	56
Average mortgage rate	41	41	25	21	37	41	41	33	41	41	41	41	0	41	41	41	34	37	37	21	41	33	41	25	31	41	21	0
Rates mortgage fixed	41	41	10	0	37	41	41	23	41	41	41	35	0	41	41	41	0	0	32	0	41	18	22	18	31	37	17	37
Rate mortgage floating	41	41	25	21	37	41	0	33	41	41	41	41	0	41	41	41	34	0	37	21	41	33	41	25	31	41	21	37
Spreads on HH mortgage rate	41	41	0	22	37	41	0	33	41	41	41	41	0	33	41	41	0	41	0	25	41	25	41	0	0	41	18	41
Spread on NFC loan rate	41	41	0	22	37	41	0	33	41	41	41	41	0	0	41	41	0	41	0	25	41	25	41	0	0	41	21	0

Occasional Paper No. 8 August 2015 Identifying early warning indicators for real estate-related banking crises

Table A3 : Summary statistics of potential early warning indicators

Unitable	Variable		•	-			Observations
between 25.37491 12.51735 110.47 n = 28 HH mtg loans to GDP overall 32.4954 22.57657 486.366 119.39 N = 1328 NFC credit to GDP overall 76.31093 45.5746 65.1548 339.2428 N = 24 NFC credit to GDP overall 76.31093 45.5746 65.1548 339.2428 N = 23 Total credit to GDP overall 115.84 62.47207 6.19005 451.1346 N = 3035 Bank credit to GDP overall 74.2421 37.99076 62.2261 17.3.4493 T = 14.70 Debt service ratio overall .184224 1.591004 .007968 1.07843 N = 233 Debt service ratio overall 1.184224 .1591004 .007961 1.07843 N = 230 Debt to income overall 13.09114 88.1224 -16.5148 .0079761 2.5089 T = 14.70 Real HH credit growth overall 3.09114 88.13664 307.9241 N = 230 Within	Variable		Mean	Std. dev.	Min	Max	Observations
within 16.54274 2.88732 102.034 T=0.75 HH mtg loans to GDP verall 2.49554 2.76677 4.86752 102.9006 n=27 NFC credit to GDP overall 76.3109 45.45746 6.51548 398.2482 N=2318 Total credit to GDP overall 115.984 62.24707 6.1000 545.1144 N=3035 Bank credit to GDP overall 74.2432 37.38941 5.76733 32717 53.8184 N=3035 Bank credit to GDP overall 74.2432 37.38941 5.76733 3271.0693 N=3037 Debt service ratio overall 1.84224 1.358014 .010391 1.07444 N=233 Debt service ratio overall 13.09114 88482 1.577506 151.3493 T=1.470 within .845812 1.57706 153.2496 1.9444 n=27 Back credit growth overall 13.09114 .84582 1.57706 153.4498 N=230 Debt service ratio overall	HH credit to GDP		43.12815				-
HH mtg loans to GDP overall 32.4955.4 22.76677 466366 119.39 N=1328 NFC credit to GDP within 9.477572 2.287758 53.81182 T-bar = 49.18 NFC credit to GDP within 2.24705 102.9005 118.826 N=27 Total credit to GDP overall 115.894 62.47207 6.19005 74.486.333 n= 28 Bank credit to GDP overall 115.894 62.47207 74.96.933 n= 28 Bank credit to GDP overall 74.2421 33.9941 5.767303 271.0996 N= 3097 Debt service ratio overall .184224 1.591004 .010396 1.078463 N= 2339 Debt to income overall 13.09114 88.945564 307.9164 10.10396 1.078463 N= 230 Real HH credit growth overall 5.80396 73.1964 110.496 N= 230 Real NFC credit growth overall 5.80496 30.0048 N = 230 Real HH credit growth overall 5.245698							
between 21,98064 3,75523 102,9006 n = 27 NFC credit to GDP overall 76,3103 45,45746 6,51548 396,242 N = 2818 Total credit to GDP overall 115,848 62,242107 6,19006 541,1446 N = 80,92 Bank credit to GDP overall 115,848 62,25003 39,52767 349,8533 n = 28 Bank credit to GDP overall 74,2421 37,38941 5,767303 271,0969 N = 3037 between 3,45282 5,4628211 173,4493 T = 114,70 Debt service ratio overall 118,62224 1,591004 ,01036613 N = 239 Debt to income overall 113,09114 88,9453 47,86682 380,0011 N = 236 Real HF credit growth overall 13,09114 88,9523 47,8682 38,71224 N = 230 Real NFC credit growth overall 5,2259368 10,01403 62,2272 83,71224 N = 2004 within 0,9291177 77,27205 13,4		within					
within 9.477572 2.287758 53.81142 T-bar = 43.18 NFC credit to GDP overall 76.3103 454746 65.1548 362.428 N = 2518 Total credit to GDP overall 115.984 62.4707 6.19005 451.1346 n = 28 Mithin 41.2461 -3.85096 313.8757 T = 108.3 Bank credit to GDP overall 74.2421 73.98941 5.767303 271.0668 n = 28 within 2.425514 .059759 .74.0684 n = 27 within 2.23918 -23.9975 .74.0668 n = 28 Debt service ratio overall 1.18222 .159104 .101366 1.078463 N = 233 Debt to income overall 111.8698 84.4542 6.0813 .400214 N = 948 between 28.13465 .209767 .74.18684 367.6281 n = 28 Within 0.448184 1.63.634 367.6281 n = 28 363.434 363.431 n = 28 Real HL credit growth o	HH mtg loans to GDP	overall	32.49554	22.76677	.486366	119.39	N = 1328
NFC credit to GDP overall 76.31093 44.45746 6.51548 396.2422 N = 2518 Total credit to GDP within 22.43105 -30.02535 163.206 T = 89.92 Bank credit to GDP within 41.2461 -36506 31.377 T = 108.3 Bank credit to GDP overall 74.2421 37.38941 5.767303 271.0969 N = 3097 Debt service ratio overall 114.2261 -36006 31.43628 25.84671 179.4684 n = 27 within 1.842224 1591004 0.01396 1.07463 N = 2393 Debt service ratio overall 118.698 84.4452 6.08143 490.214 N = 948 Debt to income overall 13.09114 88.9523 -47.66692 300.081 N = 2530 Real HC credit growth overall 5.82638 10.01403 -62.2227 83.71224 N = 280 within 9.291177 -72.72050 71.34567 N = 280 N = 280 Real NFC credit growth overall		between		21.96064	3.75523	102.9006	n = 27
NFC credit to GDP overall 76.31093 44.45746 6.51548 396.2422 N = 2518 Total credit to GDP within 22.43105 -30.02535 163.206 T = 89.92 Bank credit to GDP within 41.2461 -36506 31.377 T = 108.3 Bank credit to GDP overall 74.2421 37.38941 5.767303 271.0969 N = 3097 Debt service ratio overall 114.2261 -36006 31.43628 25.84671 179.4684 n = 27 within 1.842224 1591004 0.01396 1.07463 N = 2393 Debt service ratio overall 118.698 84.4452 6.08143 490.214 N = 948 Debt to income overall 13.09114 88.9523 -47.66692 300.081 N = 2530 Real HC credit growth overall 5.82638 10.01403 -62.2227 83.71224 N = 280 within 9.291177 -72.72050 71.34567 N = 280 N = 280 Real NFC credit growth overall		within		9.477572	2.287758	53.81182	T-bar = 49.18
between 57.9707 25.28902 319.8876 n = 28 Total credit to GDP overall 115.984 62.4707 6.19005 451.1346 n = 3035 Bank credit to GDP overall 115.984 62.4707 6.19005 451.1346 n = 28 Within 41.2461 -3.85096 31.8757 T = 108.3 3097 Bank credit to GDP overall .184224 .159104 .010386 1.078463 N = 2393 Debt service ratio overall .184224 .159104 .010386 1.078463 N = 2393 Debt to income overall 111.8698 84.4542 6.0813 490.214 N = 948 between 88.75504 37.79404 410.7408 n = 28 9.0138 n = 27 within 0.481812 1.68173 490.214 N = 948 8.67560 11.4028 8.675624 37.79404 410.7409 n = 28 Within 0.42954 9.801358 -57.0230 8.7587 N = 2504 8.75878 N = 2804	NFC credit to GDP		76.31093				
within 22.43105 -30.02535 163.206 Te 89.92 Total credit to GDP between 155.84 62.47207 6.19005 451.1346 N = 3035 Bank credit to GDP overall 74.2421 37.38841 5.767303 271.0869 N = 2037 Debt service ratio overall 74.2421 37.38841 5.767303 271.0869 N = 2393 Debt service ratio overall 1.842224 570104 010396 1.074643 N = 2393 Debt service ratio overall 1.184224 6.08143 400.214 N = 948 Debt service ratio overall 111.8698 84.4452 6.08143 490.214 N = 948 Debt service ratio overall 13.09114 88.95504 7.7464 10.7409 n = 20 within 26.13465 2.94067 73.6801 n = 20 9.57 Real HC credit growth overall 5.826398 10.01403 -62.29272 83.71224 N = 250 Real bank credit growth overall 5.295959							
Total credit to GDP overall 115.984 62.47207 6.19005 451.1346 n = 3035 Bank credit to GDP within 74.2421 73.8941 5.78730 271.0669 n = 207 between 31.43628 25.84671 174.6844 n = 27 within 25.90375 6.428261 173.6694 n = 23 Debt service ratio overall 1.18.4224 1.59104 .010366 1.078463 n = 24 Within .058913 .0297712 520089 n = 24 .029714 N = 948 Debt to income overall 113.6914 8.44542 6.0143 400.214 N = 240 within .0283913 .029717 72.20648 37.7304 H.07409 n = 22 within .028398 10.01403 -62.92272 83.71224 N = 2500 between .5.82598 2.394067 136.891 n = 28 within .928177 74.2224 83.7724 N = 2500 between .5.285989 2.438292 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
between 63.25003 39.52787 749.8533 n = 28 Bank credit to GDP overall 74.24321 37.38941 5.767303 271.0968 N = 3097 Debt service ratio overall 174.24321 37.38941 5.767303 271.0968 N = 273 Debt service ratio overall 1842224 159104 010396 1.078463 N = 2393 Debt verice ratio overall 1184224 158104 0.03796 7416968 N = 2393 Debt to income overall 11.8698 84.44542 6.08143 440.214 N = 24393 Real HH credit growth overall 13.0914 88.9520 77.8404 N = 2530 Real NFC credit growth overall 5.826398 10.01403 -62.8272 83.77.241 N = 2804 Real total credit growth overall 6.429245 9.801586 F = 89.42 N = 2604 Real total credit growth overall 6.429451 9.21177 77.27205 71.34866 T = 89.32 Real total credit to GDP gap	Total gradit to CDB		115 004				
within 41.2461 -3.85096 131.8727 T = 108.3 Bank credit to GDP overall 74.2421 37.38941 5.767303 271.0969 N = 3097 Debt service ratio overall 1.84224 1.591004 0.10396 1.734.443 T = 114.70 Debt service ratio overall 1.84224 1.591004 0.00396 1.724.648 N = 2339 Debt to income overall 111.8698 84.44542 6.08143 400.214 N = 948 Real HH credit growth overall 13.09114 88.98522 -7.86682 300.081 N = 2530 Real NFC credit growth overall 5.826398 1.001403 -62.9272 83.71224 N = 2035 Real NFC credit growth overall 6.49254 1.981422 -46.31242 88.778 N = 3262 Real bank credit growth overall 6.49254 1.99428 7.134866 N = 234 HH credit to GDP gap overall -6.202445 1.994122 -46.31242 88.7761 N = 3165 Detween	Total cledit to GDF		115.904				
Bank credit to GDP overall 74.24321 37.38941 5.767303 271.09684 n = 27 Deb between 14.3628 25.84671 173.8484 n = 27 Debt service ratio overall 1.84224 1.591004 010396 1.078463 N = 2339 Debt to income overall 1.84224 1.65706 0.79940 410.7409 n = 28 Real HH credit growth overall 1.3.09114 88.9523 -47.86692 3800.081 n = 28 Real NFC credit growth overall 1.3.09114 88.9523 -47.86692 3800.081 n = 28 Real NFC credit growth overall 6.429254 9.801358 -57.02301 84.7587 N = 2504 between 5.38639 9.001358 -57.02301 84.7587 N = 28262 Real total credit growth overall 6.429254 9.801358 -57.02301 84.7587 N = 286 Within 0verall 6.429254 9.801358 -57.02301 84.75867 N = 28042 Real total credit growth							
between 31.43628 25.46771 179.6844 n = 27 Debt service ratio overall 1.842224 1.591004 0.03966 1.073443 N = 2339 Debt to income overall 1.184224 1.591004 0.03966 1.0734493 N = 2439 Debt to income overall 111.8698 84.4522 6.08143 440.214 N = 948 Real HH credit growth overall 13.0914 88.9520 47.86922 3800.081 N = 2530 Real HFC credit growth overall 5.826398 10.01403 -62.92722 83.71224 N = 2504 between 4.31839 1.40224 84.75567 N = 3262 within 9.291177 -72.7205 71.34865 T = 90.35 Real total credit growth overall 6.429245 10.94122 -46.31242 88.7761 N = 3262 between 5.381802 2.4376328 N = 2354 10.15139 2.545739 n = 28 HH credit to GDP gap overall 6.429245 10.94122 -46.31242<			74 0 4004				
within 25.90375 6.428261 173.4483 N = 2393 Debt sorvice ratio vorrall 184224 1591004 010396 1078463 N = 2393 Debt to income overall 111.8698 84.4542 6.08143 400.214 N = 263 Debt to income overall 13.09114 88.9553 47.86822 3800.081 N = 2530 Real HH credit growth overall 13.09114 88.9532 -47.86822 3800.081 N = 2530 Real NFC credit growth overall 5.82639 10.01403 66.292272 83.71224 N = 2504 Real total credit growth overall 6.429254 9.801358 -57.02301 84.75584 N = 2362 Real total credit growth overall 6.429254 9.801358 -57.02301 84.75684 N = 3262 Mithin 0.9281177 72.7057 N = 28 9.81761 N = 3360 overall 1.406335 5.099762 2.439529 5.87378 N = 28 Real total credit to GDP gap overall	Bank credit to GDP		74.24321				
Debt service ratio overall 184224 1591004 010396 1.074854 N = 293 Debt to income between 1265514 0.0977812 52089 T = 104.96 Debt to income overall 111.8698 84.4454.2 6.08113 490.214 N = 943 Real HH credit growth overall 13.09114 88.95504 37.79404 410.7409 n = 20 within 24.88182 -18.57806 191.3429 T-bar = 47.4 overall 13.09114 88.9523 -47.86682 300.081 N = 2530 Real NFC credit growth overall 5.826398 10.01403 -62.92272 83.7124 N = 263 within 9.291177 7.7205 71.34865 T = 89.42 9.801358 -57.02301 84.75597 N = 236 within 9.292177 77.27205 71.34856 T = 89.42 9.801358 -57.02301 84.75597 N = 236 Real back credit growth overall 6.429254 9.801358 -57.02301 84.75597 N = 336							
between .1265514 .0597599 .741688 n = 28 Debt to income overall 111.8698 84.44542 .608143 400.714 N = 948 Real HH credit growth overall 130.9114 88.9523 47.86692 300.001 N = 2530 Real HH credit growth overall 26.1346 2.994067 136.891 n = 28 within 86.33916 -18.57806 137.1244 N = 2530 between 4.31839 .140224 18.1908 n = 28 within 9.291177 -72.7205 71.34866 T = 89.42 Real total credit growth overall 6.49254 9.801358 -57.02301 84.75647 N = 3262 between 5.295948 2.436279 25.45739 N = 3262 25.45739 N = 3262 within 0.921177 -72.7205 25.45739 N = 3262 25.45739 N = 3262 between 5.295968 2.439252 25.43739 N = 3360 n = 27 Within 0.922177 77.37		within					
within .0586913 -0297812 52089 T = 104.96 Debt to income overall 111.8698 84.4424 6.08143 490.214 N = 948 Real HH credit growth overall 13.09114 88.95504 37.79404 410.7409 n = 20 within 24.8812 -18.57806 191.3429 T-bar = 47.4 overall 13.09114 88.9323 -47.86629 380.0011 N = 2530 Real NFC credit growth overall 58.26398 10.01403 -62.92272 83.71224 N = 263 Real total credit growth overall 6.492954 9.801358 57.03201 84.75587 N = 3262 within 9.291177 -72.7205 71.34566 T = 99.42 N = 3262 between 5.351802 2.439529 25.45739 n = 28 140.244 87.9761 N = 3262 within 0.01159 9.830877 68.3846 65.77143 T = 124.344 HH credit to GDP gap overall 1.406335 5.099762 24.90099 <t< td=""><td>Debt service ratio</td><td>overall</td><td>.1842224</td><td>.1591004</td><td>.010396</td><td>1.078463</td><td>N = 2939</td></t<>	Debt service ratio	overall	.1842224	.1591004	.010396	1.078463	N = 2939
Debt to income overall 111.8698 84.44542 6.08143 490.214 N = 948 Real HH credit growth overall 13.09114 88.7550 47.86692 380.0081 N = 2530 Real HH credit growth overall 13.09114 88.9523 -47.86692 380.0281 N = 2330 Real NFC credit growth overall 5.82639 10.01403 -62.92272 83.71224 N = 264 within 9.291177 -72.7205 71.34856 T = 89.42 Real total credit growth overall 6.429254 9.801358 -57.03201 84.75587 N = 282 within 9.291177 -72.7205 71.34856 T = 89.42 N = 362 Real back credit growth overall 6.202945 9.801358 -57.03201 84.75587 N = 282 within 8.92623 -46.833466 65.79143 T = 116.5 N = 342 Real back credit growth overall 6.202945 10.9412 48.33067 3.95668 n = 28 HH credit to GDP gap overall		between		.1265514	.0597599	.7416968	n = 28
Debt to income overall 111.8698 84.44542 6.08143 490.214 N = 948 Real HH credit growth overall 13.09114 88.7550 47.86692 380.0081 N = 2530 Real HH credit growth overall 13.09114 88.9523 -47.86692 380.0281 N = 2330 Real NFC credit growth overall 5.82639 10.01403 -62.92272 83.71224 N = 264 within 9.291177 -72.7205 71.34856 T = 89.42 Real total credit growth overall 6.429254 9.801358 -57.03201 84.75587 N = 282 within 9.291177 -72.7205 71.34856 T = 89.42 N = 362 Real back credit growth overall 6.202945 9.801358 -57.03201 84.75587 N = 282 within 8.92623 -46.833466 65.79143 T = 116.5 N = 342 Real back credit growth overall 6.202945 10.9412 48.33067 3.95668 n = 28 HH credit to GDP gap overall							T = 104.96
between 88.75504 37.79404 41.7409 n = 20 Real HH credit growth overall 13.09114 88.99523 -47.86692 3800.081 N = 2530 Real NFC credit growth overall 5.82639 10.01403 -62.92272 83.71224 N = 2504 Real NFC credit growth overall 6.82639 10.01403 -62.92272 83.71224 N = 2504 Real total credit growth overall 6.49254 9.80138 -77.0205 71.34856 T = 89.42 Real total credit growth overall 6.202945 10.94122 -46.31242 88.79761 N = 3360 within untall 0.43254 9.801343 25.45498 77.60949 T = 124.44 HH credit to GDP gap overall 1.406335 5.09762 -24.9009 18.51716 N = 13981 HH mtg loans to GDP gap overall -7607562 3.961151 -73.25861 n = 27.745 NFC credit to GDP gap overall 2.545266 9.523089 72.14731 40.94208 n = 28.26	Debt to income		111.8698				
within 24.88182 -18.57806 19.3429 T-bar = 47.4 Real HH credit growth overall 13.09114 88.3923 47.86622 3800.081 n = 28 Real NFC credit growth overall 5.86398 10.0140 -62.9227 83.71224 m = 28 Real total credit growth overall 6.492954 9.801358 -57.02301 84.75587 N = 3262 Real total credit growth overall 6.20245 10.84122 -46.31242 88.7761 N = 3262 Real bank credit growth overall 6.20245 10.94122 -46.31242 88.7761 N = 3262 Within 0verall 5.205982 2.45739 n = 27 N = 181 HH credit to GDP gap overall 6.20245 10.84122 -46.31242 88.7761 N = 1981 HH credit to GDP gap overall 7607562 2.40909 18.51716 N = 734 between 2.352361 -7.975663 16.85424 n = 27 N = 734 HH credit to GDP gap overall 76075			111.0000				
Real HH credit growth overall 13.09114 88.99523 47.86692 380.081 N = 2530 Real NFC credit growth overall 5.826398 10.01403 -62.92272 83.71224 N = 26 Real NFC credit growth overall 6.826398 10.01403 -62.92272 83.71224 N = 2504 Real total credit growth overall 6.492954 9.801358 -57.0205 71.34856 T = 89.42 Real total credit growth overall 6.492954 9.801358 -57.0201 84.75687 N = 3360 between 5.259598 2.439529 25.45739 n = 28 9.81145 N = 3360 within overall 1.046335 5.099762 -24.90099 18.51716 N = 1981 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 1981 between 2.352361 -7.975663 1.65542 n = 77 HH mtg loans to GDP gap overall 2.760762 3.961151 -23.2663 17.85663 n = 28.2439 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
between 26.13465 2.994067 136.891 n = 28 Real NFC credit growth overall 5.826398 10.01403 -62.92272 83.71224 N = 2504 Real total credit growth overall 6.492954 9.801358 -57.02301 84.75587 N = 3262 Real total credit growth overall 6.492954 9.801358 -57.02301 84.75587 N = 3360 Real bank credit growth overall 6.202945 10.94122 -46.31242 88.79761 N = 3360 between 5.381802 2.353434 25.45739 n = 27 within 0verall 1.406335 5.099762 -24.0909 18.51716 N = 1981 HH credit to GDP gap overall 7607562 3.961151 -23.28911 16.3371 N = 734 between 2.352361 -7.975663 14.65942 n = 27 14.974 NFC credit to GDP gap overall 2.545526 9.523089 72.14731 40.94208 N = 1982 Total credit to GDP gap overall 4.57148	Pool UU orodit growth		12 00114				
within 86.33916 -128.6548 3676.281 T = 90.35 Real NFC credit growth overall 5.826398 10.01403 -62.92272 83.71224 N = 2504 Real total credit growth overall 6.492954 9.810138 -57.02301 84.75587 N = 3262 Between 5.259598 2.439529 2.545739 n = 28 n = 28 within 8.88466 65.79143 T = 116.5 N = 3360 Real bank credit growth overall 6.202945 10.94122 -46.31242 88.79761 N = 3360 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 R.51716 N = 1981 between 2.85261 -7.975663 1.655942 n = 27 N = 734 HH mtg loans to GDP gap overall 2.54552 9.523089 -72.14731 40.94208 N = 1958 NFC credit to GDP gap overall 2.54556 9.523089 -72.14731 40.94208 N = 1958 NFC credit to GDP gap overall 2.54556 9.523089<	Real HH Cleuit glowin		13.09114				
Real NFC credit growth overall 5.826398 10.01403 -62.92272 83.71224 N = 504 Real total credit growth overall 6.492954 9.801358 -57.02301 84.75587 N = 28 Real bank credit growth overall 6.492954 9.801358 -57.02301 84.75587 N = 28 Real bank credit growth overall 6.202945 10.94122 -46.31242 88.79761 N = 3360 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 184.14 HH redit to GDP gap overall 7607562 3.961151 -23.2891 16.3371 N = 734 between 2.352361 -7.975663 16.65947 T ber = 27.18 NFC credit to GDP gap overall 2.545526 9.523089 -22.14731 40.94208 N = 1958 Total credit to GDP gap overall 2.545526 9.523089 -72.14731 40.94208 N = 2475 between 1.17697 -38							
between 4.31839 1.40224 18.19008 n = 28 Real total credit growth overall 6.492954 9.801336 -57.20201 84.75587 N = 3262 Real bank credit growth overall 6.202945 10.94122 -46.31242 88.79761 N = 3360 Between 5.381802 2.363843 25.45739 n = 28 within 0.verall 6.202945 10.94122 -46.31242 88.79761 N = 3360 between 5.381802 2.363843 25.43596 n = 27 within 10.11599 -52.44998 77.60994 T = 124.44 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 1981 between 2.352361 -7.975663 1.65542 n = 27 N 1.7534 HH mtg loans to GDP gap overall 2.54526 9.520309 72.14731 40.94208 N = 1958 NFC credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2374							
within 9.291177 -7.27.205 71.34856 T = 89.42 Real total credit growth overall 6.492954 9.801358 -57.02301 84.75587 N = 3262 Bank credit growth overall 6.202945 10.94122 -46.31242 88.77761 N = 3360 Hered to GDP gap overall 1.406335 5.093762 -24.90099 18.51716 N = 1981 HH credit to GDP gap overall 1.406335 5.093762 -24.90099 18.51716 N = 1981 between 2.897082 -8.380877 16.53717 16.73463 T = 70.75 HH mtg loans to GDP gap overall 7607562 3.961151 -23.2891 16.3371 N = 734 NFC credit to GDP gap overall 2.545526 9.523089 -72.14731 40.94208 N = 1958 Total credit to GDP gap overall 3.671483 13.14944 -75.20264 86.23048 N = 2475 between 11.77693 -38.79301 70.31785 20.0258 n = 28 within 1.016-07	Real NFC credit growth	overall	5.826398	10.01403			
Real total credit growth overall 6.492954 9.801388 -57.02301 84.75587 N = 3262 Real bank credit growth overall 6.202945 10.94122 -46.31242 88.3761 N = 3360 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 124.44 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 1981 between 2.837092 -3.830877 3.55668 n = 28 mithin -7607562 3.961151 -23.2891 16.3371 N = 734 between 2.352361 -7.7975663 1.655942 n = 27 NFC credit to GDP gap overall 2.545526 9.5223089 -72.14731 M = 749.208 N = 734 between 2.545526 9.5223089 -75.20264 86.23048 N = 2475 Total credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 236 within 1.71697 -38.79301 70.49393 T = 88.39 <td< td=""><td></td><td>between</td><td></td><td></td><td>.140224</td><td>18.19008</td><td>-</td></td<>		between			.140224	18.19008	-
between 5.259588 2.439529 25.45739 n = 28 Real bank credit growth 0.verall 6.202945 10.94122 48.3142 88.79761 N = 3360 between 5.381802 2.363843 25.43596 n = 27 within 10.1599 52.44998 77.60994 T = 124.44 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 1381 between 2.897092 -8.380877 3.955668 n = 28 mithin 4.65263 -16.55177 16.73463 T = 70.75 HH mtg loans to GDP gap overall 7607562 3.961151 -23.2891 16.3371 N = 734 NFC credit to GDP gap overall 2.545526 9.523089 -72.14731 40.94208 N = 1958 between 11.77693 55.60063 17.48551 n = 28 within 7.603816 -29.73315 20.40258 n = 28 between 8.336191 -31.73815 20.40258 n = 28 within		within		9.291177	-72.7205	71.34856	T = 89.42
between 5.259588 2.439529 25.45739 n = 28 Real bank credit growth 0.verall 6.202945 10.94122 -46.31242 88.79761 N = 3360 between 5.381802 2.363843 25.43596 n = 27 within 10.1599 52.44998 77.60994 T = 124.44 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 1381 between 2.897092 -8.380877 3.955668 n = 28 n = 77 Within 4.652635 -18.55177 16.73463 T = 70.75 Overall 7607562 3.961151 -23.2891 16.3371 N = 734 Detween 2.355266 9.523089 -72.14731 40.94208 N = 1958 Detween 1.77603 56.60063 17.48551 n = 28 within 7.603816 -29.73315 20.40258 n = 28 Detween 8.336191 -31.73815 20.40258 n = 28 within 11.71697 <	Real total credit growth	overall	6.492954	9.801358	-57.02301	84.75587	N = 3262
Real bank credit growth within 8.89247 -68.3466 65.79143 T = 116.5 Real bank credit growth overall 6.202945 10.94122 -46.31242 88.79761 N = 3360 HH credit to GDP gap overall 1.406335 5.09762 -2.33840 25.43596 n = 27 HH credit to GDP gap overall 1.406335 5.09762 -24.90099 18.51716 N = 1981 between 2.897092 -23.30847 3.955668 n = 28 Within 4.652635 -18.55177 16.73463 T = 70.75 Within -7607562 3.961151 -23.2991 16.53912 n = 27 Within 3.359666 -21.65987 14.6974 T-bar = 27.18 NFC credit to GDP gap overall 2.545526 9.523089 72.41731 17.46551 n = 28 between 11.77693 -55.60063 17.48551 n = 28.399 70.49393 T = 69.92 Total credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 <	-	between		5.259598	2.439529	25.45739	n = 28
Real bank credit growth between overall between 6.202945 5.381802 10.94122 2.363843 25.4326 2.53356 N = 3360 n = 27 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 1981 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 1981 HH mtg loans to GDP gap overall 7607562 3.961151 -23.2911 16.3331 N = 734 between 2.352361 -7.975663 1.655942 n = 27 n = 70.75 NFC credit to GDP gap overall 2.545526 9.523089 -72.14731 40.94208 N = 1958 Total credit to GDP gap overall 4.671483 13.14984 -75.2024 86.23048 N = 2475 between 3.3441 9.174623 -43.004 44.89464 N = 2557 between 3.14964 -2.316767 10.17021 n = 27. within 10.16-07 17.47275 -64.0351 75.31788 N = 2306 between 2.1965511							
between 5.381802 2.381802 2.382843 25.43596 n = 27 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 1981 HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 1981 HH mtg loans to GDP gap overall 7607562 3.961151 -23.2891 16.3371 N = 734 between 2.352361 -7.975663 1.655942 n = 27 within 3.359566 -21.65987 14.6974 T-bar = 27.18 NFC credit to GDP gap overall 2.545526 9.523089 -72.14731 40.94208 N = 1958 between 11.77693 -55.60063 17.48551 n = 28 n = 28 Total credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 Bank credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 N = 2557 RRE price to income gap overall 1.01e-07 17.47275	Real bank credit growth		6 202945				
within 10.11599 -52.49988 77.60994 T = 124.44 HH credit to GDP gap overall 1.406335 5.099762 -24.9009 18.51716 N = 1981 between 2.897092 -8.380877 3.955666 n = 28 within -7607562 3.961151 -23.2891 16.3371 N = 734 between 2.352366 -7.975663 1.655947 14.6974 T-bar = 27.18 NFC credit to GDP gap overall 2.545526 9.523089 72.14731 40.94208 N = 1958 NFC credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 between 11.77697 -38.79301 70.49939 T = 88.39 Bank credit to GDP gap overall 3.3441 9.174623 -33.06653 T = 94.70 REE price to income gap overall 1.01e-07 17.47275 -64.03501 75.31788 N = 2306 between 2.19666 -3.70e-06 3.79e-06 n = 23 23.74 RE price to re	rtour buillt orount growth		0.202010				
HH credit to GDP gap overall 1.406335 5.099762 -24.90099 18.51716 N = 1981 HH mtg loans to GDP gap within 4.652635 -18.55177 16.73463 T = 70.75 HH mtg loans to GDP gap overall 7607562 3.961151 -23.2891 16.3371 N = 734 between 2.352361 -7.27563 1.65542 n = 27 within 3.359566 -21.65987 14.6974 T-bar = 27.18 NFC credit to GDP gap overall 2.545526 9.523089 -72.14731 40.94208 N = 1958 between 11.77693 -55.60063 17.48551 n = 28 n = 28 vithin 11.71697 -38.79301 70.49258 n = 28 n = 28 between 8.836191 -31.78815 20.40258 n = 27 between 3.3441 9.174623 -43.004 44.89464 N = 2557 between 2.214-06 -3.70e-06 n = 28 n = 27 within 17.47275 -64.0357 75.31788							
between within 2.897092 -8.380877 3.955668 n = 28 HH mtg loans to GDP gap overall 7607562 3.96111 -23.2891 16.3371 N = 734 NFC credit to GDP gap overall 2.545526 9.52308 -72.14731 40.94208 N = 1958 between 11.77693 -55.60063 17.48551 n = 28 within 7.603816 -29.79315 39.66094 T = 69.92 Total credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 between 8.836191 -31.7315 20.40258 n = 28 N = 28 within 11.71697 -38.79301 70.49399 T = 88.39 overall 3.3441 9.174623 -44.89464 N = 2557 between 2.216-66 -3.70e-06 3.79e-06 n = 23 within 1.01e-07 17.47275 -64.03501 75.31788 N = 2306 between 2.214-066 -3.70e-06 3.79e-06 n = 23 N <td></td> <td></td> <td>4 400005</td> <td></td> <td></td> <td></td> <td></td>			4 400005				
HH mtg loans to GDP gap within overall 7607562 3.961151 32.2891 16.3371 N = 734 NFC credit to GDP gap overall 2.552561 7.975663 1.6.3574 N = 27 NFC credit to GDP gap overall 2.545526 9.523089 714753 40.94208 N = 1958 between 11.77693 -55.60063 17.48551 n = 28 within 7.603816 -29.79315 39.66094 T = 69.92 Total credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 between 8.36191 -31.73815 20.40258 n = 28 39.6094 T = 69.92 Total credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 N = 2557 between 3.119564 -44.8301 38.06853 T = 94.70 RE price to income gap overall 1.01e-07 17.47275 -64.03501 75.31788 N = 2306 between 2.214-06 -3.70e-06 3.720e-06 n = 23 <td>HH credit to GDP gap</td> <td></td> <td>1.406335</td> <td></td> <td></td> <td></td> <td></td>	HH credit to GDP gap		1.406335				
HH mtg loans to GDP gap overall 7607562 3.961151 -23.2891 16.3371 N = 734 between 2.352361 -7.975663 14.6674 T-bar = 27.18 NFC credit to GDP gap overall 2.545526 9.523089 -72.14731 40.94208 N = 1958 Detween 11.77693 -55.60063 17.48551 n = 28 within 7.603816 -29.79315 39.66094 T = 69.92 Overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 between 8.836191 -31.73815 20.40258 n = 28 within 11.71697 -38.79301 70.49939 T = 88.39 Bank credit to GDP gap overall 3.0441 9.174623 -43.004 44.89464 N = 2557 between 3.119564 -2.316767 10.17021 n = 27 within n = 27 within 10.10=-07 17.47275 -64.035 75.31788 N = 2306 between 2.216-06 -3.70e-06 3.79e-06 n = 21 within 10.3247 -44.8571 N = 23274 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
between within 2.352361 -7.975663 1.655942 n = 27 NFC credit to GDP gap overall 2.545526 9.523089 -72.14731 40.94208 N = 1958 NFC credit to GDP gap overall 2.545526 9.523089 -72.14731 40.94208 N = 1958 Total credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 between 8.836191 -31.73815 20.40258 n = 28 within 11.71697 -38.79301 70.49939 T = 88.39 Bank credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 N = 2557 between 3.149564 -2.316767 10.17021 n = 27 within 8.645531 -49.8301 38.06853 T = 94.70 Proce to income gap overall 1.01e-07 17.47275 -64.035 75.31788 N = 2306 between 2.219-06 -3.700-06 3.799-06 n = 23 within 10.3227 T = 106.09 RRE pric							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HH mtg loans to GDP gap	overall	7607562				
NFC credit to GDP gap overall between 2.545526 9.523089 -72.14731 40.94208 N = 1958 Total credit to GDP gap overall 4.671483 11.77693 -55.60063 17.48551 n = 28 Total credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 Bank credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 N = 2557 between 3.119564 -2.316767 10.17021 n = 27 within 1.01e-07 17.47275 -64.035 75.31788 N = 2306 RRE price to income gap overall 1.01e-07 17.47275 -64.03501 75.31788 N = 2228 between 2.21e-06 -3.70e-06 3.79e-06 n = 23 -100.26 RRE price to rent gap overall -1.03e-08 21.43587 -67.55511 85.21371 N = 2228 between 2.59e-06 -3.81e-06 7.27e-06 n = 21 -2374 RRE price growth overall 2.429645<		between		2.352361	-7.975663	1.655942	n = 27
NFC credit to GDP gap overall between 2.545526 9.523089 -72.14731 40.94208 N = 1958 Total credit to GDP gap overall 4.671483 11.77693 -55.60063 17.48551 n = 28 Total credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 Bank credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 N = 2557 between 3.119564 -2.316767 10.17021 n = 27 within 1.01e-07 17.47275 -64.035 75.31788 N = 2306 RRE price to income gap overall 1.01e-07 17.47275 -64.03501 75.31788 N = 2228 between 2.21e-06 -3.70e-06 3.79e-06 n = 23 -100.26 RRE price to rent gap overall -1.03e-08 21.43587 -67.55511 85.21371 N = 2228 between 2.59e-06 -3.81e-06 7.27e-06 n = 21 -2374 RRE price growth overall 2.429645<		within		3.359656	-21.65987	14.6974	T-bar = 27.18
between 11.77693 -55.60063 17.48551 n = 28 Total credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 Bank credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 Bank credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 N = 2577 between 3.119564 -2.316767 10.17021 n = 27 within 8.645531 -49.8301 38.06853 T = 94.70 RRE price to income gap overall 1.01e-07 17.47275 -64.0350 75.31788 N = 2306 between 2.21e-06 -3.70e-06 3.79e-06 n = 28 10.26 RRE price to rent gap overall -1.03e-08 21.43587 -67.55511 85.21371 N = 2228 between 2.59e-06 -3.81e-06 7.27e-06 n = 21 10.4029 within 10.3027 -44.8645 120.0831 N = 2374 between	NFC credit to GDP gap	overall	2.545526		-72.14731	40.94208	
within 7.603816 -29.79315 39.66094 T = 69.92 Total credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 between 8.836191 -31.73815 20.40258 n = 28 within 11.71697 -38.79301 70.49939 T = 88.39 Bank credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 N = 2557 between 3.119564 -2.316767 10.17021 n = 27 within 8.645531 -49.8301 38.06853 T = 94.70 RRE price to income gap overall 1.01e-07 17.47275 -64.035 75.31788 N = 2306 between 2.21e-06 -3.70e-06 3.79e-06 n = 23 within 17.47275 -64.03501 75.31788 T = 100.26 RRE price to rent gap overall -1.03e-08 21.43587 -67.55511 85.21371 N = 2228 between 2.429645 10.3027 -44.8645 120.0831 N = 2374 <td>5.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	5.1						
Total credit to GDP gap overall 4.671483 13.14984 -75.20264 86.23048 N = 2475 between 8.836191 -31.73815 20.40258 n = 28 within 11.71697 -38.79301 70.49939 T = 88.39 Bank credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 N = 2557 between 3.119564 -2.316767 10.17021 n = 27 within 8.645531 -49.8301 38.06853 T = 94.70 RRE price to income gap overall 1.01e-07 17.47275 -64.03501 75.31788 N = 2306 between 2.21e-06 -3.70e-06 3.79e-06 n = 23 within 17.47275 -64.03501 75.31788 T = 100.26 overall -1.03e-08 21.43587 -67.55511 85.21371 N = 2228 between 2.429645 10.3027 -44.8645 120.0831 N = 2374 coreal 0verall 2.429645 10.3027 -42.8645 10.86497							-
between 8.836191 -31.73815 20.40258 n = 28 within 11.71697 -38.79301 70.49939 T = 88.39 Bank credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 N = 2557 between 3.119564 -2.316767 10.17021 n = 27 within 8.645531 -49.8301 38.06853 T = 94.70 RRE price to income gap overall 1.01e-07 17.47275 -64.035 75.31788 N = 2306 between 2.21e-06 -3.70e-06 3.79e-06 n = 23 within 17.47275 -64.03501 75.31788 N = 2306 RRE price to rent gap overall -1.03e-08 21.43587 -67.55511 85.21371 N = 2228 between 2.59e-06 -3.81e-06 7.27e-06 n = 21 within 10.004 56.29789 108.6497 T = 98.91 CRE price growth overall 1.463983 12.37494 -42.82963 63.43689 N = 1188 between	Total credit to CDP gap		1 671 / 92				
Bank credit to GDP gap within overall 3.3441 9.174623 -43.004 44.89464 N = 2557 Bank credit to GDP gap between within 3.119564 -2.316767 10.17021 n = 27 RRE price to income gap overall 1.01e-07 17.47275 -64.035 75.31788 N = 2306 RRE price to rent gap overall 1.01e-07 17.47275 -64.03501 75.31788 T = 100.26 RRE price to rent gap overall -1.03e-08 21.43587 -67.55511 85.21371 N = 2228 between 2.59e-06 -3.81e-06 7.27e-06 n = 21 within 21.43587 -67.55511 85.21372 T = 106.09 RRE price growth overall 2.429645 10.3027 -44.8645 120.0831 N = 2374 between 3.704313 -3.570922 13.86303 n = 24 Within 10.004 -56.29789 108.6497 T = 98.91 CRE price growth overall 1.463983 12.37494 -42.82963 63.43689 N = 1188	Total credit to ODF gap		4.07 1405				
Bank credit to GDP gap overall 3.3441 9.174623 -43.004 44.89464 N = 2557 between 3.119564 -2.316767 10.17021 n = 27 within 8.645531 -49.8301 38.06853 T = 94.70 RRE price to income gap overall 1.01e-07 17.47275 -64.035 75.31788 N = 2306 between 2.21e-06 -3.70e-06 3.79e-06 n = 23 within 17.47275 -64.03501 75.31788 T = 100.26 RRE price to rent gap overall -1.03e-08 21.43587 -67.55511 85.21371 N = 2228 between 2.59e-06 -3.81e-06 7.27e-06 n = 21 within 21.43587 -67.55511 85.21372 T = 106.09 RRE price growth overall 2.429645 10.3027 -44.8645 120.0831 N = 2374 between 3.704313 -3.570922 13.86303 n = 24 within 10.004 -56.29789 108.6497 T = 98.91 CRE price ga							
between 3.119564 -2.316767 10.17021 n = 27 RRE price to income gap overall 1.01e-07 17.47275 -64.035 75.31788 N = 2306 between 2.21e-06 -3.70e-06 3.79e-06 n = 23 within 17.47275 -64.0350 75.31788 T = 100.26 RRE price to rent gap overall -1.03e-08 21.43587 -67.55511 85.21372 T = 106.09 RRE price growth overall 2.429645 10.3027 -44.8645 120.0831 N = 2374 between 3.704313 -3.570922 13.86303 n = 24 within 11.463983 12.37494 -42.82963 63.43689 N = 1188 between 4.487418 -11.40656 7.276-04 n = 22 within 11.463983 12.37494 -42.82963 63.43689 N = 1188 between 4.487418 -11.40656 7.276-04 n = 22 N = 1937 RE price gap overall 1.463983 12.37494 -42.82963			0.0444				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bank credit to GDP gap		3.3441				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
between within $2.21e-06$ 17.47275 $3.79e-06$ 64.03501 $n = 23$ 75.31788 RRE price to rent gapoverall overall $-1.03e-08$ 21.43587 21.43587 67.55511 67.55511 85.21371 $N = 2228$ $N = 2228$ RRE price growthoverall overall 2.429645 2.429645 10.3027 10.3027 -44.8645 4.8645 120.0831 $N = 2374$ RRE price growthoverall overall 2.429645 2.429645 10.3027 10.004 -44.8645 -56.29789 108.6497 10.86497 $T = 98.91$ CRE price growthoverall overall 1.463983 12.37494 -42.82963 -42.82963 63.43689 $N = 1188$ RRE price gapoverall overall 1.463983 12.37494 -42.82963 -42.82963 63.43689 $N = 1188$ RRE price gapoverall overall -0827958 13.35375 -85.14675 -85.14675 47.74496 $N = 1937$ RRE price gapoverall overall -0827958 13.35375 -85.14675 $-85.0252271.36635-1.3559CRE price gapoveralloverall-3.94207619.84856-65.02522-65.0252251.83569-51.83569N = 843-52.25124Inflationoverallwithin8.963612-52.25124-6.004602-6.004602789.692-789.692N = 3705$		within		8.645531	-49.8301	38.06853	T = 94.70
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RRE price to income gap	overall	1.01e-07	17.47275		75.31788	N = 2306
RRE price to rent gap overall between -1.03e-08 21.43587 -67.55511 85.21371 N = 2228 RRE price growth 0verall 2.59e-06 -3.81e-06 7.27e-06 n = 21 within 21.43587 -67.55511 85.21372 T = 106.09 RRE price growth overall 2.429645 10.3027 -44.8645 120.0831 N = 2374 between 3.704313 -3.570922 13.86303 n = 24 within 10.004 -56.29789 108.6497 T = 98.91 CRE price growth overall 1.463983 12.37494 -42.82963 63.43689 N = 1188 between 4.487418 -11.40656 7.276694 n = 22 within within 11.8758 -43.99307 62.27345 T = 54 N = 1937 RRE price gap overall 0827958 13.35375 -85.14675 47.74496 N = 1937 between 8.493592 -23.70418 3.809456 n = 17 within 12.26572 61.52537		between		2.21e-06	-3.70e-06	3.79e-06	n = 23
RRE price to rent gap overall between -1.03e-08 21.43587 -67.55511 85.21371 N = 2228 RRE price growth 0verall 2.59e-06 -3.81e-06 7.27e-06 n = 21 within 21.43587 -67.55511 85.21372 T = 106.09 RRE price growth overall 2.429645 10.3027 -44.8645 120.0831 N = 2374 between 3.704313 -3.570922 13.86303 n = 24 within 10.004 -56.29789 108.6497 T = 98.91 CRE price growth overall 1.463983 12.37494 -42.82963 63.43689 N = 1188 between 4.487418 -11.40656 7.276694 n = 22 within within 11.8758 -43.99307 62.27345 T = 54 N = 1937 RRE price gap overall 0827958 13.35375 -85.14675 47.74496 N = 1937 between 8.493592 -23.70418 3.809456 n = 17 within 12.26572 61.52537		within		17.47275	-64.03501	75.31788	T = 100.26
between 2.59e-06 -3.81e-06 7.27e-06 n = 21 within 21.43587 -67.55511 85.21372 T = 106.09 RRE price growth overall 2.429645 10.3027 -44.8645 120.0831 N = 2374 between 3.704313 -3.570922 13.86303 n = 24 within 10.004 -56.29789 108.6497 T = 98.91 CRE price growth overall 1.463983 12.37494 -42.82963 63.43689 N = 1188 between 4.487418 -11.40656 7.276694 n = 22 within 11.8758 -43.99307 62.27345 T = 54 RRE price gap overall 0827958 13.35375 -85.14675 47.74496 N = 1937 between 8.493592 -23.70418 3.809456 n = 17 within 12.26572 61.52537 71.36635 T = 113.94 CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within	RRE price to rent gap	overall	-1.03e-08				
within 21.43587 -67.55511 85.21372 T = 106.09 RRE price growth overall 2.429645 10.3027 -44.8645 120.0831 N = 2374 between 3.704313 -3.570922 13.86303 n = 24 within 10.004 -56.29789 108.6497 T = 98.91 CRE price growth overall 1.463983 12.37494 -42.82963 63.43689 N = 1188 between 4.487418 -11.40656 7.276694 n = 22 within 11.8758 -43.99307 62.27345 T = 54 RRE price gap overall 0827958 13.35375 -85.14675 47.74496 N = 1937 between 8.493592 -23.70418 3.809456 n = 17 within 12.26572 61.52537 71.36635 T = 113.94 CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 </td <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · · · · · · · · · · · · · · · · · ·						
RRE price growth overall 2.429645 10.3027 -44.8645 120.0831 N = 2374 between 3.704313 -3.570922 13.86303 n = 24 within 10.004 -56.29789 108.6497 T = 98.91 CRE price growth overall 1.463983 12.37494 -42.82963 63.43689 N = 1188 between 4.487418 -11.40656 7.276694 n = 22 within 11.8758 -43.99307 62.27345 T = 54 RRE price gap overall -0827958 13.35375 -85.14675 47.74496 N = 1937 between 8.493592 -23.70418 3.809456 n = 17 within 12.26572 -61.52537 71.36635 T = 113.94 CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall<							
between within 3.704313 10.004 -3.570922 -56.29789 13.86303 108.6497 n = 24 T = 98.91 CRE price growth overall 1.463983 12.37494 -42.82963 63.43689 N = 1188 between 4.487418 -11.40656 7.276694 n = 22 within 11.8758 -43.99307 62.27345 T = 54 RRE price gap overall 0827958 13.35375 -85.14675 47.74496 N = 1937 between 8.493592 -23.70418 3.809456 n = 17 within 12.26572 -61.52537 71.36635 T = 113.94 CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705	PRE price growth		2 120615				
within 10.004 -56.29789 108.6497 T = 98.91 CRE price growth overall 1.463983 12.37494 -42.82963 63.43689 N = 1188 between 4.487418 -11.40656 7.276694 n = 22 within 11.8758 -43.99307 62.27345 T = 54 RRE price gap overall 0827958 13.35375 -85.14675 47.74496 N = 1937 between 8.493592 -23.70418 3.809456 n = 17 within 12.26572 -61.52537 71.36635 T = 113.94 CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705	TRE price growin		2.420040				
CRE price growth overall between 1.463983 12.37494 -42.82963 63.43689 N = 1188 RRE price gap within 11.8758 -11.40656 7.276694 n = 22 within 11.8758 -43.99307 62.27345 T = 54 RRE price gap overall 0827958 13.35375 -85.14675 47.74496 N = 1937 between 8.493592 -23.70418 3.809456 n = 17 within 12.26572 -61.52537 71.36635 T = 113.94 CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 400000				
within 11.8758 -43.99307 62.27345 T = 54 RRE price gap overall 0827958 13.35375 -85.14675 47.74496 N = 1937 between 8.493592 -23.70418 3.809456 n = 17 within 12.26572 -61.52537 71.36635 T = 113.94 CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705	CRE price growth		1.463983				
RRE price gap overall 0827958 13.35375 -85.14675 47.74496 N = 1937 between 8.493592 -23.70418 3.809456 n = 17 within 12.26572 -61.52537 71.36635 T = 113.94 CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705							
between within 8.493592 12.26572 -23.70418 -61.52537 3.809456 71.36635 n = 17 T = 113.94 CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705							
within 12.26572 -61.52537 71.36635 T = 113.94 CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705	RRE price gap	overall	0827958	13.35375	-85.14675	47.74496	
CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705		between		8.493592	-23.70418	3.809456	n = 17
CRE price gap overall -3.942076 19.84856 -65.02522 51.83569 N = 843 between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705		within		12.26572	-61.52537	71.36635	T = 113.94
between 11.45999 -39.91648 7.487113 n = 20 within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705	CRE price gap	overall	-3.942076	19.84856	-65.02522	51.83569	N = 843
within 17.38448 -47.43143 42.18769 T = 42.15 Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705							
Inflation overall 8.963612 52.25124 -6.004602 1789.692 N = 3705							
	Inflation		8 963612				
	initiation		0.00012				
		Servicen		10.04031	2.002000	00.00100	20

Occasional Paper No. 8 August 2015 Identifying early warning indicators for

real estate-related banking crises

	within		50.61733	-83.55173	1709.064	T = 132.32
Real GDP growth	overall	2.950696	3.702674	-18.5615	30.20264	N = 2924
	between		1.170491	1.857776	6.608546	n = 28
	within		3.505502	-20.24859	26.54479	T = 104.42
Unemployment rate	overall	7.666439	4.155852	.5	26.14567	N = 3200
	between		3.140236	2.963482	14.43797	n = 28
	within		3.022065	-2.732713	22.93887	T = 114.28
Real eff ER growth	overall	.950401	8.146668	-92.49329	92.04205	N = 3404
	between		1.948892	5171253	6.796118	n = 28
	within		7.973976	-91.674	89.6149	T = 121.57
Real M3 stock growth	overall	4.188724	6.569492	-52.38623	31.66305	N = 2478
C	between		2.657936	9639205	10.58585	n = 28
	within		6.351528	-50.14489	33.5771	T = 88.5
Current account to GDP	overall	-1.3531	6.473704	-53.45812	37.17002	N = 2717
	between		4.403796	-9.386968	9.468045	n = 28
	within		5.139065	-48.23651	42.39163	T = 97.03
Government debt to GDP	overall	53.70984	31.21583	1.913674	170.3	N = 2122
	between		26.43425	5.451923	117.0865	n = 28
	within		16.29074	-1.091949	116.9308	T = 75.7857
EC consumer survey	overall	-82.25151	10.76353	-98.2	11	N = 1916
	between	02.20101	6.180093	-91.91277	-61.05303	n = 27
	within		9.112382	-115.2985	-10.19848	T-bar = 70.96
LT gov't bond yield	overall	3.2169	2.890457	-12.88741	26.23744	N = 2498
	between	5.2105	1.159978	.0081793	4.882	n = 28
	within		2.726184	-12.04916	24.57234	T = 89.21
Nom. 3m money mkt rate	overall	7.666538	7.83564	-12.04910	184.37	N = 3095
Nom. Shi money niki rate	between	7.000550	4.122366	3.603991	24.08802	n = 27
	within		6.975277	-14.62148	167.9485	T = 114.63
Roal 2m manay milt rate	overall	1.53219	6.760146	-14.62146	56.92493	N = 3036
Real 3m money mkt rate		1.55219	1.458363	-2.044615	4.081628	
	between					n = 27
Average mortgage rate	within	F 100000	6.601075	-123.0208	56.68946	T = 112.444
Average mortgage rate	overall	-5.169093	2.430441	-17.77	-1.76	N = 929
	between		2.273223	-12.89366	-3.25439	n = 26
Detec mentacing fixed	within	E 004704	1.036019	-10.04544	-2.005434	T-bar = 35.73
Rates mortgage fixed	overall	-5.801764	2.794205	-20.32	-2.58	N = 768
	between		2.45493	-14.20073	-3.894146	n = 23
	within	0 700000	1.373392	-14.04899	1.148968	T-bar = 33.39
Spreads on HH mtg rate	overall	2.730829	2.348699	.16	15.2279	N = 767
	between		2.324939	.9553659	11.93027	n = 21
	within	4 775057	.9101971	-2.237556	6.028464	T-bar = 36.52
Spread on NFC loan rate	overall	1.775857	1.201276 .9924801	.05	6.67 4.371364	N = 696
	between			.7804878		n = 19 Ther 26.62
Equity on successful blace	within	40.05000	.7772288	-1.705507	4.885857	T-bar = 36.63
Equity pr. growth Nom.	overall	13.05688	49.23628	-82.08386	1430.952	N = 2900
	between		10.46288	.2255795	55.28458	n = 27
E suite an annuth Dard	within	7 4 5 5 4 0 0	48.41393	-109.1017	1388.725	T = 107.407
Equity pr. growth Real	overall	7.155162	41.52715	-82.57285	1054.658	N = 2900
	between		7.218716	-2.000311	34.54838	n = 27
	within	4.070000	41.0682	-102.4226	1027.265	T = 107.407
GFCF dwellings to GDP	overall	4.979866	1.960291	1.05459	12.7418	N = 2022
	between		1.60276	2.063794	7.838155	n = 23
	within		1.251652	4677589	10.89902	T-bar = 87.91
GFCF other build./GDP	overall	6.31699	1.747162	2.21	15.0279	N = 1375
	between		1.630836	4.558769	10.26863	n = 15
	within		.937962	2.253187	11.07626	T-bar = 91.66
Value added constr/GDP	overall	6.362567	1.522439	1.52	12.5955	N = 2009
	between		1.03899	4.15549	8.511115	n = 25
	within		1.120861	1.327785	10.84133	T-bar = 80.36
Bank leverage ratio	overall	14.94026	5.916869	4.87043	49.66368	N = 1217
	between		5.132346	7.481619	25.35936	n = 26
	within		2.913935	6.253131	39.24457	T = 46.80
Bank dep. liab./assets	overall	.1221897	.1054614	.0002034	.494619	N = 1273
	between		.1066581	.004114	.4499175	n = 27
	within		.0234375	.0575339	.2038921	T = 47.14
	overall	406.6165	654.4768	19.85213	3619.755	N = 1255
Banks tot. assets/GDP	Overall		F00 0004	26 9252	3140.006	n = 27
Banks tot. assets/GDP	between		586.9694	26.8352	3140.000	11 - 21
Banks tot. assets/GDP			586.9694 103.8409	-567.391	886.3659	T = 46.48
Banks tot. assets/GDP Bank K res/tot. assets	between	7.687431				
	between within	7.687431	103.8409	-567.391	886.3659	T = 46.48

Table A4: Correlation between variables

		C	Cyclical	credit v	ariable	S			Structural credit variables					
	Real bank credit growth	Real NFC credit growth	Real HH credit growth	Real total credit growth	Bank credit to GDP gap	HH credit to GDP gap	Total credit to GDP gap	NFC credit to GDP gap		Bank credit to GDP	HH credit to GDP	NFC credit to GDP	total credit to GDP	Deb serv ce ratio
Real bank credit growth	1								Bank credit to GDP	1				
Real NFC credit growth	0.7372	1							HH credit to GDP	0.9063	1			
Real HH credit growth	0.8281	0.5873	1						NFC credit to GDP	0.4789	0.4335	1		
Real total credit growth	0.8329	0.8348	0.7641	1					Total credit to GDP	0.7533	0.7661	0.905	1	
Bank credit to GDP gap	0.4052	0.3842	0.2045	0.3238	1				Debt servic e ratio	0.4521	0.4177	0.3763	0.4502	
HH credit to GDP gap	0.4032	0.3265	0.3237	0.3364	0.7316	1								
Total credit to GDP gap	0.2423	0.4595	0.1102	0.2851	0.8354	0.6552	1							
NFC credit to GDP gap	0.1612	0.4405	0.0364	0.238	0.6807	0.4876	0.902	1						
		Cyclica	al real e	estate p	rice var	iables			S	tructural	real esta	ate price v	variable	s
	RRE PTI gap	RRE price growth	RRE price gap	RRE PTR gap	RRE PTR growth	RRE PTI growth				RRE price to income gap	RRE price to rent gap			
RRE PTI gap	1								RRE price to incom e gap	1				
RRE price growth	0.6829	1							RRE price to rent gap	0.8592	1			
RRE price gap	0.9281	0.7161	1											
RRE PTR gap	0.807	0.5953	0.796	1										
RRE PTR growth	0.5205	0.8249	0.5017	0.6234	1									
RRE PTI growth	0.6999	0.939	0.6684	0.6111	0.8188	1								

Occasional Paper No. 8 August 2015 Identifying early warning indicators for real estate-related banking crises

Table A5: Univariate non-parametric analysis: all indicators

Indicator	Threshold	Type I	Type II	Rel. Usefulness	AUROC LB	AUROC	AUROC UB
Nominal RRE price to income gap	13.975	0.34821	0.12028	0.53151	0.78963	0.83634	0.88306
Nominal RRE price to rent gap	6.9502	0.25962	0.2399	0.50048	0.78588	0.83453	0.88317
Nominal RRE price gap	5.236	0.27679	0.22746	0.49576	0.76286	0.81196	0.86105
Real RRE price gap	13.862	0.41964	0.078267	0.50209	0.74278	0.79341	0.84405
Real NFC credit growth	11.016	0.38333	0.1798	0.43687	0.73546	0.7849	0.83435
Nominal total credit to GDP gap	6.4639	0.20354	0.30999	0.48647	0.73324	0.78419	0.83513
Real total credit growth	6.7567	0.14167	0.41583	0.4425	0.72907	0.77871	0.82835
Nominal HH credit to GDP gap	2.7664	0.24561	0.32518	0.42921	0.72713	0.77851	0.82989
Nominal bank credit to GDP gap	2.9077	0.16667	0.41547	0.41787	0.72283	0.773	0.82317
Real bank credit growth	8.7806	0.28333	0.29789	0.41878	0.71436	0.76482	0.81529
Total credit to GDP gap	3.6019	0.13761	0.45635	0.40604	0.68975	0.74428	0.79881
NFC credit growth	13.145	0.3	0.33567	0.36433	0.67712	0.72965	0.78218
Real RRE price growth	8.0531	0.4375	0.20605	0.35645	0.66601	0.72067	0.77534
HH credit to GDP	55.578	0.40833	0.21635	0.37531	0.64919	0.70273	0.75626
Bank credit to GDP	90.281	0.475	0.19368	0.33132	0.64563	0.69902	0.75242
Real HH credit growth	7.5383	0.175	0.46517	0.35983	0.64455	0.69824	0.75193
Real bank credit growth	17.045	0.46667	0.26102	0.27231	0.62365	0.67754	0.73143
Total credit to GDP	170.69	0.6	0.090106	0.30989	0.6218	0.67585	0.72989
Real total credit to GDP	16.806	0.46667	0.25953	0.27381	0.6211	0.67508	0.72906
Nom. RRE price growth	10.277	0.39286	0.34611	0.26103	0.60667	0.66299	0.71931
Nom. HH credit growth	9.875	0.125	0.59125	0.28375	0.60225	0.65693	0.7116
NFC credit to GDP gap	2.4774	0.26316	0.39968	0.33716	0.5949	0.65148	0.70806
Debt service ratio	0.20579	0.46429	0.17058	0.36513	0.58761	0.64402	0.70043
Real GDP growth	2.6678	0.16071	0.58433	0.25495	0.5791	0.63565	0.6922
Current account to GDP (neg)	1.8001	0.33654	0.37443	0.28903	0.56387	0.62267	0.68147
Nom. LT gov't bond yield	-4.3893	0.51667	0.192	0.29133	0.55391	0.60897	0.66403
Inflation (neg)	-7.3358	0.041667	0.67939	0.27894	0.53712	0.59161	0.6461
NFC credit to GDP	69.029	0.34167	0.43621	0.22213	0.53124	0.58626	0.64129
Real LT gov't bond yield (neg)	-2.6515	0.41667	0.36678	0.21655	0.52539	0.58036	0.63533
Nom. 3m money mkt rate (neg)	-4.9985	0.42373	0.39366	0.18261	0.51885	0.57386	0.62887
Unemployment rate (neg)	-8.75	0.041667	0.70755	0.25078	0.5152	0.56967	0.62415
Equity pr. growth Real	0.87809	0.24167	0.55693	0.2014	0.51444	0.56902	0.6236
Equity pr. growth Nom.	5.3408	0.225	0.56979	0.20521	0.50097	0.55536	0.60974
Real eff ER growth	-0.64358	0.2437	0.63772	0.11858	0.4848	0.53891	0.59303
Nom. GDP growth	4.8935	0.091667	0.73402	0.17431	0.48024	0.53409	0.58794
Real. 3m money mkt rate	-1.1762	0.050847	0.85494	0.094214	0.4691	0.5232	0.57731
Real. 3m money mkt rate (neg)	-1.9109	0.48305	0.48898	0.027972	0.42333	0.47591	0.5285
Real eff ER growth (neg)	-7.6163	0.02521	0.91238	0.062413	0.40872	0.4603	0.51188
Unemployment rate	3.6236	0.075	0.81769	0.10731	0.37949	0.42949	0.4795
Nom. 3m money mkt rate	2.1716	0.033898	0.92491	0.041189	0.37503	0.42527	0.47551
Real LT gov't bond yield	5.5257	0.73333	0.19671	0.069955	0.36856	0.4185	0.46845

Occasional Paper No. 8 August 2015 Identifying early warning indicators for real estate-related banking crises

Inflation	1.575	0.083333	0.85461	0.062052	0.35912	0.40769	0.45627
Nom.I LT gov't bond yield	8.6214	0.66667	0.2759	0.057432	0.34108	0.38934	0.4376
Current account to GDP	5.722	0.83654	0.085743	0.077718	0.32584	0.37632	0.42679

August 2015 Identifying early warning indicators for real estate-related banking crises

Table A6 – Univariate panel logit models (t-values in parentheses)

	Model1	Model2	Model3	Model4	Model5	Model6	Model7	Model8	Model9	Model10
RRE price to income gap	0.086***									
	(4.097)									
RRE price to rent gap		0.049***								
		(4.312)								
Nominal RRE price gap			0.137***							
			(5.157)							
Real RRE price gap				0.123***						
				(3.754)						
Real NFC credit growth					0.072***					
					(4.392)					
Total credit to GDP gap						0.089***				
						(4.800)				
Household credit to GDP							0.220***			
gap										
							(4.799)			
Real total credit growth								0.074***		
								(5.870)		
Bank credit to GDP gap									0.111***	
									(5.044)	0.050***
Real bank credit growth										0.056***
Constant	-3.567***	-2.737***	-3.300***	-3.307***	-3.005***	-3.058***	-2.867***	-3.332***	-3.001***	(4.891) -3.346***
Constant	(-5.734)	(-5.365)	-3.300 (-6.618)	(-4.987)	(-9.540)	(-8.096)	(-7.389)	(-9.933)	(-6.751)	-3.340 (-10.944)
Truce Leaner				. ,		. ,				
Type I error	0.35	0.26	0.28	0.42	0.39 0.17	0.19	0.24	0.14	0.17	0.28
Type II error	0.12	0.24	0.23 0.50	0.08		0.32	0.33	0.42	0.42	0.30
Relative usefulness	0.53	0.50		0.50 0.79	0.43 0.78	0.48	0.43	0.43 0.78	0.41 0.77	0.42
AUROC	0.84	0.83	0.81			0.78	0.78			0.76
AUROC CI	[0.79 <i>,</i> 0.88]	[0.79, 0.88]	[0.76, 0.86]	[0.74, 0.84]	[0.73, 0.83]	[0.73, 0.83]	[0.72, 0.83]	[0.73, 0.82]	[0.72, 0.82]	[0.71, 0.82]

August 2015 Identifying early warning indicators for real estate-related banking crises

Table A7 – Bivariate logit models (t-values in parentheses)

	Model1	Model2	Model3	Model4	Model5	Model6	Model7	Model8	Model9	Model10
Debt service ratio	4.455***									
	(4.724)									
RRE price to income gap	0.093***	0.080***							0.091***	0.079***
	(4.069)	(2.923)							(4.885)	(3.063)
3-month money mkt rate		0.164*								
		(1.787)								
Real NFC credit growth			0.140***							
			(4.172)							
RRE price to rent gap			0.056***	0.033***	0.015		0.026*	0.048***		
			(4.835)	(2.833)	(0.780)		(1.854)	(3.789)		
RRE price to income gap gap				0.067**						
				(2.052)						
Nominal RRE price gap					0.118**	0.150***				
					(2.288)	(7.234)				
RRE price to rent gap growth						0.0002				
						(0.114)				
Real RRE price gap						()	0.099**			
1 01							(2.275)			
Real total credit growth							(-)	0.085***		
								(3.514)		
Real GDP growth									0.123***	
									(4.745)	
Real long term gov't bond yield										0.170
										(1.322)
Constant	-4.691***	-3.203***	-4.245***	-3.094***	-3.437***	-3.563***	-3.566***	-3.750***	-4.415***	-3.383***
	(-5.421)	(3.522)	(-6.853)	(-6.425)	(-7.124)	(-8.873)	(-6.220)	(-6.209)	(-5.397)	(-3.541)
Type I error	0.24	0.13	0.17	0.26	0.28	0.17	0.23	0.13	0.12	0.16
Type II error	0.13	0.27	0.22	0.14	0.15	0.28	0.20	0.29	0.12	0.29
Relative usefulness	0.63	0.60	0.60	0.60	0.57	0.55	0.57	0.57	0.59	0.54
AUROC	0.89	0.88	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
AUROC CI	[0.85, 0.93]	[0.84, 0.92]	[0.83, 0.92]	[0.82, 0.92]	[0.83, 0.92]	[0.82, 0.91]	[0.82, 0.91]	[0.82, 0.91]	[0.82, 0.91]	[0.82, 0.91]

August 2015 Identifying early warning indicators for real estate-related banking crises

Table A8: trivariate logit models (t-values in parentheses)

i	Model1	Model2	Model3	Model4	Model5	Model6	Model7	Model8	Model9	Model10
Real NFC credit growth	0.180***		0.158***					0.145***		0.127***
	(6.046)		(3.852)					(3.914)		(4.170)
Real 3-month money mkt rate	-0.294***	-0.255***		-0.229***	-0.223***				-0.204***	
	(-3.424)	(-3.568)		(-3.548)	(-2.987)				(-3.008)	
RRE price to rent gap	0.067***	0.056***	0.038***	0.050***	0.037***	0.031**	0.030**	0.041***	0.056***	
	(4.960)	(4.209)	(3.066)	(3.733)	(2.679)	(2.106)	(2.324)	(3.135)	(4.705)	
Real total credit growth		0.097***				0.155***	0.115***			
		(3.176)				(4.523)	(5.237)			
Household credit to GDP			0.040**			0.055***				0.047**
			(2.571)			(3.197)				(2.543)
Real bank credit growth				0.069***						
				(2.936)						
Real RRE price gap					0.085**					
					(2.203)					
Nominal bank credit to GDP							0.031***	0.021**		
							(3.503)	(2.469)		
Real RRE price growth									0.036***	
									(3.314)	
RRE price to income gap gap										0.102***
										(2.581)
Constant	-5.436***	-4.430***	-6.432***	-3.905***	-3.924***	-7.417***	-6.615***	-5.931***	-3.515***	-6.932***
	(-6.471)	(-5.403)	(-6.087)	(-5.207)	(-5.958)	(-5.959)	(-8.228)	(-7.442)	(-6.273)	(-5.522)
Type I error	0.06	0.06	0.21	0.04	0.08	0.16	0.22	0.18	0.05	0.16
Type II error	0.30	0.27	0.11	0.32	0.26	0.16	0.14	0.18	0.29	0.16
Relative usefulness	0.64	0.67	0.68	0.64	0.66	0.68	0.64	0.64	0.66	0.68
AUROC	0.91	0.90	0.90	0.90	0.90	0.90	0.89	0.89	0.89	0.89
AUROC CI	[0.87, 0.95]	[0.87, 0.94]	[0.86, 0.94]	[0.86, 0.94]	[0.86, 0.94]	[0.85, 0.93]	[0.85, 0.93]	[0.85, 0.93]	[0.85, 0.93]	[0.85, 0.93]

August 2015 Identifying early warning indicators for real estate-related banking crises

Table A9: Regression results panel fixed effects logit models (t-values in parentheses)

	Model1	Model2	Model3	Model4	Model5	Model6	Model7	Model8	Model9	Model10
Real total credit growth	0.230***	0.315***			0.248***		0.129***			
	(4.679)	(5.529)			(5.795)		(3.385)			
Nominal bank credit to GDP	0.108***		0.119***			0.082***		0.120***		
	(6.519)		(6.774)			(4.973)		(6.675)		
RRE price to rent gap	0.106***	0.079***	0.093**	0.101***	0.098***	0.130***		0.103***	0.124***	
	(5.965)	(3.806)	(5.311)	(4.976)	(5.796)	(6.794)		(5.682)	(6.555)	
3-month money mkt rate	0.911***	0.919***	0.932***	0.892***	0.950***	0.968***	0.597***	0.605***	1.002***	0.917***
	(7.001)	(6.753)	(7.273)	(6.738)	(7.222)	(6.782)	(5.781)	(5.785)	(7.300)	(6.657)
Inflation	-0.550***	-0.521***	-0.608***	-0.587**	-0.566***	-0.692***	-0.536**	-0.393**	-0.631***	-0.635**
	(-3.415)	(-3.154)	(-3.979)	(-3.660)	(-3.767)	(-4.021)	(-3.076)	(-3.314)	(-4.017)	(-3.990)
Household credit to GDP		0.145***		0119***						
		(5.504)		(4.798)						
Real bank credit growth			0.158***							
			(3.690)							
Real NFC credit growth				0.203***		0.173***			0.147***	0.207***
				(5.325)		(4.632)			(4.433)	(5.806)
Nominal total credit to GDP					0.068***				0.044***	
					(5.849)				(3.639)	
Debt service ratio							4.620			4.097
							(6.207)			(0.793)
RRE price to income gap							0.199***			0.197***
							(8.517)			(8.139)
Real HH credit growth							(0.517)	0.176***		(0.159)
								(3.725)		
Type I error	0.28	0.24	0.32	0.25	0.38	0.28	0.06	0.12	0.33	0.24
Type II error	0.28	0.10	0.09	0.17	0.06	0.18	0.19	0.12	0.09	0.24
Relative usefulness	0.62	0.10	0.59	0.58	0.56	0.18	0.19	0.72	0.58	0.55
AUROC	0.84	0.87	0.83	0.85	0.83	0.81	0.92	0.92	0.82	0.83
AUROC CI	[0.79, 0.84]	[0.82, 0.91]	[0.78, 0.88]	[0.80, 0.90]	[0.78, 0.88]	[0.76, 0.87]	[0.90, 0.97]	[0.88, 0.95]	[0.77, 0.87]	[0.78, 0.88]
	[0.79, 0.84]	[0.02, 0.91]	[0.70, 0.88]	[0.80, 0.90]	[0.70, 0.88]	[0.70, 0.87]	[0.30, 0.37]	[0.00, 0.95]	[0.77, 0.87]	[0.70, 0.88]

* significant at 0.1; ** significant at 0.05; *** significant at 0.01

June 2012 Money Market Funds in Europe and Financial Stability

Table A10: Robustness exercise: regression results panel logit on "balanced" sample (t-values in parentheses)

	Model1	Model2	Model3	Model4	Model5	Model6	Model7	Model8	Model9	Model10
Household credit to GDP gap	0.38***	0.36***								
	(2.68)	(2.37)								
Debt service ratio	7.22***	6.95***						7.84***		6.60***
	(8.20)	(7.35)						(7.42)		(7.29)
Nominal RRE price to income gap	0.14***	0.14***	0.09***	0.11***	0.10***		0.07***	0.16***		0.17***
	(3.41)	(3.58)	(3.48)	(4.80)	(4.54)		(3.24)	(4.44)		(5.27)
3-month money mkt rate	0.32***	()	0.48***	, , , , , , , , , , , , , , , , , , ,	0.28*	0.66***	0.53***	, , ,	0.59***	()
·	(2.87)		(2.63)		(1.88)	(4.47)	(3.29)		(3.93)	
Real GDP growth	0.62***	0.60***			. ,		. ,	0.33***	. ,	
-	(5.99)	(5.72)						(3.00)		
Long term gov't bond yield		0.34***		0.36**						
		(2.54)		(2.06)						
Real total credit growth			0.33***						0.31***	
			(4.24)						(3.42)	
Household credit to GDP			0.11***	0.08**	0.07***	0.14***	0.12**		0.13***	
			(2.70)	(2.29)	(2.65)	(2.84)	(2.98)		(2.73)	
Current account deficit			-0.21**	-0.19**	-0.19**	-0.20	-0.16		-0.21*	-0.20*
			(-2.04)	(-2.01)	(-2.07)	(-1.65)	(-1.51)		(-1.78)	(-1.73)
Real NFC credit growth				0.34***	0.33***			0.20***		0.36***
				(6.46)	(7.12)			(2.63)		(6.08)
Real bank credit growth						0.29***	0.28***			
						(3.32)	(4.85)			
Real RRE price gap						0.14**			0.14**	
						(2.41)			(2.27)	
Real effective exchange rate								0.22**		0.30***
growth										
								(2.29)		(3.95)
Constant	-12.89***	-12.94***	-16.06***	-13.59***	-12.49***	-18.84***	-16.19***	-10.10***	-17.69***	-10.33***
	(-7.35)	(-6.39)	(-3.87)	(-4.58)	(-5.66)	(-4.19)	(-4.21)	(-6.99)	(-4.08)	(-7.00)
Type I error	0.04	0.01	0.05	0.04	0.04	0.01	0.04	0.01	0.01	0.05
Type II error	0.05	0.08	0.08	0.09	0.09	0.10	0.09	0.12	0.10	0.09
Relative usefulness	0.91	0.90	0.87	0.87	0.87	0.89	0.87	0.87	0.89	0.85
AUROC	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
AUROC CI	[0.96, 1.00]	[0.96, 1.00]	[0.96, 1.00]	[0.96, 1.00]	[0.96, 1.00]	[0.96, 1.00]	[0.96, 1.00]	[0.96, 1.00]	[0.96, 1.00]	[0.96, 1.00]

* significant at 0.1, ** significant at 0.05, *** significant at 0.01

References

Agnello, L. and Schuknecht, L. (2011), "Booms and busts in housing markets: Determinants and implications", *Journal of Housing Economics*, 20(3): 171-190.

Alessi, L. and Detken, C. (2011), "Real time early warning indicators for costly asset price boom/bust cycles: A role for global liquidity", *European Journal of Political Economy*, 27(3): 520–533.

Babecky, J., Havranek, T., Mateju, J., Rusnak, M., Smidkova, K. and Vasicek, B. (2012), "Banking, debt and currency crises. Early warning indicators for developed countries", *ECB Working Paper* Series No. 1485.

Behn, M., Detken, C., Peltonen, T. and Schudel, W. (2013), "Setting countercyclical capital buffers based on early warning models: Would it work?", *ECB Working Paper* Series No. 1604.

Berg, A. and Coke, R.N. (2004), "Autocorrelation-corrected standard errors in panel probits: an application to currency crisis predictions", *IMF Working Paper* WP/04/39

Borgy, V., Clerc, L. and Renne, J. (2014), "Measuring aggregate risk: can we robustly identify asset price boom bust cycles?", *Journal of Banking and Finance*, <u>46</u>: 132–150.

Borio, C. and Drehmann, M. (2009), "Assessing the risk of banking crises – revisited", *BIS Quarterly Review*, March: 29–46.

Borio, C. and Lowe, P. (2002), "Assessing the risk of banking crises", *BIS Quarterly Review*, December: 43–54.

Cameron, A.C., Trivedi, P.K. (2005), *Microeconometrics methods and applications*, Cambridge University Press, New York.

Ciani D., Cornacchia, W. and Garofalo, P. (2014), "The macroprudential measures adopted in Europe for the real estate sector", *Bank of Italy Occasional Paper* n.227.

Claessens S., Kose, M. and Terrones, M. (2008), "What happens during recessions, crunches and busts?", *IMF Working Paper* No /08/274.

Claessens, S., Kose, M. and Terrones, M. (2011), "How do business and financial cycles interact?", *IMF Working Paper* No 11/88.

Crowe, C., Dell'Ariccia, G., Igna, D., Rabanal, P. (2011), "How to deal with real estate booms: lessons from country experiences", IMF Working Paper No 2011/91

Demirgüç-Kunt, A. and Detragiache, E. (1998), "The determinants of banking crises: Evidence from industrial and developing countries", *IMF Staff Papers*, 45 (1): 81–109.

Detken C., Weeken, O., Alessi, L., Bonfim, D., Boucinha, M., Castro, C., Frontczak, S., Giordana, G., Giese, J., Jahn, N., Kakes, J., Klaus, B., Lang, J., Puzanova, N., Welz, P. (2014), "Operationalising the countercyclical capital buffer: indicator selection, threshold identification and calibration options", *ESRB Occasional Paper* Series No. 5/June 2014.

Drehmann, M., Borio, C., Gambacorta, L., Jiminez, G. and Trucharte, C. (2010), "Countercyclical capital buffers: exploring options", *BIS Working Papers* No 317.

Drehmann, M., Borio, C. and Tsatsaronis, K. (2011), "Anchoring countercyclical capital buffers: the role of credit aggregates", *International Journal of Central Banking*, 7(4): 189-240.

Drehmann, M., Borio, C. and Tsatsaronis, K. (2012), "Characterising the financial cycle: don't lose sight of the medium term!", *BIS Working Papers* No 380.

Drehmann, M. and Juselius, M. (2013), "Evaluating early warning indicators of banking crises: Satisfying policy requirements", *BIS Working Papers* No. 421.

Ferrari, S. and Pirovano, M. (2014), "Evaluating early warning indicators for real estate-related crises", *Financial Stability Review*, National Bank of Belgium, 123-134.

Gerdesmeier, D., Lenarcic, A. and Roffia, B. (2012), "An alternative method for identifying booms and busts in the euro area housing market", *ECB Working Paper* Series No. 1493.

Greene, W.H. (2012), Econometric Analysis, Pearson, England

Hanley, J.A. and McNeil, B. (1982), "The meaning and use of the Area under a Receiver Operating Characteristic (ROC) Curve", *Radiology*, 143 (1), pp. 29-36.

Kaminsky, G. and Reinhart, C. (1999), "The twin crises: the causes of banking and balance-of-payments problems", *American Economic Review*, 89 (3): 473–500.

Sarlin, P. (2013), "On policymakers' loss functions and the evaluation of early warning systems", *Economics Letters*, 119(1): 1-7.

Schularick, M., and Taylor, A. (2012), "Credit booms gone bust: monetary policy, leverage cycles and financial crises, 1870–2008", *American Economic Review*, 102 (2): 1029–1061.