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Abstract

In this paper, we show both theoretically and empirically that the size of over-the-counter
(OTC) markets can be reduced without affecting individual net positions. First, we find that
the networked nature of these markets generates an excess of notional obligations between
the aggregate gross amount and the minimum amount required to satisfy each individual
net position. Second, we show conditions under which such excess can be removed. We
refer to this netting operation as compression and identify feasibility and efficiency criteria,
highlighting intermediation as the key element for excess levels. We show that a trade-
off exists between the amount of notional that can be eliminated from the system and the
conservation of original trading relationships. Third, we apply our framework to a unique
and comprehensive transaction-level dataset on OTC derivatives including all firms based
in the European Union. On average, we find that around 75% of market gross notional
relates to excess. While around 50% can in general be removed via bilateral compression,
more sophisticated multilateral compression approaches are substantially more efficient. In
particular, we find that even the most conservative multilateral approach which satisfies
relationship constraints can eliminate up to 98% of excess in the markets.
Keywords: OTC markets, compression, intermediation, derivatives, networks, optimization
JEL codes: C61, D53, D85, G01, G10, G12
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1 Introduction

In contrast to centrally organized markets where quotes are available to all mar-
ket participants and exchange rules are explicit, participants in over-the-counter
(OTC) markets trade bilaterally and have to engage in search and bargaining pro-
cesses. The decentralized nature of these markets makes them opaque as market
information is often very limited for most agents. As a result of search frictions,
dealers play the role of market makers and intermediate between buyers and sell-
ers of a given asset (Duffie et al., 2005). Several OTC markets have an important
role in the economy (Duffie, 2012) and, as in the case of OTC derivatives, can
be large.1 The size and lack of transparency of these markets have become an
important concern for policy makers.2

In this paper, we show that the networked nature of decentralized markets
where trading takes place over-the-counter generates excess of notional when
trades are fungible and contingent. Formally, we define the excess of a mar-
ket as the positive difference between the total outstanding gross notional of the
market and the minimum aggregate amount required to satisfy every participants’
net position. Intuitively, the excess of a market measures the amount of notional
resulting from redundant trades, that is, trades that offset each other.

In turn, the existence of excess makes OTC markets compressible, i.e., the web
of outstanding trades can be modified in order to remove redundant trades and,
by doing so, reduce its excess. The main contribution of this paper is to provide
a theoretical framework to understand and quantify the redundancy of trades
leading to excess, propose methods to remove excess and provide an empirical
quantification of the efficiency of each approach by applying the framework to a
unique, transaction-level dataset on over-the-counter derivatives.

From an accounting perspective, the existence of a large excess in a market
implies that an important gap exists between net and gross balance sheet based
measures. Relying on one measure or the other thus leads to a distorted view of
the market (Gros, 2010). Figure 1 illustrates the situation by mapping the network
of obligations of an actual OTC market for Credit-Default-Swap (CDS) contracts.
CDS buyers are on the left hand-side (green), sellers are on the right hand-side
and dealers are in the middle (blue and purple). We observe two separate sets
of obligations: customer-dealer obligations and dealer-to-dealer obligations. The
first line below the figure retrieves the share of gross notional per set of market
participants. The second line retrieves the average ratio between net and gross

1OTC derivatives markets amounted to $ 553 trillion of outstanding gross notional at end of
June 2015 (BIS, 2015).

2In September 2009, the G20 leaders committed to make OTC derivatives markets more
transparent by mandating central clearing for certain derivative classes alongside mandatory
reporting to trade repositories.
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individual positions for participants in each set. While buyers and sellers have a
combined gross share of less than 5%, their net position is equal to their gross
position. In contrast, the set of dealers concentrates more than 95% of gross
market share while, on average, only one fifth is covered by net positions. This
characteristic shows that, on average, 80% of the notional flowing through the
dealers is the result of offsetting trades.

In practice, some markets are already implementing mechanisms to reduce
their excess levels. Indeed, firms engaging in certain derivatives markets eliminate
some of the excess through the use of so-called portfolio compression. Portfolio
compression is a post-trade netting technique through which market participants
can modify or remove outstanding contracts and create new ones in order to
reduce their overall market gross position without modifying their net positions.3

In other words, compression aims at reducing counterparty risks of derivatives
portfolios without changing their market risks. The methods we present in this
paper follow the same principle.

Let us illustrate portfolio compression with the stylized example shown in
Figure 2(a) of a market consisting of 4 institutions (i, j, k, l) selling and buying
the same asset with different notional values: i has an obligation of notional value
5 to j, j has an obligation to k of notional value 10, k has obligations 20 and 10
towards k and l respectively.

The aggregate gross notional of the market is thus the sum of the individual
contracts: x = 5 + 10 + 20 + 10 = 45. At the individual level, the gross notional
position of i is equal to the sum of trades in which each i is involved: 5 + 20 = 25.
Instead, the net notional position of i is the difference between the amount due
by i and the amount due to i: 5 − 20 = −15. A way to compress the market
is, for example, to remove the contract between i and j and accordingly reduce
the obligations that both firms have with k by an amount of 5. The result is
illustrated in Figure2(b). In such “compressed” market, the net position of each
firm is the same as in Figure2(b) while the gross notional of the market is now
given by: x′ = 5 + 15 + 10 = 30. We have thus removed 15 units of notional from
the market without modifying participants’ net positions.

The above example represents a case of multilateral compression, i.e., several
counterparties are involved and the exercise is run over the whole set of fungible

3Formally, the Markets in Financial Instrument Regulation (MiFIR, EU Regulation No
600/2014, Article 2 (47)) defines portfolio compression as follows: “Portfolio compression is
a risk reduction service in which two or more counterparties wholly or partially terminate some
or all of the derivatives submitted by those counterparties for inclusion in the portfolio compres-
sion and replace the terminated derivatives with another derivatives whose combined notional
value is less than the combined notional value of the terminated derivatives”.
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Figure 1: Network illustration of a real OTC derivative market, which maps
all outstanding trades for credit default swap (CDS) contracts written on the
same sovereign government reference entity for the month of April 2016. The
data were collected under the EMIR reporting framework and thus contain all
trades where at least one counterparty is legally based in the EU. Green nodes
correspond to buyers. Red nodes correspond to sellers. Purple nodes are G16
dealers. Blue nodes are dealers not belonging to the G16 dealers set. The first
line below the network report the share of gross outstanding notional based on
individual positions for the segments: buyers, dealers, sellers. The second line
reports the average net-to-gross ratio for each segment with the standard deviation
in parenthesis for the dealer segment.
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Figure 2: A graphical example of compression

trades outstanding between all counterparties.4 Naturally, information disclosure
is needed in order to run such process. Individual counterparties might not know
the exact presence and amount of trades they are not directly involved in. In case
institutions are reluctant to disclose their positions to other participants while still
seeking to compress, a solution is to involve a third party (for instance, a dedicated
service provider) that would be required to run the compression analysis. Such
entity would recover portfolio information from each market participant seeking
to compress their positions, reconstruct the web of trades, and propose a global
compression procedure that satisfies every stakeholder.5

Despite portfolio compression being born out of the regulatory perimeter
(Duffie et al., 2016), several regulatory bodies and post-crisis regulations have

4In the bilateral case where two institutions share several fungible trades that go in both
directions, the exercise is much simpler as it merely consists of removing all bilateral contracts
and creating a new contract between the two same institutions with a notional value equal to
the net value of all original outstanding contracts.

5While the set of participants is theoretically heterogeneous (e.g., banks, insurances, funds,
etc.), the list of existing service providers is limited. TriOptima, LMRKTS, Markit, Catalyst
and SwapClear are among the most active compression service provider in OTC markets. Most
compression operations are run on cleared and uncleared Interest Rate Swaps (IRS) and index
and single-name Credit Default Swaps (CDS). Central Clearing Counterparties are increasingly
involved in compression as well. Other instruments are also starting to be compressed: cross
currency swaps, commodity swaps, FX forward, inflation swap. According to the International
Swaps and Derivatives Association (ISDA), portfolio compression is responsible for a total of
$448.1 trillion of IRS derivatives elimination between 2003 and 2015 (ISDA, 2105). According
to TriOptima, their portfolio compression service TriReduce has eliminated over $861 trillions
in notional until September 2016 (continuous updates are reported in http://www.trioptima.

com/services/triReduce.html).
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recently supported its adoption.6

As advertised by compression providers7, the increasing interest for compres-
sion results from several benefits at the level of the individual market participant.
Overall, we can distinguish between three major incentives for institutions to en-
gage in compression. First, compression reduces counterparty risk. As contracts
are removed and replaced by new contracts with lower notional amounts, coun-
terparty risk deriving from the gross exposures to those trades is reduced. Sec-
ond, compressing portfolios alleviates some regulatory constraints. For instance,
banks’ capital rules for derivatives are computed on the basis of gross exposures.8

Hence, reducing the notional amounts of contracts can help reducing the corre-
sponding capital needs of market participants. Third, by reducing the number of
contracts, compression leads to a reduction of operational risks and an improve-
ment of management, including trade count reduction, speed to auction in case of
default, lower cash-flow needed to settle obligations, fewer reconciliations, lighter
burden of settlement, lowered collateral and margin requirements, etc.

Despite the growing use of portfolio compression, limited policy and academic
work has been devoted to understanding the determinants of excess, compression
operations and the subsequent externalities. A more elaborated view of those
aspects is indeed relevant to ensure a proper design and implementation of com-
pression in OTC markets. Furthermore, compression affects market dynamics in
ways that can distort the liquidity and risk analysis. In particular, contracts being
terminated or created because of compression are subject to specific accounting
and economic forces which should not be confused with other types of contract
termination and creation processes. As monitoring markets in terms of both liq-
uidity and counterparty risk is paramount to both micro and macro-prudential
policy, the effects of compression must be explicitly accounted for. The current
work seeks to fill in this gap by providing analytical and empirical insights at the
individual and systemic level.

In this paper, we show that intermediation, determined by the existence of
chains of fungible and outstanding trades, is per se a sufficient condition to observe

6For example, under the European Market Infrastructure Regulation (EMIR), institutions
that trade more than 500 contracts with each other are required to seek to compress their trades
at least twice a year. Article 14 of Commission Delegated Regulation (EU) No 149/2013 of 19
December 2012 supplementing Regulation (EU) No 648/2012 of the European Parliament and of
the Council with regard to regulatory technical standards on indirect clearing arrangements, the
clearing obligation, the public register, access to a trading venue, non-financial counterparties,
and risk mitigation techniques for OTC derivatives contracts not cleared by a CCP (OJ L 52,
23.2.2013, p. 11- ‘Commission Delegated Regulation on Clearing Thresholds’ or ‘RTS’)

7See for example the advertising brochure by Swapclear: http://www.swapclear.com/

Images/lchswapcompression.pdf
8For example capital requirements under the Basel framework are computed including gross

derivatives exposures (BIS, 2016)
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positive excess levels in markets. Dealers are thus at the heart of the generation of
redundant trades. However, the share of excess that can be removed (i.e., redun-
dant excess) is a function of potential constraints, which we refer to as compression
tolerances, set by both individual participants and regulators. Hence, compres-
sion does not always remove the total amount of excess (i.e., there can be some
residual excess after compression). We introduce a spectrum of benchmark com-
pression tolerances settings and investigate their feasibility and efficiency. More
precisely, we consider approaches that differ in the conservation of counterparties’
trading relationships existing before compression. We show that a trade-off exists
between the efficiency of compression and the levels of compression tolerance.

Finally, we provide an empirical assessment of our framework. Using a unique
and granular dataset comprising all CDS contracts traded by institutions based
in the European Union (EU) between 2014 and 2016, we are able to quantify
the levels of excess exhibited by real OTC markets as well the efficiency of the
different compression approaches. We find that the vast majority of markets de-
fined as the set of transactions written on the same reference entity with the same
maturity, exhibit levels of excess accounting for 75% or more of the total gross
notional. While around 50% can in general be removed via bilateral compres-
sion, multilateral compression approaches can remove almost all the excess. In
particular, we find that even the most conservative approach which satisfies pre-
existing relationship constrains can eliminate up to 98% of excess in the markets.
Nevertheless, we find that the efficiency conservative multilateral compression is
impaired if market participants first seek to bilaterally compress their positions.
This sensitivity is dampened when the constraints on compression are relaxed on
the intra-dealer segment of markets.

Despite the application of our framework on derivatives markets, our findings
and methods can similarly be applied to other OTC markets. Indeed, as long
as a market exhibits fungibility, contingency and intermediation, our framework
identifies levels of excess and offers ways of reducing it. Hence markets such as
credit or bond markets are other potential candidates for such exercise.

The rest of the paper is organized as follows. We provide an overview of
the relevant literature for this work in Section 2. In Section 3, we introduce
the general setting for our analysis describing a model of an OTC market and
the formal definition of excess. Section 4 provides the core of the paper. It
describes compression as a network operation over the market; discusses the issues
of compression tolerances; proposes benchmark cases; analyses the feasibility and
efficiency of each approach. In Section 5, we report the results of our empirical
analysis of excess and compression efficiency in real OTC derivatives markets.
Last, we conclude and discuss avenues for further research as well as comments
on some operational and regulatory aspects of compression in Section 6. The
appendices provide proofs of the propositions and lemmas as well as the analytical
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details for the algorithms used in the paper.

2 Literature review

The study of the structure of OTC markets has gained attention in the last decade
prompted by both their role in the 2008 financial crisis and the increased data
availability for these previously opaque markets (Duffie, 2012; Abad et al., 2016).

Despite the use of different datasets and the focus on different instruments,
many contributions show similar findings. First, there are typically two types of
market participants: dealers and customers. Customers enter the market either
to buy or sell a particular product while dealers act as intermediaries by con-
comitantly buying and selling and tend to keep balanced positions (i.e., they seek
to have a relatively low net balance of contracts bought and sold with respect
to their gross amount). In particular, this feature has been well documented for
derivatives markets by Shachar (2012); Benos et al. (2013); Peltonen et al. (2014);
D’Errico et al. (2016); Abad et al. (2016); Ali et al. (2016). To a larger extent, this
same feature is in line with the core-periphery structure of OTC credit markets
reported by Craig and Von Peter (2014); in’t Veld and van Lelyveld (2014); Fricke
and Lux (2015). In general, Craig and Von Peter (2014) show that institutions
acting as dealers are typically large banks.

Atkeson et al. (2015) propose a parsimonious theoretical model which gener-
ates the above described feature for derivatives markets: they show that banks
entering an OTC derivatives market for incentives stemming from intermediation
profit need to be larger to bear the entry cost while not benefiting from a long
or short position in the market. D’Errico et al. (2016) empirically observe that
in the global OTC CDS market these intermediaries form a very tight structure
which entails closed intermediation (exposure) chains. The authors report that
this structure occurs on almost all reference entities and suggest its relation to
“hot potato” trading, a feature of OTC derivatives observed and modeled by
Burnham (1991); Flood (1994); Lyons (1995, 1997).

Furthermore, these markets are characterized by large concentration of no-
tional within the intra-dealer segment. For the CDS market, Atkeson et al. (2013)
report that, in the US, on average, about 95% of OTC derivatives gross notional
held on banks’ balance sheet is concentrated in the top five banks; D’Errico et al.
(2016) show that between 70% and 80% of the notional in CDS markets is in the
intra-dealer market across all reference entities. Abad et al. (2016) report similar
levels for IRS markets and FX markets in the EU market.

Overall, this large amount of intra-financial exposures relates to a deeper role
of financial intermediation, as detailed by Allen and Santomero (1997), who find
that certain derivative markets have mainly become “markets for intermediaries
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rather than individuals or firms”. Furthermore, the authors note that standard
intermediation theories could not explain the large surge in intermediation as
merely a result of reduced transaction costs and informational asymmetries.

In contrast to research efforts cited above to better understand OTC markets,
limited attention has been devoted to market compression in the literature. This
reflects both the novelty of this financial innovation and the recent adoption by
market participants due to the contemporary regulatory changes (e.g., the Basel
III leverage ratio framework which accounts for derivative gross exposures).

On the theoretical side, O’Kane (2014) stands as the main contribution. The
author analyses, by means of simulations, the performances of different com-
pression algorithms on a synthetic network where all banks are connected. The
benchmark algorithm is in the spirit of the approach followed by compression
service providers to the author’s claim and is based on a depth-first search al-
gorithm. The author shows that, if performed optimally, compression mitigates
counterparty risk and suggests compression be encouraged by regulators. On the
empirical side, Benos et al. (2013) use CDS transaction data from the UK to
show that reduction breaks in dealers’ gross positions are due to compression,
suggesting the monthly frequency of compression cycles. The Bank for Interna-
tional Settlements highlighted the role of compression in the global reduction of
the gross notional size of OTC derivatives markets (Schrimpf, 2015; Ehlers and
Eren, 2016).

Compression is a particular method to net exposures. Other works have looked
at ways of netting liabilities via the introduction of Central Clearing Counterpar-
ties (CCPs). Duffie and Zhu (2011) provide the ground work of this approach.
The authors show that, while central clearing helps reduce exposures at the asset
class level, differentiating asset classes in clearing design can rip of the benefits
of netting. Interestingly, the authors also suggest that compression reduces the
needs and benefits of central clearing. Cont and Kokholm (2014) build on the
model developed by Duffie and Zhu (2011) and explore the effect of heterogeneity
across asset classes. The authors show that a more risk sensitive approach to as-
set classes can alleviate the need to concentrate all netting activities in one single
CCP. Our paper shows the extent to which exposure reduction is feasible without
the introduction of new market players (e.g., CCP).

In spirit, this paper is also related to works on the gridlock problem in pay-
ments system as discussed by Flannery (1996). In particular, Rotemberg (2011)
analyzes the issues of minimal settlements and models a system of payments in-
terconnected via due payments. The author identifies conditions under which the
market can be cleared with minimal endowments of liquid assets. This approach
is relevant as compression can also be seen as a procedure that seeks to reduce the
conditional payments without affecting the expected net flow from each market
participant. Importantly, the author shows that in the absence of closed chains
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of intermediation, solvency necessarily implies the settlements of all obligations.
From a policy perspective, our work relates to ongoing debates on the adequacy

of the regulatory framework. In particular, the way net and gross positions infor-
mation are currently used under different accounting rules is subject to concerns
as they do not allow to fully capture the risks associated (see Blundell-Wignall
and Atkinson, 2010). In particular, Gros (2010) shows that under different leg-
islation (i.e., US and Europe), the same financial institutions can exhibit very
different profiles. Compression, by affecting the gross levels without changing the
net levels, can therefore have an effect on the accounting approach followed by
policy makers and other market analysts.

Finally, our work relates to the growing stream of works highlighting the im-
portant relationship between interconnectedness and systemic risk in financial
markets (see Allen and Babus, 2009; Yellen, 2013). These works explore the role
of interdependencies on the propagation of distress at different levels: link forma-
tion (Babus, 2016; Gofman, 2016), default cascades (Allen and Gale, 2000; Elliott
et al., 2014; Acemoglu et al., 2015) and regulatory oversight (Roukny et al., 2016).
This paper contributes to this literature by showing how post-trade practices can
affect the network profile of a financial market. Intuitively, compression affects
counterparty risk which has held a central role in the unfolding of the 2007-2009
financial crises together with OTC derivatives markets (Haldane, 2009; European
Central Bank, 2009).

However, in this work, we do not build explicit links between compression and
systemic risk. The focus we take is rather on providing a first comprehensive
framework to understand the mechanics underlying the possibilities to reduce
gross notional: future work will be dedicated to the effects of compression on
systemic risk. Nevertheless, the results of this work provide way to understand
how counterparty risk reduction, collateral demand and capital requirements can
be modified in post-trade situations which play a role in financial stability.

3 The market

We consider an Over-The-Counter (OTC) market made of n market participants
(institutions) denoted by the set N = {1, 2, ..., n}. These institutions trade con-
tracts with each other and establish a series of bilateral obligations. While we
keep the contract type very general, we assume that these obligations are fungi-
ble, that is, the traded contracts have the same payoff structure from the market
participants’ perspective and can thus be algebraically summed. The whole set of
outstanding obligations in the market constitutes the financial network. Formally,
we have the following definition:

Definition (Financial Network). The network or graph G is the pair (N,E) where

9



N is a set of institutions present in the market and E is a set of directed out-
standing fungible obligations (i.e., edges) between two institutions in the market.
An outstanding obligation is represented by eij whose value corresponds to the no-
tional value of the obligation and the directionality departs from the seller i to the
buyer j with i, j ∈ N .

From the financial network, we infer two measurements of an individual’s
position in the OTC market: the gross position and the net position. On the one
hand, the gross position of an institution i is the sum of all obligations’ notional
value involving this institution on any side of the trade (i.e., buyer and seller).

Definition (Gross position). The gross position of i is given by:

vgrossi =
∑
j

eij +
∑
j

eji =
∑
j

(eij + eji)

On the other hand, the net position of an institution i is the difference between
the sum of the notional values all i’s obligations’ towards other nodes in the
network and the sum of the notional values of the obligations from other nodes
in the network to i:

Definition (Net position). The net position of i is given by:

vneti =
∑
j

eij −
∑
j

eji =
∑
j

(eij − eji)

We also define the total gross notional of the market as the sum of the notional
amounts of all trades:

Definition (Total gross notional). The total gross notional of a market G =
(N,E) is given by:

x =
∑
i

∑
j

eij

We further classify market participants according to their activity in the mar-
ket. A market can contain two types of institutions: customers and dealers.
Customers only enter the market to buy or sell a given contract and are active
on one side of each trade. In contrast, dealers also intermediate between other
market participants and, thus, act both as buyers and sellers of the same contract
type. We use the following indicator to identify dealers in the market9:

9Note that this definition would consider two participants selling and buying from each as
dealers (i.e., eij .eji > 0) which can be misleading. However, our framework accounts for those
cases in the same way and the same result hold. Hence, we employ in the first part of we will
employ the notion of dealer in a general way. In the second part, which analyses empirical
data, we will define dealers as intermediaries between different market participants (i.e., after
having bilaterally netted all contracts). While, the results remain the same, this more elaborated
definition will help the interpretation of the empirical findings.
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Definition (Dealer indicator). Given a market G = (N,E), let δ() indicate
whether a market participant is a dealer in the market in the following way:

δ(i) =

{
1 if

∑
eij.
∑
eji > 0 (dealer)

0 otherwise (customer)

In a sense, we generalize the modeling approach of Atkeson et al. (2015) with
regard to market participant types. Note that, as a result, only three types of
trading relationships can exist in the market: dealer-customer, dealer-dealer and
customer-customer.

3.1 Definition of excess

We now elaborate on the concept of excess and the condition for markets to exhibit
positive levels.

Let us start by introducing a post-trade mathematical operator that acts upon
an extant market in order to modify the set of outstanding liabilities. Such op-
eration can be subject to different types of constraints. Here we focus on the
concept of net-equivalence. In our framework, an operation on a networked mar-
ket is net-equivalent if, despite exhibiting a different set of edges, the resulting
market keeps the net position of each institution equal to its original value (i.e.,
before the operation). Formally, we have:

Definition (Net-Equivalent Operation). Given a market G = (N,E) an opera-
tion Ω() such that G′ = Ω(G) : (N,E)→ (N ′, E ′) is net-equivalent if

N = N ′

and
vneti = v

′net
i ∀i ∈ N

where vneti and v
′net
i are the net positions of i in G and G′ respectively.

Notice that the networks G and G′ differ by the configuration of their obli-
gations which could be due to changes in the notional value of existing trades or
creation and removal of trades. Furthermore, the aggregate gross notional of each
net-equivalent market does not need to be equal.

We now show that, given an original market, it is possible to compute the min-
imum level of gross notional that can be obtained from a net-equivalent market.

Proposition 1. Given a market G = (N,E), if a net-equivalent operator Ω on
G is such that:

G′ = Ω(G) = min
x′

(Ω(G) : (N,E)→ (N ′, E ′))
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then

x′ =
1

2

n∑
i=1

|vneti | =
n∑

i: vneti >0

vneti (1)

Proof. See Appendix �

In fact, as the market we defined is a closed system (i.e., both sides of all the
trades are market participants, ∀ei,j ∈ E, i ∈ N and j ∈ N), the sum of all net
positions must be equal to zero (

∑
i v

net
i = 0). Nevertheless, looking only at the

institutions with a positive net position (i.e., institutions for which total selling
outbalances total buying), we obtain the total out-flow of the market. This total
out-flow is necessarily equal, in absolute values, to the total in-flow obtained from
all the institutions with a negative net notional. The out-flow is also equal to half
the absolute sum of all net notional positions as the sum of all positive and all
negative net positions are equal. If the total amount of notional in the market is
smaller then the total out-flow, there will be no configuration of trades such that
the resulting market is net-equivalent because there will exist at least one market
participant with

∑
j(e
′
ij − e′ji) < vneti . Hence, in order to be net-equivalent, the

resulting market’s gross notional must be at least equal to the total out-flow. Note
that there can exist several G’ but they all share the same level of gross notional
(i.e., v′gross = 1

2

∑n
i=1 |vneti |).

We can now formally define the excess of a market. In fact, if, for a given
market, there exists a net-equivalent operation that reduces the aggregated gross
notional, we conclude that the original market exhibits trades that can be removed
or modified without affecting the net positions of any market participant.

Given the previous result, we can quantify the total level of excess in a market
as the difference between the aggregate gross notional of a given market and the
aggregate gross notional of the net-equivalent market with the minimum market
aggregate gross notional. Formally, we define and quantify the excess in a market
as follows:

Definition (Excess). The excess in the market is defined as

∆(G) = x− x′ (2)

=

(
n∑
i=1

n∑
j=1

eij −
1

2

n∑
i=1

|vneti |

)
(3)

=

 n∑
i=1

n∑
j=1

eij −
n∑

i: vnet
i >0

vneti


Note that Equation 2 and Equation 3 are equivalent as long as the market

under study is a closed-system. The excess in the market is thus the amount of
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notional generated by trades that offset each other: it corresponds to the amount
of notional that can be removed without affecting the net position. Note that, at
this stage, we are not accounting for the potential positive value of some offsetting
outstanding contracts for market participants or market regulators. We elaborate
on that aspect in Section 4.2.

3.2 Existence condition

Not all markets exhibit notional excess. As mentioned above, the existence of
excess is due to the existence of a difference between net and gross positions of
(some) individual positions. In the following, we identify a necessary and sufficient
condition for excess to emerge in a market: the existence of intermediation. In
fact, for excess to exist in the market, we need at least one institution to have
its gross position larger than its net position. As we show below, such case only
exists if the institution is selling and buying the same type of contract at the same
time (even if done at different levels of notional), that is, if the institution is a
dealer. From a network perspective, this situation is present when there exists at
least two edges where the same institution is found at each ends. More formally,
we define intermediation as follows:

Definition (Intermediation). A market G = (N,E) exhibits intermediation i.i.f.

∃i ∈ N s.t. δ(i) = 1

At the market level, we thus have the following result:

Lemma 1. Given a market G = (N,E), if∑
i∈N

δ(i) > 0

then
∆(G) > 0

In fact, if there is no intermediation, net positions are equal to gross positions
as every participant is active only on the buy or sell side (i.e., only customers in
the market). As a result, markets with no intermediation do not exhibit notional
excess. This result provides a global market view on the effect of intermediation
in distorting gross and net measurements. It generalizes measurements at the
individual level as shown in the entry-exit model of Atkeson et al. (2015). This
result also explicitly shows why the existence of notional excess is intrinsic to
OTC markets: the presence of dealer institutions is the source of notional excess
in those markets. We conclude that the two main types of market organizations
(i.e., over-the-counter and centralized exchange-traded markets) have different
levels of notional excess,

13



Corollary 1. Centralised exchange-traded markets exhibit no excess.

Centralized exchange-traded market markets can indeed be framed as bi-
partite networks consisting of customers exclusively interacting with each other
on the buy and sell spectrum and thus vneti = vgrossi , ∀i ∈ N .

Corollary 2. In the presence of dealers, over-the-counter markets always exhibit
positive notional excess.

Even if some OTC markets exhibit customer-customer trading relationships,
those interactions do not contribute to notional excess. It is the activity of dealers
that generates notional excess both in the intra-dealer segment and in the dealer-
customer segment. Several studies have stated the prevalent role of dealers in
over-the-counter markets (Duffie et al., 2005) and others have shown the high
levels of notional concentration in the dealers segment of OTC markets (Atkeson
et al., 2013; Abad et al., 2016; D’Errico et al., 2016) as illustrated in Figure 1.
We also document these feature in the empirical section of this paper.

Finally, note the special case of bilaterally netted positions. It often happens
that two institutions having an outstanding trade decide to terminate this trade by
creating an offsetting trade (i.e., contract of similar characteristics in the opposite
direction). Such a situation also generates excess as trades are accounted for
in the gross position while they do not contribute to the net position of each
counterparty. While those mechanisms cannot be framed as intermediation, the
formal network definition still applies (i.e., both institutions are active on the buy
and sell side) and the related results are unchanged (i.e., existence of notional
excess).

3.3 Excess decomposition

We now explore the decomposition of excess with respects to two segments of the
market: the intra-dealer market and the customer market.

The intra-dealer (sub-)market only contains obligations between dealers while
the customer (sub-)market contains obligations where at least one counterparty
is a customer. Formally we have:

Definition (Intra-dealer and customer market). The set of contracts E can be
segmented in two subsets ED and EC such that

δ(i).δ(j) = 1 ∀eij ∈ ED

δ(i).δ(j) = 0 ∀eij ∈ EC

Where ED is the intra-dealer market and EC is the customer market and ED +
EC = E.
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In general, the excess is not additive: quantifying the excess of each segment
separately does not lead to excess of the entire market. Special cases of excess
additivity are presented in the following result:

Proposition 2 (Additivity of excess). Given a market G = (N,E), and the two
markets G1 = (N,E1) and G2 = (N,E2) obtained from the partition {E1, E2} of
E, then:

∆(G) ≥ ∆(G1) + ∆(G2)

which implies that:

∆(N,E) ≥ ∆(N,ED) + ∆(N,EC)

In particular, we have additivity, ∆(N,E) = ∆(N,ED) + ∆(N,EC) if

1.
∑dealer

h (edh − ehd) = 0, ∀d ∈ D, or

2.
∑customer+

c+ edc+ −
∑customer−

c− ec−d = 0, ∀d ∈ D

Proof. See Appendix. �

The above results state that if all dealers have a zero net position w.r.t. to all
their outstanding trades with (1) their dealer counterparties or (2) their customer
counterparties, then the excess can be decomposed between the intra-dealer excess
and the dealer-customer excess. In general, we have ∆(E) ≥ ∆(ED)+∆(EC). The
insights from this results will become useful when we consider applying different
methods of excess reduction for the different segments of the market.

4 Compression

Building on the framework introduced in the previous section, we now focus on
ways to reduce the excess of markets, that is, we investigate the extent to which
the excess of OTC markets can be compressed. In particular, we adopt an analo-
gous concept as that of portfolio compression already in place in some derivatives
markets. Portfolio compression is a technique that aims at terminating outstand-
ing trades and creating new ones in order to reduce gross individual positions
without affecting net positions.

In our framework, compression is an operation over the market’s underlying
network of outstanding trades that effectively reduces the excess of notional. For-
mally, we have the following definition of compression in OTC markets:

Definition (Compression). Given a market G = (N,E) and a market G′ =
(N,E ′) := c(N,E) is compressed w.r.t. to G if and only if

v
′net
i = vneti and v

′gross
i ≤ vgrossi for all i ∈ N
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with at least one strict inequality and where c() is a net-equivalent network oper-
ator.

Compression, at the market level, is thus an operation on the network of
outstanding trades (i.e., c(N,E)) that reconfigures the set of edges ((N,E ′) :=
c(N,E)) while (i) keeping all net positions constant (i.e. net-equivalence) and
(ii) reducing the individual gross notional of at least one node. By construction,
this latter property leads to a reduction of gross notional at the market level (i.e,
x′ < x). As a result, compression on a market always reduces the excess. The
above definition is a canonical definition of compression. Several refinements can
be added to the compression operator. We discuss these aspects in Section 4.2.

4.1 Feasibility

As, by definition, compression acts upon market excess, a direct consequence of
Lemma 1 is that compression can only take place if there is intermediation in the
market:

Corollary 3 (Necessary condition for compression). Compression can only take
place if there is intermediation in the market.

Similar to the excess conditions, such result informs us that centralized exchange-
traded markets are not candidate for compression. Note that the intermediation
condition is necessary but not sufficient as additional factors can be accounted
for to determine the sufficiency of compression. Those factors, called compression
tolerances, can limit the capacity to compress the excess of a market.

4.2 Tolerances

In realistic settings, designing a compression operator also includes factors such
as individual preferences or regulatory restrictions. For instance, at the individ-
ual level, market participants might not be willing to compress certain trades; at
the regulatory level, policy makers might refuse that new trades be created be-
tween specific counterparties in the market. We call these additional constraints
compression tolerances, as they define the extent to which modifications can be
applied to the set of portfolios during the compression exercise both in terms of
change in currently existing contracts and creation of new ones with new coun-
terparties. Compression tolerances thus determine the degrees of freedom for a
compression operation to take place.

Formally, compression tolerances form a set of constraints at the bilateral level
of each potential edge in the networked market.
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Definition (Compression tolerances). A compression operator c() s.t. G′ =
(N,E ′) := c(N,E) satisfies the set of compression tolerances Γ = {(aij, bij)|a, b ∈
R, i, j ∈ N} if

aij ≤ e′ij ≤ bij ∀i, j ∈ N
with 0 ≤ aij ≤ eij, eij ≤ bij ∀(i, j) ∈ N .

For each potential contract between two counterparties in the resulting com-
pressed market, there exist a lower (i.e., aij) and upper bound (i.e., bij). Those
constraints are tolerances and hence cannot force an expected value for the re-
sulting obligation, that is why lower bound (resp. upper bound) cannot be higher
(resp. lower) than the original obligation notional, i.e., aij ≤ eij (resp. eij ≤ bij).

The levels of compression tolerances affect how much excess can be removed
from compression: there is a potential opportunity cost in the efficiency of com-
pression resulting from how participants’ portfolios can be modified10.

Finally, note that compression tolerances on a bilateral obligation (i, j) are
set from the combination of both participants i and j constraints, as they must
satisfy each participant’s individual sets of constraints (both on the asset and the
liability side).

4.3 Residual and redundant excess

The set of all individual compression tolerances determines the trades that can be
deemed redundant and thus modified. Hence, the total excess of a market as in
Definition 3.1 can be divided in two levels: redundant excess and residual excess.
The former is the excess that can be compressed while the latter is the excess
that remains after compression. The determination of those levels is conditional
upon (1) the underlying network of outstanding fungible contracts and (2) the set
of compression tolerances set by the market participants or the market regulator.
Formally, we have:

Definition (Residual and redundant excess). A compression operator c() s.t.
G′ = (N,E ′) := c(N,E) satisfying the set of compression tolerances Γ = {(aij, bij)|a, b ∈
R, i, j ∈ N} generates:

• ∆res(G) = ∆(G′) (residual excess)

10In the context of clients to a compression service provider, compression tolerances determine
how much the compression participants clients are willing not to alter their original positions.
In derivatives markets, service providers such as TripOptima refer to these constraints as risk
tolerances. As they can reduce the efficiency of a compression exercise, bargaining can also
take place between the service provider and its clients in order to modify those constraints.
Dress rehearsals are steps in the compression exercise where the service provider informs all the
clients on a candidate compression solution and seeks their confirmation. Several iterations can
be needed before an optimal solution satisfying all participants is reached.
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• ∆red(G) = ∆(G)−∆(G′) (redundant excess)

We have the following relationship: ∆(G) = ∆res(G) + ∆red(G)

4.4 Efficiency

Given a market, there exist many possible compression operations. In order to
compare them, we associate each compression operator ck(N,E) with its redun-
dant excess. We can thus assess the efficiency of different compression operations
using the associated levels of excess reduction.

Definition (Efficiency of Compression). A compression operator over a network
G, cs(N,E) is more efficient than another compression operator, ct(N,E) if

cs(N,E) � ct(N,E)⇔ ∆s
red(G) > ∆t

red(G)

From this definition it appears that a compression operator that yields a com-
plete reduction of the overall excess achieves the highest level of efficiency (i.e.,
∆res(G) = 0).

The definition can be re-expressed in relative terms by introducing a compres-
sion ratio, i.e.:

cs(N,E) � ct(N,E)⇔ ρs > ρt

Where ρs =
∆s

red(G)

∆(G)
and ρt =

∆t
red(G)

∆(G)
are the compression ratios of cs and ct

respectively, i.e., the fraction of notional obligation eliminated via the compression
operation. The ratio provides a natural way to compare different compression
operators when applied to networks where obligations are of a dissimilar type
(e.g. expressed in different currencies or with different underlying in case of a
derivative).

4.5 Benchmark approaches

In practice, compression tolerances are set to cover a wide range of heteroge-
neous preferences from market participants and regulators. As a result, the space
of possible compression tolerance combinations is infinite. Nevertheless, in the
following, we study specific compression benchmarks as ways to define the condi-
tions and maximum levels of compression that can be achieved according to some
standardized set of preferences. As such, we consider the two following case:

1. (aij, bij) = (0, eij) ∀i, j ∈ N

2. (aij, bij) = (0,+∞) ∀i, j ∈ N
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Those two benchmarks incorporate different preferences with regards to previ-
ously existing trading relationships. As such we call these approaches conservative
and non-conservative. Intuitively, the non-conservative case has the highest levels
of compression tolerance: it discards all counterparty constraints. The approach
is deemed non-conservative with respect to the original web of contracts in the
market. In the conservative case: compression tolerances are such that e′ij ≤ eij
for all links. The compression tolerances are such that all original dependencies
can be reduced or removed but no new relationships can be created. It is conser-
vative with respect to the original trading relationships of the market. Below, we
formalize those two approaches.

4.5.1 Non-conservative compression

In the non-conservative compression approach: the resulting set of new trades E ′

is not determined in any way by the previous configuration of trades E.

Definition (Non-Conservative Compression). c(N,E) is a non-conservative com-
pression operator i.f.f. c() is a compression operator that satisfies the compression
tolerances set Γ:

aij = 0 and bij = +∞, ∀(aij, bij) ∈ Γ,

In practice, such benchmark approach is unlikely to be the default modus
operandi. However, it is conceptually useful to study as it sets up the bar for the
most compression tolerant case.

4.5.2 Conservative compression

The second compression approach is defined as conservative. A compression op-
eration is conservative if the set of new trades resulting from the compression
is strictly obtained from the reduction in notional values of previously existing
trades. Trades can be removed (i.e., complete reduction of notional) but no new
trade can be introduced. Formally, we have:

Definition (Conservative Compression). c(N,E) is a conservative compression
operator i.f.f. c() is a compression operator that satisfies the compression toler-
ances set Γ:

aij = 0 and bij = eij, ∀(aij, bij) ∈ Γ, eij ∈ E
The resulting graph G′ = (N,E ′) is a ‘sub-graph’ of the original graph G = (N,E).

Such benchmark approach is arguably close to the way most compression takes
place in derivatives markets (O’Kane, 2014).

We provide a simple example of a market consisting of 3 market participants
in the Appendix B
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4.6 Feasibility and efficiency

For each compression approach, we identify the conditions under which compres-
sion can take place and the efficiency of each approach. We conclude by proving
the existence of a trade-off between the approaches and the level of efficiency.

4.6.1 Non-conservative compression

With non-conservative compression operators, the set of trades prior to compres-
sion does not matter for determining the new set of trades, only the net and
gross positions of each individual does. We can thus generalize the Corollary 3 as
follows:

Proposition 3. Given a market G(N,E) and compression cn() satisfying a non-
conservative compression tolerance set Γ:

∆cn

red(G) > 0 ⇔
∑
i∈N

δ(i) > 0

Furthermore, once non-conservative compression is possible, we can analyze
the efficiency of such compression operation. The efficiency criterion is solely based
on the amount of excess notional that is successfully removed after compression
is applied. Given the role of intermediation in generating excess, removing chains
of intermediation present in the network directly reduces the excess. Recall from
Lemma 1 that if all intermediation chains are broken, the market exhibits zero
excess. Moreover, the resulting market is composed of two kinds of participants:
selling customers on one side and buying customers on the other side. No in-
stitution combines both activities anymore, that is, non-conservative compression
either removes dealers from the market (if their net position is zero) or makes them
buying customers (resp., selling customers) if their net position is negative (resp.,
positive). Such market is thus necessarily characterized by a directed bipartite
underlying network structure:

Definition (Directed Bipartite Graph). A graph G=(N,E) is bipartite if the set
of nodes can be decomposed into 2 subsets N out and N in where each set is strictly
composed of only one kind of node: respectively, nodes with only outgoing edges
and nodes with only incoming edges. The edges are characterized as follows: eij
with i ∈ N out and j ∈ N in. Also, a bipartite graph has no dealers:∑

i∈N

δ(i) = 0

Note that any compression operator that transforms a market with interme-
diation into a market that is bipartite is necessarily non-conservative. More im-
portantly, any compression operation leading to a bipartite structure is also a
perfectly efficient compression as all the excess becomes redundant:
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Proposition 4. Given a market G = (N,E), there exists a set of non-conservative
compression operators C such that

C = {cn|∆cn

res(G) = 0} 6= ∅

Moreover, let G′ = cn(G)|cn ∈ C, then G′ is bi-partite.

Proof. See Appendix �

The proof of existence stems from the following algorithm: from the original
network, compute all the net positions then empty the network and generate
edges such that the gross and net positions are equal at the end. As net and gross
positions are equal, the resulting market has a bipartite underlying architecture:
there is no intermediation.

Corollary 4. Given a market G(N,E) a compression operation c(N,E):

∆c
res(G) = 0

if ∑
i∈N ′

δ(i) = 0

Hence, by generating a method that removes all intermediation in the market,
while keeping the net positions constant, all the (redundant) excess is removed.
Such a method can be formalized under an algorithmic framework. Obviously,
there exist many ways to devise algorithm that conduct intermediation removal
and there exist multiple solutions that achieve a similar level of efficiency. For
illustrative purposes, we provide a simple algorithm for such type of compression
in the Appendix.

Remark: a more realistic approach to non-conservative compression

In a realistic setting, exposure limits exist, either set by individuals or by regu-
lators. In the non-conservative case, this implies a cap on the upper bound of
each compression tolerance (i.e., bij). In the following we consider the case of a
non-conservative compression with a common exposure limit set to any bilateral
relationship in the market (e.g., set by the regulator). We have:

(aij, bij) = (0, λ) with λ > max{eij} λ ∈ R+.

The value of λ will affect the efficiency of the non-conservative case. Never-
theless, it is possible to determine the value beyond which the previous results
on the efficiency of non-conservative compression still hold (i.e., achieving full
compression).
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Proposition 5. Given a market G = (N,E), if compression tolerances Γ =
{(aij, bij)|a, b ∈ R, i, j ∈ N} are set such that:

(aij, bij) = (0, λ) with λ > max eij λ ∈ R+

then,

C = {c|G′ = c(G) : ∆c
res(G) = 0} 6= ∅ ⇔ λ ≥ |vneti∗ |

|N−1.sign(vnet
i∗ )|

where i∗ ∈ N s.t. |vneti∗ | = max{|vneti | ∀i ∈ N}

Proof. See Appendix �

More generally we see that, a solution with 0 residual excess is possible for
any compression tolerance set Γ that satisfies the following conditions:

aij = 0, bij ≥
|vneti∗ |

|N−1.sign(vnet
i∗ )|

∀(aij, bij) ∈ Γ

A regulator can thus identify conditions under which all the excess can be
removed from the system under regulatory constraints on the exposure limit.

4.6.2 Conservative compression

In the conservative case, an operator can only reduce or remove existing trades.
As we noted before, only non-conservative compression can be applied to general
chains of intermediation as the breaking of intermediation chains generates new
ties. Nevertheless, when chains of intermediation are closed, we show that com-
pression can be used without requiring the creation of new ties. Let us formalize
the concept of closed intermediation chains:

Definition (Directed Closed Chain of Intermediation). A directed closed chain of
intermediation is a set of edges K = (N,E) arranged in a chain of intermediation
such that the first and last node are the same and no other node appears twice in
the set:

E = {e1,2, ..., ei,i+1, ..., en,1}

Hence ∏
i,j

eij > 0

This structure constitutes the necessary and sufficient condition for conserva-
tive compression to be applicable to a market:
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Proposition 6. Given a market G(N,E) and a compression operator cc satisfying
a conservative compression tolerance set Γ:

∆cc

red(G) > 0 ⇔ ∃E∗ ⊂ E s.t.
∏
e∗∈E∗

e∗ > 0

Proof. See Appendix �

Next, we show that the most efficient conservative compression (i.e., compres-
sion that removes the highest level of excess) on a single directed closed chain
consists of removing the contract with the lowest notional value in the chain.

Lemma 2. Given a directed closed chain K = (N,E), consider the set of com-
pression operations C satisfying a conservative compression tolerance set Γ such
that

C = min
x′

(c(N,E) : (N,E)→ (N ′, E ′))

then
e′ij = eij −mine{E}. ∀e′ ∈ E ′

and
∆c
res(K) = ∆(K)− Φ(E),

where Φ(E) = |E|mine∈E{E}.

Proof. See Appendix. �

On a directed chain, withdrawing the smallest trade removes the maximum
redundant excess without having to change the directionality of other trades. To
keep balances equal, when the trade is removed, its notional value is subtracted
from all other trades in the chain resulting in an excess reduction equal to the
value of the removed trade times the initial number of trades in the closed chain
of intermediation.

Given a market of several closed chains of intermediation, a conservative com-
pression algorithm would thus aim at breaking chains by removing the contract
with the smallest notional value. Breaking a closed chain of intermediation (i.e.,
the set of edges echainij ∈ Echain such that

∏
echainij > 0) results in a reduction of

excess by:
∆res(G) = ∆(G)− Φ(Echain).

At the end of the algorithm, the resulting compressed market does not contain
directed closed chains anymore: it is a Directed Acyclic Graph (DAG).11

Definition (Directed Acyclic Graph). A Directed Acyclic Graph is a graph that
does not contain any directed cycle (i.e. closed directed chains).

11In the Graph Theory literature, closed chains of intermediation are also called cycles.
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Corollary 5. A market resulting from a conservative compression is a directed
acyclic graph.

The fact that conservative compression cannot take place if there is no closed
chain of intermediation also yields a result on the efficiency limitation of such
compression class of operators. We show that, in general, the residual excess of
a conservative compression is positive (i.e., not all the excess can be removed).
However, there is a specific configuration of closed chains that allows complete
removal of excess. Consider the following type of chain.

Definition (Balanced chain). A balanced chain is a chain of intermediation K =
(N,E) which has the two following features:

1. |{e|e = mine{E}}| ≥ |E|
2

2. if ∃ei ∈ E|ei > mine{E} then {ei−1, ei+1} = {mine{E},mine{E}}

The first property of such chain is that more than half of edges have the same
value and this value is the minimum value of all the set of edges. The second
property states that, for any edge that has a value higher the the minimum value,
the edges preceding and succeeding it in the sequence of edges in the chain (i.e.,
ei−1 and ei+1) have the minimum value. A chain in which all edges have the same
value is thus a special case of a balanced chain.

We now show that conservative compression can remove all the excess only
when all closed chains of intermediation in the market are balanced.

Proposition 7. Given a market G(N,E) and a compression operator c() satis-
fying a conservative compression tolerance set Γ:

∆cc

res(G) = 0

i.i.f. all chains in E are closed and balanced.

Proof. See Appendix. �

From this result, we also obtain the following corollary:

Corollary 6. If there is at least one closed chain of intermediation that is not
balanced in G = (N,E), then:

∆cc

res(G) > 0.
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Figure 3: Example of market with entangled chains

The intuition behind this result is that, in order to completely remove the
excess, there must be no more intermediation in the resulting market. But since
a conservative compression cannot compress an intermediation chain that is not
(i) closed nor (ii) not balanced, there will be a level of excess that cannot be
removed from conservative compression, in the general case. Analyzing further the
efficiency of such approach is less straightforward than the non-conservative case.
In fact, the network structure of the market plays an important role that is not
merely captures in the excess values in part because the number of closed chains of
intermediation will affect the efficiency of a conservative compression. In contrast
with the non-conservative case, it is not possible to establish general expressions
for the expected residual and redundant excess under a conservative approach.
Next we establish conditions under which such formulation is feasible and, then,
we propose an algorithmic method to determine the conservative residual and
redundant excess amounts for any given network structure.

Special case

In order to reach a directed acyclic graph any algorithm would need to identify
and break all closed chains of intermediation. Nevertheless, the sequences of
chains to be compressed can affect the results. In fact, if two chains share edges,
compressing one chain modifies the value of the contracts also present in the other
one. There can be different values of residual excess depending on which closed
chain is compressed first.

Formally, we identify such case as a case of entangled chains of intermediation.

Definition (Entangled Chains). Two chains of intermediation, K1 = (N1, E1)
and K2 = (N2, E2), are entangled if they share at least one edge:

E1 ∩ E2 6= ∅

An illustration of entangled chains is provided in Figure 3 where the edge BC
is share by two chains of intermediation (i.e., ABC and BCD).
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As such, we formulate the following feature on a graph:

Definition. (Chain Ordering Proof). A market is chain ordering proof w.r.t. to
the conservative compression if the ordering of entangled chains by Φ does not
affect the efficiency of compression.

If the configuration of entangled chains is such that, according to the initial or-
dering of excess reduction resulting from a compression on each chain, the optimal
sequence is not affected by the effects of compression on other entangled chains,
the market is said to be chain ordering proof. Under the above Definition, the
optimal conservative compression yields a Directed Acyclic Graph (DAG) where
the excess is given by the following expression:

Proposition 8. Given a market G = (N,E). If there are no entangled chains,
we have:

∆res(G) = ∆(G)−
∑
Ki∈Π

Φ(EKi
)

In the presence of entangled chains, if G = (N,E) is chain-ordering proof, we
have

∆res(G) < ∆(G)−
∑
Ki∈Π

Φ(EKi
)

Where Π is the set of all chains of intermediation in G.

Proof. See Appendix �

For illustrative purpose, we present an algorithm that always reaches a global
solution under the chain ordering proof assumption in the Appendix.

Generalization

In practice, many markets can exhibit entangled chains with an ordering effect.
When the chain ordering proof assumption does not hold, the sequence of chains
upon which conservative compression is applied will affect the efficiency of the
compression. In order to guarantee a global solution, we characterize conservative
compression as a linear programming problem and apply the network simplex al-
gorithm to determine the most efficient compression procedure. Details regarding
the program characterization and the network simplex algorithm are provided in
the Appendix.12

12For further information on algorithmic solutions for linear programming problems and the
network simplex, see (Ahuja et al., 1993)
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4.7 Hybrid compression

In more realistic settings, compression tolerances can be subject to the strategical
role of specific trading relationships. In the following, we consider a hybrid model
that results from 2 main assumptions of market participants’ preferences:

Assumption 1. Dealers prefer to keep their intermediation role with customers

Assumption 2. Intra-dealer trades can be switched at negligible cost.

The first assumption states that dealers value their interaction with customers
and will reject compression exercises that remove such contracts. In the case of
a balanced intermediation chain (i.e., where the intermediary has 0 net position),
the intermediary(ies) can be removed from the solution and a sole contract would
be created between the two end-customers. The assumption here is that dealers
prefer to stick with the original situation and will set low compression tolerances
on their customer contracts.

The second assumption posits that the intra-dealer networks forms a well-
connected club where the interactions are so frequent overall that the instance
of a specific trade does not signal a strong preference towards a specific dealer
counterparty. As a result, switching counterparties in the intra-dealer network as
a result of compression has negligible costs in comparison with the overall benefits
of compression. The assumption thus results in high compression tolerances on
the contracts between dealers.

In our framework, these two assumptions lead to a segmentation of the market
into the two subsets defined by Definition 3.3: the intra-dealer market, i.e., ED,
and the customer market, i.e., EC . For each we have a different set of compression
tolerances. We have the following formal definition:

Definition (Hybrid compression). c(N,E) is a hybrid compression operator i.f.f.
c() is a compression operator that satisfies the compression tolerances set Γ:

aij = 0 and bij = eij, ∀(aij, bij) ∈ Γ, eij ∈ EC

aij = 0 and bij = +∞, ∀(aij, bij) ∈ Γ, eij ∈ ED

Where EC and ED are the customer market and the intra-dealer market, respec-
tively, with EC + ED = E.

The hybrid compression approach sets high compression tolerance in the intra-
dealer sub-network and low compression tolerance for contracts involving cus-
tomers. Hence, it is a combination of a non-conservative approach in the intra-
dealer network and a conservative approach in the customer network.

Corollary 7. The feasibility conditions of the hybrid model are
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• non-conservative condition for ED

• conservative condition for EC

In a market following the definitions of dealers and customers provided in
Section 3, we thus see that compression will only take place in the intra-dealer
network because no closed chains of intermediation will be present in the customer
network. This situation is similar to the conservative case. Nevertheless, the
compression on the intra-dealer network is now non-conservative. As a result,
the intra-dealer network will form a bi-partite graph with 0 residual intra-dealer
excess.

Proposition 9. Given a market G = (N,E), if

∆(N,E) = ∆(N,ED) + ∆(N,EC)

then, a compression operator ch() satisfying a hybrid compression tolerance set Γ
leads to

∆ch

res(N,E) = ∆(N,EC)

As a result, we see that, in case the excess is additive, it is straightforward
to obtain the efficiency of the hybrid compression. When it is not, a specific
algorithm must be implemented to obtain the exact level (see Appendix).

4.8 Bilateral compression

Finally, we look at a last benchmark: bilateral compression. In this case, market
participants do not share information about their portfolio, that is, there is no
centralization mechanism to identify compression opportunities beyond pairs of
counterparties. Hence, compression is limited to the bilateral sets of contracts that
exists between each pair of counterparty. Formalising this compression approach
allows us to assess the added-value of a third party agent (i.e., a compression
service provider follow either of the multilateral approaches presented above) in
comparison with the efficiency that market participants can reach when they can
compress their portfolio only given the information they hold (i.e., what they sell
and what they buy). In our framework, bilateral compression is defined as follows:

Definition (Bilateral compression). c(N,E) is a bilateral compression operator
i.f.f. c() is a compression operator that satisfies the compression tolerances set Γ:

aij = bij = max {eij − eji, 0}, ∀(aij, bij) ∈ Γ, eij ∈ E.
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For each pair of market participants i and j, we collect their bilateral expo-
sures, eij and eji and keep the largest exposure reduced by the lowest exposure,
thereby eliminating a cycle of length two. Hence, if we assume eij > eji, we have:
e
′
ij = eij − eji and e

′
ji = 0 after bilateral compression.

In terms of feasibility, the mere existence of excess is not enough for bilateral
compression to be applicable. In particular, we need at least two exposures for
the same pair of counterparties going with opposite signs. Formally, we have the
following results:

Proposition 10. Given a market G(N,E) and a compression operator cb satis-
fying a bilateral compression tolerance set Γ:

∆cb

red(G) > 0 ⇔ ∃i, j ∈ N s.t. eij.eji > 0 where eij, eji ∈ E

Proof. See Appendix �

The efficiency of bilateral compression is straightforward. It corresponds to
the effect of netting out each pair of bilateral exposures. We thus obtain the
following efficiency results:

Proposition 11. Given a market G = (N,E) and a compression operator cb()
satisfying a bilateral compression tolerance set Γ leads to

∆cb

res(G) = ∆(G)−
∑
i,j∈N

min{eij, eji} where eij, eji ∈ E.

Proof. See Appendix. �

Technically, bilateral compression results in the removal of all chains of inter-
mediation of length 1. Hence, a bilaterally compressed market exhibit a maximum
of one and only directed exposure between each pair of market participants.

4.9 Efficiency dominance among compression benchmarks

We close the theoretical discussion on compression by investigating the differences
in efficiency between the four benchmark approaches we have introduced, namely,
conservative, non-conservative, hybrid and bilateral. We are thus interested in
ranking the capacity of each approach to remove excess from a given generic
market. For each approach, we consider the maximum amount of excess that
can be removed, that is, we consider globally optimal solutions given compression
tolerances and the net-equivalent condition.

Proposition 12. Given a market G = (N,E) and the set of compression opera-
tors {cc(), cn(), ch(), cb()} such that:

29



• cc() satisfies a conservative compression tolerance set Γc such that ∆cc

red(G)
is maximized,

• cn() satisfies a non-conservative compression tolerance set Γn such that
∆cn

red(G) is maximized,

• ch() satisfies a hybrid compression tolerance set Γh such that ∆ch

red(G) is
maximized,

• cb() satisfies a bilateral compression tolerance set Γb such that ∆cb

red(G) is
maximized,

the following weak dominance holds:

∆cb

red(G) ≤ ∆cc

red(G) ≤ ∆ch

red(G) ≤ ∆cn

red(G) = ∆(G).

Proof. See Appendix. �

This result shows a clear dominance sequence from the least to the most ef-
ficient compression operator in reducing market excess. First, we see that the
non-conservative compression is the most efficient. This stems from the fact that
a global non-conservative solution always removes all the excess from a market
(see Proposition 4). The second most efficient compression operator is represented
by hybrid compression, followed by the conservative. The least efficient approach
is the bilateral compression. This lack of efficiency is due to the fact that bilat-
eral compression cannot remove excess resulting from chains of length higher than
two. The proof of this proposition derives from an analysis of the in compression
tolerance sets of each approach. In fact, it can be shown that the bilateral com-
pression tolerance set is a subset of the conservative set which in turn is a subset
of the hybrid set which is also a subset of the non-conservative set. This nested
structure for the compression tolerances sets ensures that any globally optimal
solution of a superset is at least as efficient as the globally optimal solution of
any subset. Additional analysis on the relative efficiencies of each approach (e.g.,
strong dominance, quantities, etc.) needs to include further information about
the underlying set of edges E (i.e., network characteristics). However, having es-
tablished the dominance sequence, we proceed next with a quantitative analysis
based on real market data.
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5 Empirical application

5.1 Analysis strategy

In this Section, we apply the theoretical framework developed in this paper to
a unique, transaction-level dataset for Credit-Default-Swaps (CDS) derivatives13.
The dataset covers all CDS transactions in which at least one counterparty is
legally based in the European Union from October 2014 to April 2016.14

Our analysis will be split in two main steps. First, in the next subsection, we
analyze the original markets as obtained from the procedure. For each market, we
compute the (i) dealer-customer network characteristics, (ii) excess statistics and
(iii) efficiency of three compression approaches: bilateral, conservative and hybrid
compression. We do not report results from non-conservative compression as an
optimal solution always leads to zero residual excess (see Proposition 4). Bilateral
compression is the result of a bilateral netting between all pairs of counterparties
in the market. In the case of the conservative and hybrid compressions, the results
are not trivial and require more sophisticated algorithmic approaches that ensure
globally optimal solutions. We use a linear programming framework to design
such solutions.15 For each market G, we implement each compression algorithm
and compute its efficiency (i.e, redundant excess) as a fraction of the total level
of excess:

• Bilateral: ρb =
∆b

red(G)

∆(G)
;

• Conservative : ρc =
∆c

red(G)

∆(G)
;

• Hybrid : ρh =
∆h

red(G)

∆(G)
.

In the previous Section, we have established theoretically the following effi-
ciency dominance ordering: bilateral, conservative and hybrid. Comparing the
efficiency, quantitative results from the three approaches allows us to assess 1)
the effect of synchronized multilateral compression (i.e., conservative and hybrid
cases) versus asynchronised bilateral compression (i.e., bilateral case)16 and 2) the

13CDS contracts are the most used types of credit derivatives. A CDS offers protection to the
buyer of the contract against the default of an underlying reference. The seller thus assumes
a transfer of credit risk from the buyer. CDS contracts played an important role during the
2007-2009 financial crisis. For more information, see (Stulz, 2010).

14For more details on the dataset, the general cleaning procedure and other statistics, see
(Abad et al., 2016)

15All algorithms used to solve these problems are described in the Appendix.
16The synchronization aspect stems from the fact that both the conservative and hybrid

approaches assume coordination among market participants (i.e., they all agree to compress the
submitted observed trades at the same time). This condition is not necessary in the bilateral
compression.
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effect of relaxing compression tolerances from bilateral to conservative to hybrid
approaches.

Second, we analyze markets after bilateral compression. In derivatives market,
participants, specially dealers, offset some positions by simply writing a symmet-
ric contract in the opposite direction with the same counterparty. Analyzing the
bilaterally compressed market thus allows us to quantify excess and compression
efficiency beyond the redundancy incurred by this specific behavior. As such,
we similarly analyze (i) dealer-customer network characteristics, (ii) excess statis-
tics and (iii) efficiency of two compression approaches: conservative and hybrid
compression. Doing so, we are thus able to quantify the marginal gains from syn-
cronized multilateral compression once all market participants have maximally
compressed their positions using only their local information. More broadly, com-
paring results from applying multilateral compression on the original market and
on the bilaterally compressed market, we are able to quantify the potential losses
in excess reduction due to the sequence of bilateral-then-multilateral compression.

5.2 Dataset description

There are multiple selection options to aggregate the data and build the network
of obligations. In the following, we expose our strategy which focuses on the most
conservative approach (i.e., we gather trades with minimal assumptions on their
fungibility).

Each bilateral transaction reports the identity of the two counterparties, the
underlying reference entity, the maturity of the contract, the currency and its
notional amount. For a given reference entity there can be several identifiers (e.g.,
government bonds with different maturities). At each point in time, we select
the most traded reference identifier (i.e., ISIN) associated to the reference with
the most traded maturity (by year). In practice, participants to a compression
process may combine a larger variety of contracts. For sake of simplicity and
consistency, we do not consider such cases in the following. At the participant
level, we select participants using their Legal Entity Identifier (i.e., LEI), that is,
the entity reporting the transaction. In practice, financial groups may decide to
submit trades coming from different legal entities of the same group. We do not
consider such case in the following.

We consider 19 mid-month snapshots from October 2014 to April 2016. Over-
all, our sample comprises 7300 reference entities. The vast majority of the no-
tional, however, is concentrated in a much lower number of entities. This allows
us to focus on a restricted sample of entities to illustrate our framework. We opt
to retain 100 reference entities which we find to be a good compromise between
the amount of notional traded and clarity of analysis. Our restricted sample com-
prises 43 sovereign entities (including the largest EU and G20 sovereign entities),
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27 financials (including the largest banking groups) and 30 non-financials entities
(including large industrial and manufacturing groups).

5.3 General statistics

An overview of the main statistics of the original markets is reported in Table 1.
In particular, the total notional of the selected 100 entities varies between 380Bn
Euros and 480Bn Euros retaining roughly 30 − 34% of the original total gross
notional. The average number of counterparties across the 100 entities is stable
and varies between 45 and 58 individual counterparties.

Time
Gross notional
of 100 top ref.
(E+11 euros)

Share of
gross notional
among all ref.

Avg
num. of
counterparties

Oct-14 3.88 0.358 54
Nov-14 4.16 0.349 55
Dec-14 4.4 0.357 58
Jan-15 4.73 0.361 57
Feb-15 4.67 0.355 57
Mar-15 4.35 0.351 51
Apr-15 3.87 0.338 46
May-15 3.91 0.337 45
Jun-15 3.86 0.343 47
Jul-15 3.9 0.347 50
Aug-15 3.9 0.344 52
Sep-15 3.94 0.350 53
Oct-15 4.08 0.349 55
Nov-15 4.18 0.351 55
Dec-15 4.24 0.348 55
Jan-16 4.39 0.351 55
Feb-16 4.33 0.348 56
Mar-16 3.94 0.350 49
Apr-16 4.37 0.352 49

Table 1: General statistics of the dataset.

Table 2 provides further statistics on the market segments (i.e, intra-dealer
and customer markets). Note that we identify dealers as intermediaries beyond
bilateral interactions. Indeed, from the formal definition of dealer in Definition 3,
two market participants buying and selling from each other would be identified as
dealers which does not properly reflect the role of dealers in derivatives markets.
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As such, by convention, we set market participants as dealer if they appear as in-
termediary in the bilaterally compressed market. Similarly, buying customers and
selling customers are determined using the bilaterally compressed market. This
convention does not affect the theoretical results and provides a more grounded
interpretation of the empirical results, in particular for the hybrid compression.

We compute the average number of dealers, customers on the buy side and
customers on the sell side across all entities in the different snapshots. We observe
stability of these numbers across time: per reference entity, there are on average
18 to 19 dealers, 12 to 17 customers buying a CDS contract, 14 to 21 customers
selling a CDS contract. The average number of contracts per reference entity
varies more through time but remains between 140 and 170 contracts. Taken as a
whole, markets are quite sparse with an average density of contracts around 0.10.
This means that, on average, only 10% of all possible bilateral contracts between
all market participants are actually present. Interestingly, this measure is almost
three times bigger when we only consider the intra-dealer market. We thus see that
the bulk of the activity in those market revolves around intra-dealer trades. The
amount of intra-dealer notional also highlights the level of activity concentration
around dealers: it averages around 80% of the total notional. Finally, the last
column of Table 2 confirms the very low frequency of customer-customer trades:
on average, less then 0.2% of all contracts are written without a dealer on either
side of the trade.

5.4 Quantifying excess and the efficiency of compression
in original markets

After this general analysis, we focus on quantitative assessments of the measures
introduced in this paper. We start by measuring the level of excess present in the
original markets as a function of the total gross notional (i.e., ε(G) = ∆(G)

x
). Ta-

ble 3 reports the statistics of excess levels of six snapshots equally spread between
October 2014 and April 16 including minimum, maximum, mean, standard devi-
ation and quartiles, computed across all reference entities in our sample. Results
on the means and medians are stable over time and often higher than 0.75. We
thus see that, in general, around three quarters of the gross notional in the most
traded CDS markets (at least by EU institutions) is in excess vis-a-vis market
participants’ net position. For example, in October 2014, this means that around
298Bn Euros correspond to notional excess. At the extremes, we note a high
degree of variability: the minimum levels of excess oscillate around 0.45 while the
maximum was 0.90. Nevertheless, this result shows that all markets exhibits at
least 50% of excess in notional.

We now move to the efficiency of different compression approaches reported in
Table 4. After having implemented the compression algorithms on each market
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Total Excess Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16

min 0.529 0.513 0.475 0.420 0.533 0.403 0.532
max 0.904 0.914 0.895 0.901 0.903 0.890 0.869
mean 0.769 0.777 0.766 0.757 0.751 0.728 0.734
stdev 0.077 0.082 0.085 0.090 0.082 0.096 0.080
first quart. 0.719 0.733 0.712 0.703 0.693 0.660 0.678
median 0.781 0.791 0.783 0.769 0.758 0.741 0.749
third quart. 0.826 0.847 0.832 0.822 0.808 0.802 0.796

Table 3: Excess statistics of original markets

(i.e., for all time snapshots, we run the algorithms on each of the 100 different
markets considered separately), we compute the efficiency of the compression as
defined in Section 5.1. As expected (and not reported in the table), for the non-
conservative compression, the amount of excess removed is equal in every part to
the results of Table 3.17

Analysing the means and medians, we observe that the bilateral compression
already manages to remove 50% of excess on average. Nevertheless both multilat-
eral compression approaches (i.e., conservative and hybrid) perform much better
by removing around 85% and 90% of the excess for the conservative and hybrid
approach respectively. Those levels are even larger than the maximum efficiency
achievable by bilateral compression which oscillates around 75%. In comparison
with the bilateral efficiency, the conservative and hybrid approaches perform sim-
ilarly on the extremes: with minima around 55% and 62% and maxima around
98% and 99%, respectively. Multilateral compression approaches appear almost
fully efficient. In particular, results from the conservative compression show that,
even under the severe constrain that contracts can only be removed and no new re-
lationship can be introduced, the vast majority of market’s excess can be reduced,
at least by half, at most leaving 1.2% of excess.

5.5 Quantifying excess and the efficiency of compression
in bilaterally compressed markets

As we have seen, bilateral excess, on average, accounts for half the excess of the
original markets. In order to understand excess and compression beyond bilateral
offsetting, we follow up by analyzing deeper the bilaterally compressed markets.

17Note that Table 3 also provides us with the upper efficiency limit of any compression ap-
proach and that the current compression exercise does not represent the amount of compression
achieved in the market, rather, it is the amount of compression that is still achievable given the
current state of outstanding trades
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Bilateral (ρb) Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16

min 0.278 0.281 0.286 0.277 0.276 0.276 0.260
max 0.779 0.791 0.759 0.777 0.717 0.711 0.746
mean 0.528 0.536 0.524 0.522 0.513 0.512 0.543
stdev 0.101 0.106 0.103 0.105 0.107 0.109 0.108
first quart. 0.464 0.460 0.469 0.452 0.448 0.444 0.448
median 0.526 0.542 0.535 0.530 0.517 0.528 0.555
third quart. 0.583 0.597 0.590 0.600 0.596 0.597 0.623

Conservative (ρc) Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16

min 0.558 0.547 0.545 0.507 0.491 0.528 0.574
max 0.985 0.982 0.973 0.967 0.968 0.979 0.969
mean 0.836 0.857 0.848 0.843 0.828 0.827 0.834
stdev 0.091 0.087 0.090 0.091 0.104 0.106 0.090
first quart. 0.781 0.816 0.810 0.800 0.777 0.773 0.788
median 0.852 0.880 0.868 0.858 0.849 0.847 0.860
third quart. 0.906 0.925 0.913 0.915 0.902 0.907 0.904

Hybrid (ρh) Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16

min 0.589 0.626 0.636 0.653 0.574 0.619 0.676
max 0.990 0.994 0.988 0.990 0.994 0.989 0.990
mean 0.878 0.898 0.894 0.893 0.881 0.882 0.898
stdev 0.079 0.072 0.074 0.073 0.085 0.080 0.069
first quart. 0.821 0.859 0.862 0.865 0.831 0.836 0.863
median 0.894 0.916 0.918 0.912 0.901 0.908 0.911
third quart. 0.935 0.952 0.947 0.951 0.948 0.945 0.947

Table 4: Statistics of compression efficiency of original markets
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We obtain dealer-customer network characteristics reported in Table 5. While
the participant-based statistics are equal to Table 2, there is a reduction in all
contract-related statistics except the intra-customer density which remains the
same: the average number of contracts is reduced by 25 percentage points. while
the intra-dealer share of notional is only affected by 5 percentage points. Hence,
we see that, despite the density reduction, concentration remains onto the intra-
dealer activity after bilateral compression.18

In terms of excess, Table 6 complements the results from the bilateral com-
pression efficiency and reports statistics similar to Table 3.19 At the extremes, we
note a high degree of variability: for example, in mid-January 2016, the minimum
level of excess was 0.261 while the maximum was 0.809. Nevertheless, results on
the means and medians are stable over time and alway higher than 0.5. We thus
see that, in general, around half of the gross notional of bilaterally compressed
market remains in excess vis-a-vis market participants’ net position. Note that
the gross notional used here is the total notional left after bilateral compression
on the original market.

Table 7 reports the results related to the efficiency of conservative and hy-
brid compression applied to the already bilaterally compressed market. On the
extremes, both the conservative and the hybrid compression perform with vari-
ous degrees of efficiency: the minimum amount of excess reduction via conserva-
tive compression (resp. hybrid compression) oscillates around 15% (resp. 35%)
while the maximum amount of excess oscillates around 90% (resp. 97%). This
shows that compression can perform very efficiently and very poorly with both
approaches. However, the fact that conservative compression reaches 90% of ex-
cess removal shows the possibility of having very efficient compression despite
restrictive compression tolerances. The mean and the median of both approaches
are stable over time: both around 60% for the conservative compression and 75%
for the hybrid compression. Overall, we find that on average each compression
algorithm is able to remove more than half of the excess from the market, the
hybrid compression allowing for greater performances as a result of constraints
alleviation (i.e., relaxation of intra-dealer compression tolerances).

To summarize the difference of results in efficiency when applying conservative
and hybrid compression on either the original market or the the bilaterally com-
pressed market, we show in Figure 4, box plots reporting the efficiency ratio with

18Note that the average intra-customer density is equal to Table 2. In theory, we should have
doubled the value as the density of the bilaterally netted intra-customer networks should be
seen as the density of a undirected graph. We kept the previous definition to highlight the fact
that the intra-customers contracts were not affected by the bilateral compression and avoid a
misinterpretation of density increase.

19The relationship between the bilateral compression efficiency, ρb and the relative excesses in
the original market, εo, and the bilaterally compressed market, εb, is given by ρb = (1− 1−εo

1−εb ) 1
εo .

This expression directly follows from the definition of each parameter.
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Total Excess Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16

min 0.422 0.423 0.290 0.257 0.366 0.261 0.293
max 0.811 0.811 0.798 0.809 0.820 0.809 0.781
mean 0.614 0.621 0.614 0.602 0.597 0.570 0.558
stdev 0.087 0.087 0.091 0.095 0.097 0.112 0.098
first quart. 0.562 0.558 0.562 0.544 0.531 0.489 0.503
median 0.617 0.618 0.614 0.613 0.594 0.569 0.566
third quart. 0.670 0.684 0.674 0.663 0.654 0.653 0.635

Table 6: Excess statistics after bilateral compression

Conservative (ρc) Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16

min 0.160 0.203 0.140 0.163 0.165 0.119 0.098
max 0.894 0.927 0.923 0.878 0.912 0.911 0.878
mean 0.568 0.622 0.599 0.592 0.555 0.552 0.525
stdev 0.166 0.160 0.164 0.158 0.175 0.183 0.172
first quart. 0.456 0.505 0.512 0.489 0.435 0.437 0.409
median 0.562 0.636 0.594 0.591 0.537 0.550 0.546
third quart. 0.685 0.729 0.728 0.705 0.680 0.687 0.643

Hybrid (ρh) Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16

min 0.370 0.460 0.377 0.281 0.259 0.281 0.135
max 0.971 0.973 0.968 0.963 0.977 0.974 0.981
mean 0.724 0.763 0.760 0.755 0.738 0.735 0.752
stdev 0.149 0.130 0.130 0.130 0.146 0.140 0.148
first quart. 0.623 0.691 0.678 0.674 0.626 0.642 0.679
median 0.735 0.785 0.781 0.778 0.775 0.756 0.784
third quart. 0.846 0.866 0.859 0.866 0.849 0.851 0.845

Table 7: Statistics of compression efficiency after bilateral compression
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From Figure 4, we observe that applying a multilateral compression algo-
rithm on the original market is always more efficient than through the sequence
of bilateral plus multilateral compression. Nevertheless, the difference for hybrid
compression is very small (i.e., about a 1 percentage point improvement in the
median) while it is more apparent in the conservative compression (i.e., up to 7
percentage points) showing a marked sensitivity of the conservative efficiency vis-
a-vis prior bilateral compression step. Overall, the Figure also highlights, again,
the generally high efficiency of the two multilateral approaches.

Finally, in order to better appreciate the levels of compression achievable in
the CDS market, we “zoom-in” into the top 5 reference entities by notional across
all time snapshots and investigate how much notional value can be eliminated
via compression. The top five reference entities are all large sovereigns. For each
market, let eijk be the notional contract between i and j on the k-th reference
entity and xk =

∑
k eijk be the total gross notional outstanding on reference

entity k. Let wk = xk∑
k xk

be the relative gross notional for entity k vis-a-vis the

total notional of the 5 markets aggregated. Consider the relative excess ratio
ε(G) = ∆(G)

x
, we compute the following ratio for each compression approach:

Non-conservative: εkn(G) = εk(G),

Hybrid: εkh(G) = ρkh × ε(G),

Conservative: εkc (G) = ρkc × ε(G).

Finally, we compute the weighted average for each of these ratios as follows:

Non-conservative: εn =
5∑

k=1

(
wk ε

k(G)
)
,

Hybrid: εh =
5∑

k=1

(
wk ρ

k
h × ε(G)

)
,

Conservative: εc =
5∑

k=1

(
wk ρ

k
c × ε(G)

)
.

These ratios can be easily interpreted as the fraction of notional that can be
eliminated over all the top five entities, when taken individually. Results for these
weighted averages are reported in Figure 5. The circled series highlighted by
the light blue shade represent the weighted non-conservative compression ratio εn
(which coincides with the weighted level of excess); the triangle markers repre-
sent the weighted hybrid compression ratio εh; the squared markers represent the
conservative compression ratio εc. From the figure, we observe again large levels
of excess across time, i.e. between 60% and 70%. In addition, the conservative
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6 Closing remarks

In this work, we show that Over-The-Counter (OTC) markets with contingent
and fungible trades generate gross volumes that can far exceed the amounts sat-
isfying every market participants’ net position. We call this difference excess. In
particular, we show that the activity of dealers acting as intermediaries between
customers but also between other dealers is the factor determining the level of
excess in a market. In turn, we show ways to removed this excess while keeping
net positions satisfied through a netting operation called compression. To the best
of our knowledge, this work is the first to propose a comprehensive framework to
analyze the mechanics of compression (i.e., feasibility and efficiency conditions).
Using this framework, we find the existence of a trade-off between the fraction of
excess that can be eliminated from the market via compression and the degree to
which the operation is limited by specific constraints, such as pre-existing trading
exposures. Furthermore, using a unique granular dataset on bilateral exposures
from Credit Default Swaps (CDS) contracts, we quantify the levels of excess and
the efficiency of different compression procedures in real OTC markets. On aver-
age we find that around 75% of market sizes relates to excess of notional. While
around 50% can in general be removed via bilateral compression, multilateral
compression approaches can remove almost all the excess. In particular, we find
that even the most conservative approach which satisfies pre-existing relationship
constrains can eliminate up to 98% of excess in the markets.

The framework introduced in this paper accommodates several novelties. A
natural extension is to allow compression over pools of multiple asset classes. In-
deed, OTC market participants are often involved in several markets (D’Errico
et al., 2016) and the intricacies of these layered positions can generate efficiency
trade-offs (Duffie and Zhu, 2011; Cont and Kokholm, 2014). Such extension would
require the introduction of explicit fungibility relationships between the different
classes of obligations and means to identifying the cost and benefits of compres-
sion.

Along these lines, as OTC trades are increasingly called for standardiza-
tion and mandatory central clearing, the role of Central Clearing Counterparties
(CCPs) in determining excess and efficiency of compression is hence becoming a
paramount matter. While we do not explicitly tackle this aspect, a simple intu-
ition can be drawn from the results. In fact, CCPs in our framework would be
peculiar nodes: they would have a strictly balanced position. In case the market
contains only one CCP and all trades are cleared, the excess in the market would
simply be equal to half of the aggregate gross notional. In fact, each bilateral
trade would be novated to the CCP resulting in a double counting of the related
notional. Nevertheless, in the presence of several CCPs and the co-existence of
cleared and non-cleared trades, the situation becomes non-trivial as the deter-
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mination of excess and compression efficiency will depend on the level of both
cleared and uncleared trades. Such analysis is straightforward using our frame-
work. Note that the effect on the efficiency of CCPs in presence of compression
is also non-trivial as discussed by Duffie and Zhu (2011).

The role that compression can play for systemic risk mitigation is major. Our
results show the way compression, by reducing counterparty gross exposures, may
limit the effects of contagion in times of distress. Interestingly, at the onset of
the Great Financial Crisis, Lehman, which was believed to be counterparty to
around $5 trillion of CDS contracts (Haldane, 2009) was reportedly subject to
a compression exercise run in collaboration with policymakers20. However, the
attempt was unsuccessful due to technical limitations and timing constraints.
Though it is difficult to gauge the exact impact of a successful procedure, our
findings suggest that, as a major dealer, Lehman’s portfolio might have been
largely compressed potentially curbing the systemic effects of its default.

In general, the relationship between compression and financial stability can
be explored in several ways. Here, we list three major avenues. The first relates
to the elimination (or mitigation) of the effects of chains of obligations, which
have been identified as a source of uncertainty and instability by Roukny et al.
(2016) and giving rise to frictions such as payments gridlocks (Rotemberg, 2011).
Given these premises, compression provides an additional mechanism to mitigate
these effects. Second, compression naturally leads to a reshaping of the under-
lying web of exposures. Compression solutions could, in some cases, concentrate
exposures into specific market segments. While this effect can be both intended
or unintended, it does involve non-negligible changes in counterparty risk, levels
of collateral exchange, etc. Third, compression impacts capital management by
its effect leverages. For example, OTC derivative exposures are accounted for in
the Basel III leverage ratio. Banks’ capital must therefore include those gross
exposures. As compression reduces gross exposures, banks lower the amount of
capital necessary to cover the same positions. There can be two views on the
matter. On the one hand, reducing capital requirements frees up “unused” lever-
age, reduces inventory costs for dealers and thus increases liquidity. On the other
hand, reducing capital requirements affects the loss absorption capacity of market
participants potentially making the stability of the market as a whole worse off.

Finally, our framework does not pertain uniquely to contingent claims arising
from financial institutions. It can also find applications for non-financial firms,
thereby allowing to quantify the levels of excess and potential compression in the
real economy. Indeed, as long as a market exhibits outstanding fungible positions
and intermediaries, compression may reduce the total amount of outstanding debt
due and liquidity needs (Kiyotaki et al., 1997).

20See the Bloomberg article by B. Ivry, C. Harper and M. Pittman, “Missing Lehman Lesson
of Shakeout Means Too Big Banks May Fail” September 8, 2009.
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A Proofs

A.1 Proposition 1

Proof. The proof consists of two steps.

1. First, we show that given a market G = (N,E), we can always find a net-
equivalent market G′ with total notional of x′ as in Equation 1.

Consider the partition of N into the following disjoint subsets: N+ =
{i|vneti > 0}, N− = {i|vneti < 0} and N0 = {i|vneti = 0} (such that N =
N+

⋃
N−

⋃
N0). Let B ∈ N × N be a new set of edges (each with weight

bij) such that:

• ∀bij s.t. (i, j) ∈ B, i ∈ N+, j ∈ N−;

•
∑

j bij = vneti , ∀i ∈ N+;

•
∑

i bij = vnetj , ∀j ∈ N−.

The total notional of the market G′ = (N,B) is thus given by:

x′ =
∑
i

∑
j

bij =
∑
i∈V +

vneti =
∑
i∈V −
|vneti |.

As edges in B only link two nodes within N (i.e., the system is closed),
the sum of all net position is equal to 0:

∑
i v

net
i = 0. Hence, we have:∑

i∈V + vneti +
∑

j∈V − v
net
j = 0. We see that, in absolute terms, the sum of net

positions of each set (V + and V −) are equal: |
∑

i∈V + vneti | = |
∑

j∈V − v
net
j |.

As all elements in each part have the same sign by construction, we ob-
tain:

∑
i∈V + |vneti | =

∑
j∈V − |vnetj |. As a result, we have:

∑
i∈V + vneti =

1
2
|
∑

i∈V v
net
i |.

2. Second, we show that x′ is the minimum total notional attainable from a
net-equivalent operation over G = (N,E). We proceed by contradiction.
Consider G′ = (N,B) as defined above and assume there exists a G∗ =
(N,B∗) defined as a net-equivalent market to G′ such that x∗ < x′. At the
margin, such result can only be obtained by a reduction of some weight in
B: ∃b∗ij < bij. If x∗ < x′, then there exists at least one node for which
this reduction is not compensated and thus ∃v∗neti < vneti . This violates
the net-equivalent condition. Hence, x′ =

∑n
i: vNi >0 v

N
i is the minimum net

equivalent notional.

�
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A.2 Lemma 1

Proof. By definition, δ(i) = 1 ⇔
∑

j eij ·
∑

j eji > 0: a dealer has thus both
outgoing and incoming edges. Then it holds that:

δ(i) = 1 ⇒ vgrossi > |vneti | ⇔
∑
j

eij +
∑
j

eji >

∣∣∣∣∣∑
j

eij −
∑
j

eji

∣∣∣∣∣ .
In contrast, for a customer

∑
j eij ·

∑
j eji = 0 and thus δ(i) = 0. Then it holds

that:

δ(i) = 0 ⇒ vgrossi = |vneti | ⇔
∑
j

eij +
∑
j

eji =

∣∣∣∣∣∑
j

eij −
∑
j

eji

∣∣∣∣∣ .
The equality is simply proven by the fact that if i is a customer selling (resp.
buying) in the market, then

∑
j eji = 0 (resp.

∑
j eij = 0) and thus both ends of

the above equation are equal.

If G = (N,E) has
∑

i∈N δ(i) = 0, then all market participants are customers, and
we thus have: vgrossi = |vneti | ∀i ∈ N . As a result, the excess is given by

∆(G) = x− 1

2

∑
i

∣∣vneti

∣∣ = x− 1

2

∑
i

|vgrossi | .

As in the proof of Proposition 1, the market we consider is closed (i.e., all edges
relate to participants in N) and thus:

∑
i |v

gross
i | = 2x. We thus have no excess

in such market: ∆(G) = 0.

If G = (N,E) has
∑

i∈N δ(i) > 0, then some market participants have vgrossi >
|vneti |. As a result, the excess is given by:

∆(G) = x− 1

2

∑
i

|vneti | =
1

2

∑
i

|vgrossi | − 1

2

∑
i

|vneti | =

=
∑
i

|vgrossi | −
∑
i

|vneti | > 0

�
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A.3 Proposition 2

Proof. For sake of clarity, in the following we only focus the notation on the set of
edges for the computation of excess. In general, let us decompose the set of edges
E in two subsets A and B such that E = A ∪ B and

∑
ij eij =

∑
ij aij +

∑
ij bij.

We want to verify if
∆(E) = ∆(A) + ∆(B)

We decompose each part according to the definition of excess:∑
ij

eij − 0.5
∑
i

|
∑
j

(eij − eji)| =
∑
ij

aij − 0.5
∑
i

|
∑
j

(aij − aji)|+
∑
ij

bij+

− 0.5
∑
i

|
∑
j

(bij − bji)| =

−0.5
∑
i

|
∑
j

(eij − eji)| = −0.5
∑
i

|
∑
j

(aij − aji)|+

− 0.5
∑
i

|
∑
j

(bij − bji)|∑
i

|
∑
j

(eij − eji)| =
∑
i

|
∑
j

(aij − aji)|+
∑
i

|
∑
j

(bij − bji)|∑
i

|
∑
j

(eij − eji)| =
∑
i

|
∑
j

(aij − aji)|+
∑
i

|
∑
j

(bij − bji)|∑
i

|
∑
j

(aij + bij − aji − bji)| =
∑
i

|
∑
j

(aij − aji)|+
∑
i

|
∑
j

(bij − bji)|∑
i

|
∑
j

(aij − aji) +
∑
j

(bij − bji)| =
∑
i

(
|
∑
j

(aij − aji)|+ |
∑
j

(bij − bji)|
)

This later relationship is not true in general due to the convexity of the absolute
value function. Using Jensen’s inequality we thus have the following relationship:

∆(E) ≥ ∆(A) + ∆(B)

We now identify specific cases under our framework in which the relationship
holds. Let us decompose the original additivity expression:

∆(E) = ∆(ED) + ∆(EC)∑
i

|
∑
j

(eij − eji)| =
∑
i

|
∑
j

(eDij − eDji)|+
∑
i

|
∑
j

(eCij − eCji)|

We can decompose each part in the context of a dealer-customer network.
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1) For the whole network we have

∑
i

|
∑
j

(eij − eji)| =
dealer∑
d

|
∑
j

(edj − ejd)|+
customer∑

c

|
∑
j

(ecj − ejc)|

=
dealer∑
d

|
∑
j

(edj − ejd)|+
customer+∑

c+

|
∑
j

(ec+j − ejc+)|+

+
customer−∑

c−

|
∑
j

(ec−j − ejc−)| =

=
dealer∑
d

|
∑
j

(edj − ejd)|+
customer+∑

c+

|
∑
j

(ec+j)|+

+
customer−∑

c−

|
∑
j

(−ejc−)| =

=
dealer∑
d

|
∑
j

(edj − ejd)|+
customer+∑

c+

dealer∑
d

ec+d +
customer−∑

c−

dealer∑
d

edc−

2) For the dealer network we have

∑
i

|
∑
j

(eDij − eDji)| =
dealer∑
d

|
dealer∑
h

(eDdh − eDhd)|

3) For the customer network we have

∑
i

|
∑
j

(eCij − eCji)| =
dealer∑
d

|
∑
j

(eCdj − eCjd)|+

+
customer+∑

c+

|
∑
j

(eCc+j − eCjc+)|
customer−∑

c−

|
∑
j

(eCc−j − eCjc−)|

=
dealer∑
d

|
∑
j

(eCdj − eCjd)|+
customer+∑

c+

dealer∑
d

eCc+d +
customer−∑

c−

dealer∑
d

eCdc−

Combining equations, we obtain:

dealer∑
d

|
n∑
j

(edj − ejd)| =
dealer∑
d

|
dealer∑
h

(eDdh − eDhd)|+
dealer∑
d

|
customer∑

c

(eCdc − eCcd)|
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We continue decomposing the different elements.

1) For the whole network:

dealer∑
d

|
n∑
j

(edj − ejd)| =
dealer∑
d

|
dealer∑
h

(edh − ehd) +
customer+∑

c+

(edc+ − ec+d) +
customer−∑

c−

(edc− − ec−d)|

=
dealer∑
d

|
dealer∑
h

(edh − ehd) +
customer+∑

c+

edc+ −
customer−∑

c−

ec−d|

2) for the dealer and customer networks:

dealer∑
d

|
dealer∑
h

(eDdh − eDhd)|+
dealer∑
d

|
customer∑

c

(eCdc − eCcd)| =

dealer∑
d

|
dealer∑
h

(eDdh − eDhd)|+
dealer∑
d

|
customer+∑

c+

eCdc+ −
customer−∑

c−

eCc−d|

After this decomposition, we can remove the subscripts related to the different
networks, and we obtain the general condition for additive excess:

dealer∑
d

|
dealer∑
h

(edh − ehd) +
customer+∑

c+

edc+ −
customer−∑

c−

ec−d| =

dealer∑
d

|
dealer∑
h

(edh − ehd)|+
dealer∑
d

|
customer+∑

c+

edc+ −
customer−∑

c−

ec−d|

Hence, the above relationship holds when

1.
∑dealer

h (edh − ehd) = 0, ∀d ∈ D

or

2.
∑customer+

c+ edc+ −
∑customer−

c− ec−d = 0, ∀d ∈ D

�
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A.4 Proposition 3

Proof. Non-conservative compression tolerances allow all possible re-arrangements
of edges. Hence, the only condition for non-conservative compression to remove
excess (i.e., ∆cn

red(G) > 0) is merely that excess is non-zero (i.e., ∆(G) > 0). From
Lemma 1, we know that positive excess exists in G = (N,E) only when there is
intermediation (i.e., ∃i ∈ N |δ(i) = 1). �

A.5 Proposition 4

Proof. We proceed by defining a procedure that respects the non-conservative
compression constraints and show that this procedure (algorithm) generates a
new configuration of edges such that the resulting excess is 0.

Similar to the proof of Proposition 1, consider the three disjoint subsets N+ =
{i|vneti > 0}, N− = {i|vneti < 0} and N0 = {i|vneti = 0}, such that N =
N+

⋃
N−

⋃
N0. Let B be a new set of edges such that:

• ∀bij ∈ B, i ∈ N+, j ∈ N−

•
∑

j bij = vneti , ∀i ∈ N+

•
∑

i bij = vnetj , ∀j ∈ N−

The market G′ = (N,B) is net-equivalent to G while the total gross notional is
minimal in virtue of Proposition 1. The nature of the new edges makes G′ bipartite
(i.e., ∀bij ∈ B, i ∈ N+, j ∈ N−), hence, there is no intermediation in G′. The
procedure depicted above to obtain B is a meta-algorithm as it does not define all
the steps in order to generate B. As a result, several non-conservative compression
operation cn can satisfy this procedure. Nevertheless, by virtue of Proposition 3,
each of these non-conservative compression operation lead to ∆cn

res(G) = ∆(G′) =
0 �

A.6 Proposition 5

Proof. The value of λ will affect the efficiency of the compression. In order to
achieve full compression, we show that λ must be above a certain limit. Let us
decompose N , the set of nodes, as follows:

N+ = {i|vneti > 0}, N− = {i|vneti < 0}, N0 = {i|vneti = 0}
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As a result, N = N+ ∪ N− ∪ N0. In a case of 0 residual excess, the node with
positive net balance can only interact with a node with negative balance (i.e.,
bi-partite graph):

∀êij ∈ Ê : i ∈ N+, j ∈ N−

Hence, the maximum possible value of a contract resulting from such compres-
sion is:

max{êij} = max{|vneti |}

For the node with max{|vneti |}, i∗, the portfolio configuration such that bilateral
exposure is minimized is the uniform distribution:

max{êi∗j} =
|vneti∗ |

|N−1.sign(vnet
i∗ )|

If the exposure limit λ is set such that this configuration is feasible, we know a
solution with 0 residual excess is always feasible.

More generally we see that, a 0 residual solution is possible for any compression
tolerance set that satisfies the following conditions:

aij = 0, bij ≥
|vneti∗ |

|N−1.sign(vnet
i∗ )|

∀(aij, bij) ∈ Γ

�

A.7 Proposition 6

Proof. In a conservative compression, we have the constraint:

0 ≤ e′ij ≤ eij ∀i, j ∈ N

At the individual level, assume i is a customer selling in the market (i.e., δ(i) = 0).
Under a conservative approach, it is not possible to compress any of the edges of
i. In fact, in order to keep the net position of i constant, any reduction of ε in an
edge of i (i.e., e′ij = eij−ε) requires a change in some other edge (i.e., e′ik = eik+ε)
in order to keep v′neti = vneti . Such procedure violates the conservative compression
tolerance: e′ik = eik + ε > eik. The same situation occurs for customers buying.
Conservative compression can thus not be applied to node i if δ(i) = 0.

The only configuration in which a reduction of an edge eij does not require a
violation of the conservative approach and the net-equivalence condition is when
i can reduce several edges in order to keep its net balance. In fact, for a node i, the
net position is constant after a change

∑
j e
′
ij =

∑
j eij−ε if it is compensated by a

change
∑

j e
′
ji =

∑
j eji−ε. Only dealers can apply such procedure. Furthermore,
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such procedure can only be applied to links with other dealers: a reduction on one
link triggers a cascade of balance adjusting that can only occur if other dealers
are concerned as customers are not able to re-balance their net position as shown
above. Hence, the redundant excess for a conservative approach emerges from
intra-dealer links.
Finally, the sequence of rebalancing and link reduction can only finish once it
reaches the initiating node back. Hence, conservative compression can only be
applied to closed chains of intermediation, that is, a set of links E∗ ⊂ E such that
all links have positive values

∏
e∗∈E∗ e

∗ > 0. �

A.8 Lemma 2

Proof. A conservative compression on a closed chain of intermediation K =
(N,E)→ (K,E ′) implies that, in order for the compression to be net equivalent
(i.e., v

′net
i = vneti ∀i ∈ N), a reduction by and arbitrary ε ∈ [0,maxij{eij s.t. (i, j) ∈

E}] on an edge e′ik = eik − ε must be applied on all other edges in the chain:
e′ = e− ε ∀e′ ∈ E ′.

Overall, reducing by ε one edge, leads to an aggregate reduction of |E|ε after
re-balancing of net positions.

Recall that, in a conservative compression, we have 0 ≤ e′ij ≤ eij. Hence, for each
edge, the maximum value that ε can take is eij. At the chain level, this constraint
is satisfied i.f.f. ε = mine{E}. The redundant excess is given by |E|mine{E} and
the residual excess is thus

∆c
res(K) = ∆(K)− |E|mine{E}

�

A.9 Proposition 7

Proof. From Corollary 4, we know that all the excess is removed from a market
when the resulting set of edges E ′ form a bi-partite structure (i.e., not interme-
diation). We also know that from Proposition 6, that conservative compression
can only be applied to closed chains of intermediation. Hence, given G = (N,E),
in order to obtain ∆c

res(G) = 0, we need that (1) all chains are closed chain, to
apply conservative compression and (2) all closed chains are balanced, to remove
all the excess.
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The first condition stems from Proposition 6. The second condition is justified
as follows. Consider the special case where K = (N,E) is a closed chain of
intermediation such that:

ei = α ∀ei ∈ E,α ∈ R+
0

In this chain, the net position of all nodes i ∈ N is 0. Hence, removing all
the edges satisfies the net-equivalence property and the conservative compression
tolerance. As a result, we have ∆cc

res(G) = 0 simply because x′ = 0.
Next, consider changing K = (N,E) such that one single edge has a higher

value than all the others which remain with the value α:

∃1!e∗ ∈ E|e∗ > α.

Following the Lemma 2, we can remove all edges equal to α and modify e∗ such
that

e
′∗ = e∗ − α.

The market G′ has been compressed conservatively and only has one edge left
(i.e., E ′ = {e′∗}). As a result, there is no excess in G′ (i.e., no intermediation)
and ∆cc

res(G) = 0.
For a closed chain of any length and heterogeneous edge value distribution,

the breaking of intermediation chain can only be done if a node with an edge with
values higher than the minimum has the other edge equal to the minimum. Such
property is only satisfied when closed chains of intermediation are balanced in the
sense of Definition 4.6.2. �

A.10 Proposition 8

Proof. If there are no entangled chains in G = (N,E), then the following conser-
vative procedure:

1. list all closed chains of intermediation Ki ∈ Π and

2. maximally compress each chain separately,

reaches maximal efficiency. The residual excess is given after aggregating the
excess removed on each closed chain separately:

∆res(G) = ∆(G)−
∑
Ki∈Π

|Ei|mine{Ei}.

If there are entangled chains but the market G = (N,E) is chain ordering proof,
compressing chains separately only provides the upper bound as there will be
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cases where entangled chains will need to be updated (due to the reduction of one
or more edges). Hence, we have,

∆res(G) ≤ ∆(G)−
∑
Ki∈Π

|Ei|min
e
{Ei}.

�

A.11 Proposition 9

Proof. If ∆(N,E) = ∆(N,ED) + ∆(N,EC), then we can separate the compres-
sion of each market.

Intra-dealer market (N,ED). According to the hybrid compression, the set
of constraints in the intra-dealer market is given by a non-conservative compres-
sion tolerances set. According to Proposition 4, the residual excess is zero. We
thus have:

∆ch

res(N,E
D) = 0.

Intra-dealer market (N,ED). According to the hybrid compression, the
set of constraints in the customer market is given by a conservative compression
tolerances set. Since, by construction, the customer market does not have closed
chains of intermediation, it is not possible to reduce the excess on the customer
market via conservative compression. We thus have:

∆ch

res(N,E
C) = ∆(N,EC).

Finally, we obtain

∆ch

res(N,E) = ∆ch

res(N,E
D) + ∆ch

res(N,E
C)

= ∆(N,EC)

�

A.12 Proposition 10

Proof. If the market G = (N,E) is such that @i, j ∈ N s.t. eij.eji >
0 where eij, eji ∈ E then the compression tolerances will always be:

aij = bij = max {eij − eji, 0} = eij

Hence, ∆cb

red(G) = ∆red(G) and thus ∆cb

res(G) = 0. If the market G = (N,E)
is such that ∃i, j ∈ N s.t. eij.eji > 0 where eij, eji ∈ E then the bilateral

compression will yield a market G′ = (N,E ′) where x
′
< x. Hence, ∆cb

red(G) <
∆red(G) and thus ∆cb

res(G) > 0 �
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A.13 Proposition 11

Proof. If the market G = (N,E) is such that ∃i, j ∈ N s.t. eij.eji >
0 where eij, eji ∈ E, then, bilaterally compressing the pair i and j yields the
following situation. Before compression, the gross amount on the bilateral pair
was eij + eji. After compression, the gross amount on the same bilateral pair
is |eij − eji|. Hence, we have a reduction of gross notional of 2.min{eij, eji}.
The market gross notional after compression of this bilateral pair is thus given
by: x

′
= x − 2.min{eij, eji} and the excess in the new market (i.e., residual ex-

cess after having bilaterally compressed the pair (i, j)) follows the same change:
∆res(G) = ∆(G) − 2.min{eij, eji}. We generalize the result by looping over all
pairs and noting that the reduction min{eij, eji} is doubled counted: pairing by
(i, j) and (j, i). Hence, we reach the following expression of the residual excess:

∆cb

res(G) = ∆(G)−
∑
i,j∈N

min{eij, eji} where eij, eji ∈ E

�

A.14 Proposition 12

Proof. We proceed by analyzing sequential pairs of compression operators and
show the pairing dominance before generalizing. We start with the bilateral
compressor cb() and the conservative compressor cc(). Let (abij, b

b
ij) ∈ Γb and

(acij, b
c
ij) ∈ Γc be the set of compression tolerance for the bilateral and conserva-

tive compressor, respectively. We have the following relationship:

acij ≤ abij = bbij ≤ bcij ∀eij ∈ E

In fact, by definition of each compression tolerance set, we have:

0 ≤ max{eij − eji, 0} ≤ eij ∀eij ∈ E

Hence, we see that the set of possible values couple for bilateral compression
is bounded below and above by the set of conservative compression values. By
virtue of linear composition, a solution of the bilateral compression thus satisfies
the conservative compression tolerance set. The other way is not true as the lower
bound in the bilateral case abij can be equal to eij − eji while in the conservative
case, we always have that acij = 0. Hence, in terms of efficiency, we have that
a globally optimal conservative solution is always at least equal, in redundant
excess, to the globally optimal bilateral solution: ∆cb

red(G) ≤ ∆cc

red(G). The case
in which the efficiency of ∆cc

red(G) is higher is a function of the network struc-
ture of G. In fact, if the market G only exhibits cycles of length one, we have
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∆cb

red(G) = ∆cc

red(G). Once G exhibits higher length cycles, we have a strict domi-
nance ∆cb

red(G) < ∆cc

red(G). Similar reasoning is thus applied to the next pairing:
conservative and hybrid compression tolerance sets. Let (ahij, b

h
ij) ∈ Γh be the set

of compression tolerance for the hybrid compressor. We have the following nested
assembly:

acij = ahij and bcij = bhij ∀eij ∈ EC

acij = ahij and bcij ≤ bhij ∀eij ∈ ED

Where EC and ED are the customer market and the intra-dealer market, respec-
tively, with EC + ED = E. In fact, by definition of the compression tolerance
sets in the customer market EC are the same while for the intra-dealer market we
have:

acij = ahij = 0 and eij ≤ +∞ ∀eij ∈ ED

Similar to the dominance between bilateral and conservative compression, we can
thus conclude that: ∆cc

red(G) ≤ ∆ch

red(G). It is the relaxation of tolerances in
the intra-dealer market that allows the hybrid compression to be more efficient
than the conservative compression. By virtue of complementarity of this result,
the hybrid and non-conservative pairing is straightforward: ∆ch

red(G) ≤ ∆cn

red(G).
As we know from Proposition 4, ∆cn

red(G) = ∆(G), we thus obtain the general
formulation of weak dominance between the 4 compression operators:

∆cb

red(G) ≤ ∆cc

red(G) ≤ ∆ch

red(G) ≤ ∆cn

red(G) = ∆(G)

�
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Figure 6: Original configuration the market

B A simple example with 3 market participants

To better articulate the different ways in which portfolio compression can take
place according to the conservative and non-conservative approach, let us take
the following example of a market made of 3 financial institutions. Figure 6
graphically reports the financial network: the institution i has an outstanding
contract sold to j of notional value 5 while buying one from k of notional value
20 and j has an outstanding contract sold to k of notional value 10. For each
institution, we compute the gross and net positions:

vgrossi = 25 vneti = −15

vgrossj = 15 vnetj = +5

vgrossk = 30 vnetk = +10

We also obtain the current excess in the market:

∆(G) = 35− 15 = 20

Let us first adopt a conservative approach. In this case, we can only reduce or
remove currently existing trades. A solution is to remove the trade between i and
j and adjust the two other contracts accordingly (i.e., subtract the value of the
ij contract from the two other contracts). The resulting market is represented in
Figure 7(a). Computing the same measurements as before, we obtain:

v′grossi = 15 v′neti = −15

v′grossj = 5 v′netj = +5

v′grossk = 20 v′netk = +10

We also obtain the new excess in the market:

∆cons
res (G) = 20− 15 = 5

62



Conservative Non-conservative

Total excess 20 20
Redundant excess 15 20
Residual excess 5 0

Table 8: Table summarizing the results applying conservative and non-
conservative compression on the market with 3 participants in Figure 7.

We see that, after applying the conservative compression operator that re-
moved the (i, j) contract, we have reduced the excess by 15. It is not possible
to reduce the total excess further without violating the conservative compression
tolerances. We thus conclude that, for the conservative approach, the residual
excess is 5 and the redundant excess is 15.

Let us now go back to the initial situation of Figure 6 and adopt a non-
conservative approach. We can now create, if needed, new trades. A non-
conservative solution is to remove all trades and create 2 new trades: one going
from j to i of value 5 and one going from k to i of value 10. We have created
a contract that did not exist before between j and i. The resulting market is
depicted in Figure 7(b). Computing the same measurements as before, we obtain:

v′gi = 15 v′ni = −15

v′gj = 5 v′nj = +5

v′gk = 10 v′nk = +10

We also obtain the current excess in the market:

∆non−cons
res (G) = 15− 15 = 0

We observe that we have managed to achieve perfectly efficient compression
as there is no more excess of notional in the resulting market while all the net
positions have remained untouched. Individual gross positions are now completely
in line with the net positions. Nevertheless the solution has generated a new trade
(i.e., from j to i). We thus conclude that, for the non-conservative approach, the
residual excess is 0 and the redundant excess is 20.

The results are summarized in Table 8. Though simple, the above exercise
hints at several intuitive mechanisms and results. In the following sections, we
develop further those aspects in a systematic and generalized analysis.
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(a) After conservative compression
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(b) After non-conservative com-
pression

Figure 7: Examples of conservative and non-conservative compression approaches.

C Compression Algorithms

C.1 Non-Conservative Algorithm

In order to provide a rigorous benchmark, we propose a deterministic non-conservative
compression algorithm that achieves perfectly efficient compression. In particular,
the solution of the algorithm minimizes the number of trades and maximizes their
concentration.

Data: Original Market G=(N,E)
Result: G∗ such that ∆v(G

∗) = 0
Let N+ = {s s.t. vsn > 0 and s ∈ N} be ordered such that vnet1 > vnet2 ;
Let N− = {s s.t. vnets < 0 and s ∈ N} be ordered such that vnet1 > vnet2 ;
Let i = 1 and j = 1;
while i! = |N+| and j! = |N−| do

Create edge e∗ij = min(vneti −
∑

j′<j e
∗
ij′ , v

net
j −

∑
i′<i e

∗
i′j);

if vneti =
∑

j′<j e
∗
ij′ then

i = i+ 1;
end
if vnetj =

∑
i′<i e

∗
i′j then

j = j + 1;
end

end
Algorithm 1: A perfectly efficient non-conservative compression algorithm with
minimal density

From the initial market, the algorithm constructs two sets of nodes N+ and N−

which contain nodes with positive and negative net positions, respectively. Note
that nodes with 0 net positions (i.e., perfectly balanced position) will become
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isolated in the intermediation breakdown process. They are thus kept aside from
this point on. In addition, those two sets are sorted from the lowest to the highest
absolute net position. The goal is then to generate a set of edges such that the
resulting network is in line with the net position of each node. Starting from
the nodes with the highest absolute net position, the algorithm generates edges
in order to satisfy the net position of at least one node in the pair (i.e., the
one with the smallest need). For example, if the node with highest net positive
position is i with vneti and the node with lowest net negative position is j with
vnetj , an edge will be created such that the node with the lowest absolute net
positions does not need more edges to satisfy its net position constraint. Assume
that the nodes i and j are isolated nodes at the moment of decision, an edge
eij = min(vneti , vnetj ) will thus be generated. In the more general case where i
and j might already have some trades, we discount them in the edge generation
process: e∗ij = min(vneti −

∑
j′<j e

∗
ij′ , v

net
j −

∑
i′<i e

∗
i′j). The algorithm finishes once

all the nodes have the net and gross positions equal.
The characteristics of the market resulting from a compression that follows

the above algorithm are the following

Given a financial network G and a compression operator c() that is
defined by the Algorithm 1, the resulting financial network Gmin =
c(G) is defined as:

eij =

{
min(vin −

∑
j′<j eij′ , v

j
n −

∑
i′<i ei′j), if vin · vjn < 0

0, otherwise

where i ∈ V + = {s s.t. vsn > 0} and j ∈ V − = {s s.t. vsn < 0}.
Moreover:

• Gmin is net-equivalent to G

• ∆v(Gmin) = 0

• Gmin has the minimum link density

• Gmin has maximum trade concentration

C.2 Conservative Algorithm

As we did for the non-conservative case, we now propose and analyze a conser-
vative algorithm with the objective function of minimizing the excess of a given
market with two constraints: (1) keep the net positions constant and (2) the new
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set of trades is a subset of the previous one.

Data: Original Market G=(N,E)
Result: G∗ such that ∆v(G

∗) < ∆v(G) and E∗ ∈ E
Let Π be set the of all directed closed chains in G;
Let G∗ = G;
while Π 6= ∅ do

Select P = (N ′, E ′) ∈ Π such that
|N ′|.mine∈E′(e) = maxPi=(N ′i ,E

′
i)∈Π(|N ′Pi

|.mine∈E′Pi
(e)));

eij = eij −mine∈E′(e) for all eij ∈ E ′;
E∗ = E∗ \ {e : e = min(E ′)};
Π \ {P}

end
Algorithm 2: A deterministic conservative compression algorithm

The algorithm works as follows. First, it stores all the closed chains present
in the market. Then, it selects the cycle (i.e., closed chain) that will result in
the maximum marginal compression (at the cycle level), that is, the cycle where
the combination of the number of nodes and the value of the lowest trades is
maximized. From that cycle, the algorithm removes the trade with the lowest
notional and subtracts this value from the all the trades in the cycle. It then
removes the cycle from the list of cycles and iterates the procedure until the set
of cycles in the market is empty.

At each cycle step t of the algorithm, the excess of the market is reduced by:

∆t = ∆t−1 − |N ′|mine∈E′(e)

At the end of the algorithm, the resulting compressed market does not contain
directed closed chains anymore: it is a Directed Acyclic Graph (DAG). Hence no
further conservative compression can be applied to it.

C.3 Bilateral Algorithm

We now briefly describe the bilateral algorithm. In this case we can only compress
bilaterally redundant positions between pairs in the market. This algorithm is
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straightforward and follows directly from Proposition 11:

Data: Original Market G=(N,E)
Result: G∗ such that ∆v(G

∗) < ∆v(G) and E∗ ∈ E
Let G∗ = (N,E∗ = {});
for i and j ∈ N do

if eij > eji then
e∗ij = eij − eji
E∗ ← e∗ij

end
else

e∗ji = eji − eij
E∗ ← e∗ji

end

end
Algorithm 3: A bilateral compression algorithm

D Programming characterization and optimal al-

gorithm

D.1 Programming formalization

Compression can be seen as the solution of a mathematical program which min-
imizes a non-decreasing function of gross notional under given net-positions. By
introducing constraints on counterparty relationships, we will recover the hybrid
and conservative compression.

In particular, let E′ denote the set of edges after compression and let f : E′ →
R be a non decreasing function, the general compression problem is to find the
optimal set e′ij in the following program:

Problem 1 (General compression problem).

min f(E ′)

s.t.
∑

j

(
e′ij − e′ji

)
= vi,∀i ∈ V [net position constraint]

aij ≤ e′ij ≤ bij,∀(i, j) ∈ E [compression tolerances]

with aij ∈ [0,∞) and bij ∈ [0,∞]. We will refer to E ′ as the vector of solutions
of the problem.

Problem 1 maps all the compression types by translating the compression
tolerances (counterparty constraints) and adopting a specific functional form for
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f . As we are interested in reducing the total amount of notional, we will set
f(E ′) =

∑
ij e
′
ij. The non-conservative compression problem is obtained by setting

eij ∈ [0,∞), as follows:

Problem 2 (Non-conservative compression problem).

min
∑

ij e
′
ij

s.t.
∑

j

(
e
′
ij − e

′
ji

)
= vi,∀i ∈ N

e
′
ij ∈ [0,∞), ∀(i, j) ∈ E

In problem 2 the tolerances are set to the largest set possible. By further
reducing these tolerances for the customer sets, we obtain the hybrid compression
problem:

Problem 3 (Hybrid compression problem).

min
∑

ij e
′
ij

s.t.
∑

j

(
e
′
ij − e

′
ji

)
= vi,∀i ∈ N

e
′
ij = eij, ∀(i, j) ∈ EC

e
′
ij ∈ [0,∞), ∀(i, j) ∈ ED

Last, by further restricting tolerances, we obtain the conservative compression
problem:

Problem 4 (Conservative compression problem).

min
∑

ij e
′
ij

s.t.
∑

j

(
e
′
ij − e

′
ji

)
= vi,∀i ∈ N

0 ≤ e
′
ij ≤ eij,∀(i, j) ∈ E

All problems can be interpreted as standard linear programs, which can be
solved in numerous ways. Above, we propose specific closed form solutions for
the non-conservative compression problem. For the conservative and hybrid ap-
proaches, the general case where the network is not chain ordering proof, a global
solution can be obtained via linear programming techniques. We analyze such
approach below.
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D.2 Optimal solution of the hybrid and conservative com-
pression problem: the network simplex

If the compression problem aims for a plain constrained minimization of the
total notional obligations in the system, the corresponding linear programs 2, 3
and 4 can be resolved in a number of different ways. We will hereby provide a
brief explanation of a specific methodology, the simplex algorithm and its net-
work implementation (the so-called “network simplex”) since it provides ground
for interesting interpretations in our context. The compression problems can be
thought as finding a minimum cost flow in a network, where the costs of using each
link is unitary.21 In general, we refer the reader to Ahuja et al. (1993) for details
on the simplex algorithm, its mathematical properties and the relative proofs.

As shown in the main text, conservative (and hybrid) compression revolves
around reducing, or eliminating altogether, closed chains of intermediation (i.e.,
cycles) in the original market. In the simplex method, this is achieved by finding
a spanning tree solution. A spanning tree of a market G = (N,E) is a subset
of the original market GT = (N,ET ), with ET ⊆ E, where GT is a directed
acyclic graph that is also connected (i.e. eliminating the orientation, there exists
a path between any two nodes). The minimum cost flow problem is then solved
by exploring different spanning trees of the original market. Indeed, a key result
of network flow theory is that there always exists a cycle-free solution that is
also optimal and that it has an optimal spanning tree solution.22 If the market
resembles the customer-dealer structure discussed in the main text, the simplex
thus leads to a spanning tree solution which only affects intra-dealer trades (i.e.,
the subnetwork where cycles lie).

The set of risk tolerances and the levels of individual net positions constitute
the constraint space of the compression problem. Consider the optimal solution
e
′
ij, and let us partition the set of edges after compression in the following two

disjoint subsets: i) the set of free edges (where 0 < e
′
ij < eij), and ii) the set of

restricted edges (with e‘
ij = {0, eij}). The notions of “cycle free” and “spanning

tree” solutions refer only to these edges. In the case of a spanning tree solution,
then every edge not belonging to the tree must be restricted.

Let us now look at the key optimality condition for a given compression so-
lution. First, let us split the edges of the compressed market into the ones in
the spanning tree, T ; those with zero value L; those that are fully saturated,
i.e. e

′
ij = eij. As a result, let E‘ = {T, L, U} be the spanning tree partition of

the compressed market. Elaborating on theorem (11.3 in Ahuja et al., 1993), this

21There are two main classes of algorithms to solve a minimum cost flow network problem.
The first class aims at keeping feasible solutions while striving for optimality, whereas the second
keeps optimality while striving for feasibility. The simplex relates to the former.

22Provided that the objective function is bounded from below across the constraint space.
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structure is optimal if it is feasible (i.e. it satisfies the constraints) and the reduced
costs for the arcs in the spanning tree are zero; the reduced costs for edges with
zero value are nonnegative; the reduced costs for the set of fully saturated edges
are negative. Reduced costs are computed as follows: for each node in the system,
define a quantity πi, which we term the “potential” of i; then the reduced cost of
an edge is cπij = cij − (πj − πj), where cij is the cost (in the objective function) of
one unit of notional between i and j which, since in our case compression aims at
reducing total notional, is equal to one (cij = 1,∀(i, j)).

Reduced costs can be interpreted as the amount of total notional that would
increase in case the amount on that edge would increase. Naturally, a strictly
negative reduced costs means that we can increase the notional value on that edge
and reduce the total notional after compression. The simplex method is based on
the above condition and moves along edges in the current tree solution that have
negative reduced costs in order to find the optimal solution while maintaining a
spanning tree structure.

More precisely, the simplex exploits the relationship between the spanning tree
solutions and the set of bases of the feasible region. Given a market G = (N ;E),
consider the |N |×|E| node-edge incidence matrix Q, defined as follows. The rows
Q are represented by V and the column by E. We index the links by the letter l:

qil =


1 if the l-th edge originated from i
−1 if the l-th edge terminates in i
0 if the l-th does not include i.

Now, let e be the vector of all edges, e′ be the optimal solution of the problem,
v the vector of the nodes’ net positions, and u be the vector of all ones. Hence,
Problem 4 can be rewritten in the following matrix form

min u>e′

s.t. Qe′ = v (4)

0 ≤ e′ ≤ e

Q is not full rank, but since
∑

i vi = u>v = 0, then the first set of constraints
has one redundant row (that can be eliminated). The set of bases of Q are the
matrices constituted by |E| − 1 linearly independent columns of Q and therefore
each basis represents a subset of E. Each basis is associated to a unique solution
of the linear system of equations 4.

In addition, it can be proven that, if the graph is connected (as in our case),
then to each basis of Q indeed corresponds a spanning tree of G. This implies
that, for each basis, the corresponding spanning tree will also satisfy constraint 4
and therefore will constitute a feasible solution. The space of basic solutions lies
in the space of bases generated by the incidence matrix of the original network
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and such solutions are spanning trees. This is referred to as the basis property for
the min-cost flow problem (Ahuja et al., 1993, Theorem 11.10). In the context of
a compression problem this can be interpreted as a key correspondence between
feasible solutions of the compression problem and spanning trees.

This constitutes the key ingredient of the application of the standard simplex
algorithm to a network problem. By moving along the different spanning trees
(bases), the network simplex method attempts at find an optimal feasible solution.
In a network context, this means to find a basis and add one edge to the current
spanning tree, which creates a cycle and eliminating, if possible, the other edges
composing the newly created cycle. As observed above, if the inserted arc increases
the objective function, then the arc has an associated positive reduced cost; if the
arc decreases the objective function, then it has a negative reduced costs; if the
arc does not alter the value of the objective function, then its reduced cost is zero.

Below we report the algorithmic expression of the simplex algorithm:

Data: Original Market G = (N,E), set of risk tolerances.
Result: G

′
such that x′ is minimized

begin
start with an initial tree structure ET = (T, L, U) ;
compute total notional x′, reduced costs and node potentials;
while there exists some arc 6∈ ET that violates optimality conditions do

begin
choose an edge (i, j) that violates condition ;

add (i, j) to E
′

and select the leaving edge (k, l);

update E
′
, x
′

and node potentials
end

end

end
Algorithm 4: Illustration of the network simplex algorithm
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