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ABSTRACT

We design a statistical model for measuring the homogeneity of a financial

network that evolves over time. Our model focuses on the level of diversi-

fication of financial institutions; that is, whether they are more inclined to

distribute their assets equally among partners, or if they rather concentrate

their commitments towards a limited number of institutions. Crucially, a

Markov property is introduced to capture time dependencies and to make

our measures comparable across time. We apply the model on an original

dataset of Austrian interbank exposures. The temporal span encompasses

the onset and development of the financial crisis in 2008 as well as the begin-

nings of the European sovereign debt crisis in 2011. Our analysis highlights

an overall increasing trend for network homogeneity, whereby core banks

have a tendency to distribute their market exposures more equally across

their partners.

Keywords: Latent Variable Models, Dynamic Networks, Austrian Interbank

Market, Systemic Risk, Bayesian Inference



1 Introduction

Recently, the EU was hit by two major financial crises. In 2008, the

problems started initially in the US subprime mortgage market and were

partially caused by lax regulation and overly confident debt ratings. The

source of the European sovereign debt crisis in 2011, however, was most

likely private debt arising from property bubble and resulting in government

bailouts. The lack of a common fiscal union in the EU did not help with the

situation, which resulted in the European central bank providing cheap loans

to maintain a steady cash flow between EU banks. During these turbulent

times, European banks were facing high levels of uncertainty. It was not clear

which counter party would remain solvent in the foreseeable future and even

sovereign bonds were no longer considered a safe option. In the face of these

unfavorable conditions, the banks were forced to reconsider their interbank

investments and re-adjust their portfolios in order to account for the change

in the economic situation.

With the goal of contributing to the discussion on interbank exposures

and diversification, we focus our attention on an original dataset of the Aus-

trian interbank market between the spring of 2008 and autumn of 2011.

Namely, we introduce a dynamic network model to quantify exposure diver-

sification levels of individual banks and of the market overall. We accomplish

this by creating a new latent variable model for weighted networks that evolve

over time. This framework provides us with a bank-dependent measure of

3



systemic risk, as well as a global measure of the overall level of systemic risk

in the market. We resort to an intuitive modeling of a single network ho-

mogeneity (drift) parameter which we use to capture the homogeneity over

time. Our model is specifically designed for instances where a network needs

to be characterized by a single evolving variable, or when one is interested

in obtaining a model-based quantitative measurement of the inter-temporal

development of network homogeneity.

It is important to understand that a change in a financial network struc-

ture can have far-reaching and non-trivial consequences. To illustrate this

fact further, consider a hypothetical financial network of four institutions

(banks) represented by nodes and their mutual financial exposures (debt)

represented by edges. In this simple example, connections are symmetric and

every bank splits its investment among its neighbors equally. Furthermore,

banks are required by a regulator to always keep a capital buffer to account

for unexpected withdrawals, unfavorable economic conditions and other fac-

tors. Therefore, we assume that an institution remains safe unless it loses

at least half of its investments in other institutions. If that happens, the

institution gets bankrupt and it might further negatively affect other banks

in the network. To see how network structure affects the overall stability,

consider a case where one of these four banks gets affected by an exogenous

shock such that it has to declare bankruptcy. In such case, its neighbors will

not get their respective investment and might suffer the same fate, putting

their own neighbors in danger. This contagious behavior is dependent on how
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the banks are linked together, which illustrates the importance of structure

when addressing questions on systemic importance and financial stability.

For the hypothetical case of four banks, there are up to 11 topologically

different network structures that can possibly occur: a subset of these are

shown in Figure 1.1. In the case shown in Figure 1.1a, there is no danger of

(a) (b) (c)

Figure 1.1. Different loan network structures on a set of four banks.

contagion since there are no edges to propagate shocks. An analogical result

follows from the network shown in Figure 1.1c, where a failure of one node

is not sufficient to take down the rest because every other institution only

loses one third of its investment. Problems arise in intermediately connected

systems such as 1.1b, where an initial shock may wipe out the whole system.

This basic example hints at a much more complex issue of network sta-

bility that has been extensively studied by financial regulators in the past

two decades. It highlights that the level of diversification in a system plays

a crucial role in determining its stability and that assessment of this trait

for observed networks can prove challenging. In this paper, we address this

impasse, introducing a statistical model specifically designed to measure the

diversification of a financial system, hence obtaining a measure for one of the

5



facets of systemic risk.

This paper is connected to two distinct strands of research. On the one

hand, we contribute to the established literature on systemic risk and finan-

cial networks. This area of research has often focused on the stability of

financial systems as well as the possibility of contagious bankruptcies similar

to our simple example above. Research papers on this subject have been

published by both academics in finance as well as market regulators.1 On

the other hand, we also contribute towards theoretical papers dealing with

latent variable modeling of network data. The method we propose borrows

from and contributes to both fields, ultimately proposing a new perspective

on systemic risk.

2 Related literature

One of the earliest papers on the topic of systemic risk in finance was

the work of Allen and Gale (2000), who have shown that the structure of

the interbank market is important for the evaluation of possible contagious

bankruptcies. Later on, Gai and Kapadia (2010) extended their work from

a simple model of four institutions to a financial network of an arbitrary

size. Other notable papers on systemic risk include, for example, Glasser-

man and Young (2016) or Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015),

1This includes various national central banks as well as the European Central Bank
and the FED. Additional research has been undertaken by the Bank for International
Settlements or the International Monetary Fund.
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while Upper (2011) provides an excellent survey of regulatory-published sci-

entific reports on the subject. With respect to the questions on exposure

diversification, we refer the reader to Elliott, Golub, and Jackson (2014) and

Frey and Hledik (2018), where a nontrivial relationship between diversifica-

tion and contagious defaults is presented, or to Goncharenko, Hledik, and

Pinto (2018), where banks endogenously choose their level of diversification

in an equilibrium setting. Our paper shares similar goals with these works,

and we further add to these papers by introducing a new generative mech-

anism and a modeling framework where diversification and homogeneity of

the system can be studied inter-temporally.

As mentioned, our paper also contributes to the research on latent vari-

able network modeling. Prominent contributions include the latent position

models of Hoff, Raftery, and Handcock (2002), later extended to the dynamic

framework by Sarkar and Moore (2006), and the latent stochastic blockmod-

els (Nowicki and Snijders, 2001) extended to a dynamic framework by Yang,

Chi, Zhu, Gong, and Jin (2011), Xu and Hero (2014) and Matias and Miele

(2017), among others. These latent variable models possess a number of

desirable theoretical features, as illustrated in Rastelli, Friel, and Raftery

(2016) and Daudin, Picard, and Robin (2008), respectively.

Our approach also shares a number of similarities with other recent papers

that apply a latent variable framework on various types of dynamic network

data. These include, among others, Friel, Rastelli, Wyse, and Raftery (2016),

where the authors introduce a dynamic latent position model to measure
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the financial stability of the Irish Stock Exchange; Sewell and Chen (2016),

who introduce a latent position model for dynamic weighted networks; and

Matias, Rebafka, and Villers (2018), where the authors propose a dynamic

extension of the stochastic blockmodel. Differently from these works, our

approach relies on a new model whose goal is to measure and study the

systemic risk associated to a financial system.

Lastly, we also contribute to the literature on the stability of the Aus-

trian interbank market. Related works in this area include Elsinger, Lehar,

and Summer (2006), Puhr, Seliger, and Sigmund (2012) and Boss, Elsinger,

Summer, and Thurner (2004) who have looked at possible contagious effects

and descriptive statistics of the Austrian financial network. Compared to

these contributions, one novelty of our work is that we are able to consider

the temporal dependency of the network, thus providing a an appreciation

of the changes in the structure of the network over time.

3 Data and Exploratory Analysis

We use a unique dataset obtained by the Austrian National Bank which

contains quarterly observations of the Austrian interbank market for a period

of four years (from spring of 2008 until autumn of 2011). More precisely, the

dataset contains aggregated mutual claims between any two of N = 800

Austrian banks for all relevant quarters (2008Q1 - 2011Q4), resulting in

16 observations of the financial network. All of the banks considered exist
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throughout the whole period.

In order to comply with the privacy rules of the Austrian National Bank,

the data is anonymized such that the true identities of banks in the system

are hidden and replaced by non-descriptive IDs. Moreover, we are unable

to observe the absolute values of banks’ mutual claims, only their scaled

equivalents (relative to the highest exposure value, independently for each

time frame). As a consequence, as per privacy protection, the magnitude

of claims is effectively not comparable across time. Nevertheless, for the

purposes of our model, the true values of the claims are not required, since our

approach only uses their relative size. In addition, we illustrate in Appendix

A a procedure that allows us to approximate the true values of the claims up

to a proportionality constant: we do not use these estimated quantities in

our model, but we use them to gather information on the importance of each

institution. In order to better clarify these concepts, we now give a sequence

of definitions to set our notation.

A dynamic network of interbank exposures is a sequence of graphs where,

for each time frame, the nodes correspond to banks and the edges correspond

to the connections between them. In particular, the edges are directed and

carry positive values indicating the claim of one bank from another. We note

that an observed network of interbank exposures between N banks over T

time frames may be represented as a collection of adjacency matrices of the

same size N ×N , as in the following definition:

Definition 3.1. A sequence of true exposures E = {E(t)}t∈T defined on the
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set of nodes V over the timespan T consists of a collection of adjacency

matrices E(t) ∀t ∈ T with elements e
(t)
ij for t ∈ T , i ∈ V, j ∈ V, where e

(t)
ij

corresponds to the financial exposure of bank i towards bank j in period t.

We focus on the case where V = {1, . . . , N} and T = {1, . . . , T}. In

the Austrian interbank market context, the adjacency matrix E(t) contains

the true values of all mutual claims between any two of N = 800 Austrian

banks at the corresponding time frame. However, as explained earlier, we are

unable to observe the true exposures due to privacy policy of the Austrian

National Bank. For the purpose of this paper, we will therefore be working

with the following quantities (see Appendix A for full details):

Definition 3.2. A sequence of absolute exposures X = {X(t)}t∈T on the set

of nodes V over the timespan T has elements defined as follows:

x
(t)
ij

def
=

e
(t)
ij

maxNk,l=1 e
(1)
kl

∀i, j ∈ V ,∀t ∈ T (1)

In other words, the sequence of absolute exposures is simply a scaled

version of the non-observable sequence of the true exposures, where every

exposure is divided by the value of the first period’s largest exposure. This

normalization was a necessary requirement of the Austrian National Bank,

yet it has no effect on the implications of our paper. The reason behind this

transformation was to make the true euro amount transferred between insti-

tutions non-observable. However, from a modeling perspective, the monetary

size is irrelevant and any normalization constant would be equally effective
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if applied to all exposures simultaneously. Therefore, we do not lose any in-

formation by not being able to observe the true exposures from 3.1 but only

their scaled equivalents from 3.2 instead. Lastly, we define the sequence of

relative exposures that our statistical model uses as observed data:

Definition 3.3. A sequence of relative exposures Y = {Y(t)}t∈T on the set

of nodes V over the time span T has elements defined as follows:

y
(t)
ij

def
=

x
(t)
ij∑N

k=1 x
(t)
ik

∀i, j ∈ V , ∀t ∈ T (2)

This transformation constricts the edge weights in our networks to a

[0, 1] interval, making it easier to work with from the network homogeneity

viewpoint. In this network, every nodes’ outgoing edge values always sum

up to 1.

To summarize, E corresponds to the unobservable actual value of inter-

bank connections, X to their estimated scaled version and Y to the relative

interbank connections. Our model only uses Y as observed data, which in

fact corresponds to the only quantities that are available to us in an exact

form. We only have a single use for X , namely to create a subsample of

“core banks”. Essentially, selecting a portion of banks which can be deemed

important allows us to see how the implications of our model are affected by

the banks’ size. In order to do so, we introduce the bank’s relevance:

11



Definition 3.4. A relevance of bank i in time period t is defined as:

r
(t)
i =

∑
k∈V

x
(t)
ik +

∑
k∈V

x
(t)
ki . (3)

In other words, we define relevance simply as the bank’s overall sum of

its interbank assets and liabilities.

With a clear measure of systemic importance, we can now select a subsam-

ple of banks with the highest aggregated relevance ri =
∑T

t=1 r
(t)
i . This allows

us to focus on the interactions of systemically important banks and observe

emergence of unique patterns. We use the aggregated relevance measure

to create a smaller dataset consisting of the 100 systemically most relevant

institutions and their mutual connections. From now on, we shall refer to

the full dataset and the reduced dataset as OeNB 800 and OeNB 100, respec-

tively.2 We plot the evolution of the average bank relevance in Figure 3.1.

As expected from its definition, we see a sharp drop in the second half of

2008 as a direct effect of the financial crisis.

In order to have a better picture about the data, we have conducted a

brief exploratory analysis. Table 1 and Figure 3.2 contain brief descriptive

statistics, where one can see the number as well as magnitude of connections

as a function of time. The number of connections (2nd column) shows the

number of edges in the network as of time t, while the relative size (3rd

2Validity of the OeNB 100 subset can be justified further by examining the overall
exposure of top 100 institutions. It turns out that the 100 most systemically relevant
banks account for more than 95% of all approximate edge weights in any given time frame
(according to the definition of absolute exposures from 3.2).
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Figure 3.1. Bank relevance for the full sample (a) and the sample containing
only the 100 most relevant banks (b).

column) depicts the overall cash flow in the market, scaled according to the

first observation. We would like to highlight the second and third quarter

of 2008, where a drop in the overall magnitude of cash flow in the economy

can be observed. This period corresponds to the financial crisis associated

with the failure of Lehman Brothers in the US and the problems stemming

from the housing market. Interestingly, in the Austrian interbank market,

the overall number of connections does not seem to be affected by these

events as much as their size. This shows that, albeit Austrian banks have

reduced their mutual exposures significantly, they were rarely completely cut

off. Another important period is during the second and third quarter of 2011,

which is roughly when the European sovereign debt crisis started. At the first

glance, there does not seem to be much in relation to this event in our data.
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However, as we shall see later, our main model will provide further insight

regarding the trend in diversification during this period.
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Figure 3.2. Number of connections and their relative size in time.

Interbank markets are commonly disassortative, i.e. nodes with a low

number of neighbors are mostly connected to nodes with high number of

neighbors and vice versa (see Hurd (2016)) . This property in financial

networks is quite common and is generally referred to as “core-periphery”

structure. Social networks tend to be fundamentally different, since a high

number of “hubs” in the network does not necessarily imply a low number of

triangles, see for instance Li, Guan, Wu, Gong, Li, Wu, Di, and Lai (2014);

Watts and Strogatz (1998). Financial systems also tend to be very sparse.

These same patterns are re-confirmed in the Austrian interbank market, as

shown in Figure 3.3.

We have observed several interesting patterns in the data which suggest

that using a more involved model could indeed produce new insights re-

garding the evolution of bank diversification. Since the main interest of our

research lies in the diversification of agents in an interbank market, we have
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Table 1. Number of connections and their relative size in time.

No. of Relative size
Period connections of connections
2008Q1 2952 1.0000
2008Q2 3109 1.0925
2008Q3 2993 0.1873
2008Q4 3028 0.3287
2009Q1 3178 0.4186
2009Q2 3177 0.5329
2009Q3 3156 0.7016
2009Q4 3188 0.5820
2010Q1 3157 1.1851
2010Q2 3194 1.1340
2010Q3 3223 1.0981
2010Q4 3126 1.0080
2011Q1 3115 0.9860
2011Q2 3825 1.1979
2011Q3 3820 1.2118
2011Q4 3778 1.1310
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(a) Adjacency matrix (b) Plot of a network snapshot

Figure 3.3. Adjacency matrix for the first time period, consisting of 2952
edges represented as dots (a) and a graphical representation of the network
snapshot for the nodes with at least one connection (b).

also looked at the evolution of entropy in the system. For this purpose, we

use a standard definition of entropy as follows:

Definition 3.5. The entropy S
(t)
i of node i ∈ V at time t ∈ T is defined as:

S
(t)
i

def
= −

N∑
k=1

y
(t)
ik log y

(t)
ik (4)

with the convention that y log y = 0 when y = 0.

Speaking more plainly, this quantity describes how an institution dis-

tributes its assets among counterparties. A bank with a single debtor would

have zero entropy, since its relative exposure is trivially one for that one

debtor and zero for all the other banks. With an increased number of debtors

with equal exposures, a node’s entropy increases and, for a fixed number of

debtors, the entropy of a node is maximized when its assets are distributed
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evenly among neighbors. Ergo, if two nodes have the same number of out-

going connections, one may view the one with a higher entropy as better

diversified.
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Figure 3.4. Distribution of entropy change in time.

In Figure 3.4, we plot the change in nodes’ entropies in consecutive periods

(S
(t+1)
i − S(t)

i ). One can observe an increase in both mean and variance dur-

ing the second and third quarter of 2011, which corresponds to the sovereign

crisis in Europe. At that point, future bailouts of several EU countries were

uncertain which might have added to the volatility in the market. Interest-

ingly, no similar effect can be seen during the 2008 crisis. We point out that

there are other ways of assessing the temporal evolution of node exposure

homogeneity. We have chosen the entropy index for our exploratory analy-

sis, as it constitutes a simple, clean and easily tractable approach, but one

could easily turn to other measures, e.g. the Herfindahl index as is common

practice in economics literature.
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4 The Model

The observed data are the relative interbank exposures y
(t)
ij from Defini-

tion 3.3. We assume that there are no self-connections, i.e., when not stated

otherwise, we always work with t ∈ T , i, j ∈ V and i 6= j. Since these ex-

posures are relative, it follows from definition that they satisfy (for all i and

t):

y
(t)
ij ∈ [0, 1] and

∑
j∈V:j 6=i

y
(t)
ij = 1. (5)

We propose to model the vector y
(t)
i· =

(
y
(t)
i1 , . . . , y

(t)
iN

)
as a Dirichlet ran-

dom vector characterized by the parameters α
(t)
i· =

(
α
(t)
i1 , . . . , α

(t)
iN

)
, where

α
(t)
ij > 0. Following the established standard in latent variable models, the

data are assumed to be conditionally independent given the latent parameters

α =
{
α
(t)
ij

}
i,j,t

. Hence, the model likelihood reads as follows:

LY (α) =
T∏
t=1

N∏
i=1

Γ
(∑

j y
(t)
ij

)
∏

j Γ
(
y
(t)
ij

) ∏
j

[
y
(t)
ij

]α(t)
ij −1

 (6)

where, again, j varies in V and is different from i, and Γ (·) denotes the

gamma function.

As concerns the α parameters, we separate a trend component from the

sender and receiver random effects through the following deterministic rep-

resentation:

log
(
α
(t)
ij

)
= µ(t) + θi + γj (7)
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With this formulation, the model parameters µ =
{
µ(t)
}
t∈T , θ = {θi}i∈V and

γ = {γj}j∈V possess a straightforward interpretation, which we illustrate in

the next section.

We point out that our model can be thought of as a Dirichlet regression

model for compositional data, see Minka (2000), van der Merwe (2019) and

references therein.

4.1 Interpretation of model parameters

Before we move to parameter interpretation, we would like to highlight

how a symmetric parameter vector α = {α, . . . , α} can affect the realizations

of the random vector y ∼ Dir (α). If the value of α increases, then the

variance of components of the random vector y tend to decrease. Since

the values generated from a Dirichlet distribution lie in an N -dimensional

simplex, low variance translates to yi ≈ 1/N,∀i ∈ V , e.g. the values are

more or less equally distributed. High variance, however, is obtained when

the value of α is small, and it implies that one of the components turns out

to be close to one while all the others are close to zero. These two examples

closely mimic the high-entropy homogeneous regime and the low-entropy

heterogeneous regime introduced in Section 3, respectively.

In our formulation, a similar reasoning holds, even if the α vector is not

symmetric. The log-additive structure in (7) deterministically decomposes α

in three parts. The contribution given by µ(t)+θi affects all of the components

of α
(t)
i· in a symmetric fashion. Hence, in accordance with our explanation
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above, we are essentially capturing the level of homogeneity in the network

through a homogeneity trend parameter µ(t) and a node specific homogeneity

random effect θi. In other words, an increase in either µ(t) or θi corresponds

to higher diversification of exposures for bank i at time t, resulting in a

more homogeneous network structure. Vice versa, a decrease in µ(t) or θi

is linked with a decrease in diversification which in turn results in a more

heterogeneous network structure.

The interpretation of γj is similar. To see this, consider a non-symmetric

random vector y ∼ Dir (α1, . . . , αN). In this case, an increase in a single

parameter component αj determines a higher expected value in yj, at the

expense of the other elements in y. In our context, an increase in γj tends

to increase the weight of all edges that j receives from its counter parties.

Equivalently, one can say that in such case the bank j becomes more attrac-

tive, in the spirit of other banks concentrating their exposures more towards

j.

To summarize, there is a clear way to interpret the main parameters of our

model. Parameter µ(t) indicates the global homogeneity level at time frame

t ∈ T , parameter θi characterizes the individual bank i homogeneity level as

a random effect, and parameter γj represents the bank j’s attractiveness.

4.2 Bayesian hierarchical structure

We complete our model by introducing the following Bayesian hierarchical

structure on the parameters we have mentioned earlier.
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We assume a random walk process prior on the drift parameters µ as

follows:

µ1 ∼ N (0, 1/τµ), µt = µt−1 + ηt, ∀t > 1,

where ηt ∼ N (0, 1/τη) and τη ∼ Gamma(aη, bη). The hyperparameter τµ

is user-defined and set to a small value to support a wide range of initial

conditions. The hyperparameters aη and bη are also user-defined and set to

small values (0.01) to allow a flexible prior structure.

The parameters θ and γ are assumed to be i.i.d. Gaussian variables with:

θi ∼ N (0, 1/τθ) , τθ ∼ Gamma(aθ, bθ),

γj ∼ N (0, 1/τγ) , τγ ∼ Gamma(aγ, bγ)

Similarly to the other hyperparameters, aθ, bθ, aγ and bγ are also set to small

values (0.01). The arrangement of parameters in Figure 4.1 summarizes the

dependencies in our model graphically.

5 Parameter estimation

Our proposed model has T drift parameters (denoted by µ), N diversi-

fication parameters (denoted by θ), N attractiveness parameters (denoted

by γ), and three precision parameters (denoted by τ ). We describe in this

section a procedure to jointly estimate all of these model parameters.
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Figure 4.1. Graphical representation of model dependencies.

5.1 Identifiability

The additive structure in (7) yields a non-identifiable likelihood model.

For example, one could define θ̃i = θi + c and γ̃j = γj − c for some c ∈

R and the likelihood value would be the same for the two configurations,

i.e. LY
(
µ, θ̃, γ̃

)
= LY (µ,θ,γ). One way to deal with such identifiability

problem would be to include a penalization through the priors on θ and γ.

One could specify more informative Gaussian priors centered in zero, which

would in turn shrink the parameters to be distributed around zero.

However, such approach may also interfere with the results, since the

model would not be able to capture the presence of outliers. Hence, we opt

for a more commonly accepted method, and impose the γs to sum to zero as
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expressed through the following constraint:

γ1 = −
N∑
j=2

γj. (8)

This new model, characterized by T + 2N + 2 parameters, is now identi-

fiable.

5.2 Markov chain Monte Carlo

The posterior distribution associated to our model factorizes as follows:

π (µ,θ,γ, τ ) ∝ LY (µ,θ,γ) π (µ|τη)π (θ|τθ) π (γ|τγ)×

× π (τη|aη, bη)π (τθ|aθ, bθ) π (τγ|aγ, bγ)
(9)

We adopt a fully Bayesian approach, relying on a Markov chain Monte

Carlo algorithm to obtain a random sample from the posterior distribution

(9). We use a Metropolis-within-Gibbs sampler that alternates the following

steps3:

1. Sample µs for all s ∈ T from the following full-conditional using

3Note that, in the equations for the parameter updates, the products are defined over
the spaces T and V, with the only restriction that j and ` are always different from i.
Also, 1A is equal to 1 if the event A is true or zero otherwise.
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Metropolis-Hastings with a Gaussian proposal:

π (µs|. . . ) ∝

{∏
i

Γ

(
eµseθi

∑
j

eγj

)}
∏
i,j

[
y
(s)
ij

]α(s)
ij −1

Γ
(
α
(s)
ij

)


·

{
exp

{
−τµ [µs]

2

2

}}1{s=1}

·

{
exp

{
−τη [µs − µs−1]2

2

}}1{s>1}

·

{
exp

{
−τη [µs+1 − µs]2

2

}}1{s<T}

.

(10)

2. Sample θk for all k ∈ V from the following full-conditional using Metropolis-

Hastings with a Gaussian proposal:

π (θk|. . . ) ∝

{∏
t

Γ

(
eµteθk

∑
j

eγj

)}
∏
t,j

[
y
(t)
kj

]α(t)
kj−1

Γ
(
α
(t)
kj

)
 exp

{
−τθ

2
θ2k

}
.

(11)

3. Sample γ` for all ` ∈ V \ {1} from the following full-conditional using
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Metropolis-Hastings with a Gaussian proposal:

π (γ`|. . . ) ∝

{∏
t,i

Γ

(
eµteθi

∑
j

eγj

)}
∏
t,i

[
y
(t)
i`

]α(t)
i` −1

Γ
(
α
(t)
i`

)


·


∏
t,i

[
y
(t)
i1

]α(t)
i1 −1

Γ
(
α
(t)
i1

)
 exp

{
−τγ

2
γ2`

}
.

(12)

4. Sample τη from the following conjugate full-conditional:

π (τη|. . . ) ∼ Gamma

(
aη +

T − 1

2
, bη +

∑
t>1

(µt − µt−1)2 /2

)
. (13)

5. Sample τθ from the following conjugate full-conditional:

π (τθ|. . . ) ∼ Gamma

(
aθ +N/2, bθ +

∑
i

θ2i /2

)
. (14)

6. Sample τγ from the following conjugate full-conditional:

π (τγ|. . . ) ∼ Gamma

(
aγ +

N − 1

2
, bγ +

∑
j>1

γ2j /2

)
. (15)

In output, the algorithm returns a collection of sampled observations for

each model parameter, which are then used to empirically characterize the

targeted posterior distribution.
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5.3 Technical details

We ran our Metropolis-within-Gibbs sampler on both datasets OeNB 800

and OeNB 100 for a total of 400,000 iterations. For both datasets, the first

200,000 iterations were discarded as burn-in. For the remaining sample, every

20-th draw was saved to produce the final results. In summary, we used

samples of 10,000 observations to characterize the posterior distribution of

each model parameter.

The first 100,000 iterations of the burn-in period were also used to adap-

tively tune the Gaussian proposal variance individually for each parameter,

to make sure that all of the acceptance rates were between 22% and 30%.

The variances were hence fixed to these values for the rest of the process.

The trace plots and convergence diagnostic tests all showed very good mixing

of the Markov chain, suggesting a satisfactory convergence.

Similarly to many other latent variable models for networks, the com-

putational cost required by our sampler grows as TN2. We implemented

the algorithm in C++ and used parallel computing via the library OpenMPI

to speed up the procedure. We note that, for the full dataset, an iteration

required an average of approximately 0.75 seconds on a Debian machine with

16 cores. The code is available from the authors upon request.
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6 Results

First, we study the diversification of the banks which translates to changes

in network homogeneity. The drift parameter µ(t), shown in Figure 6.1, ex-

hibits an upward trend for both datasets. This trend is in both cases more
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Figure 6.1. Evolution of the posterior mean of µ(t) for the full sample (a)
and the sample containing only the 100 most relevant banks (b), with 95%
credible intervals.

pronounced during the onset of the 2011 sovereign debt crisis. Furthermore,

we observe a sharper increase in OeNB 100 during this time period. This sig-

nals that larger and systemically relevant banks were the ones with a stronger

reaction to the crisis. This shows not only their change in diversification pol-

icy as a reaction to the crisis, but also a difference in risk aversion for the two

classes of agents in the network. Interestingly, we do not observe a similar

behavior during the crisis in 2008.
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In the exploratory analysis conducted earlier, we have seen a substantial

drop in the overall exposure size in 2008 and almost no such effect in 2011.

Paradoxically, we observe a large upward shift in diversification in 2011, while

the same effect in 2008 is limited at best. One takeaway from this would be

that Austrian banks have perceived the sovereign crisis as a bigger threat

than the 2008 crisis stemming from the US housing market. As the effect is

more pronounced in the OeNB 100 sample, it hints at the fact that bigger

banks tend to increase their level of diversification more substantially, while

less relevant banks tend to keep their exposures less diversified.

In addition to the overall development of diversification in the system, we

can also study the same index locally to outline the aversion of individual

banks to risk. This can be achieved by observing the parameter θi which

denotes the diversification random effect value.

First, we analyze point estimates of these parameters: Figure 6.2 shows

the distribution of the posterior means of θ. For both OeNB 800 as well as

OeNB 100, the distribution seems to be rather heavy tailed. This translates

to a system where the majority of banks exhibits low diversification, but still

a fairly large number of banks tends to diversify much more. In fact, Fig-

ure 6.3 highlights that more relevant banks tend to have a more pronounced

diversification, whereas small banks do not diversify as much. This observa-

tion further confirms our ideas about a stylized financial network where the

disassortative behavior is very common.

A similarly heavy tailed distribution can be observed regarding the at-
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Figure 6.2. Posterior distribution of θ for the full sample (a) and the sample
containing only the 100 most relevant banks (b).
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Figure 6.3. The banks with higher aggregated relevance tend to also have
a higher diversification of exposures in both datasets.
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tractiveness parameter γ (see Figure 6.4 for the distribution of the point

estimates, where the heavy right tail is apparent). In addition, Figure 6.5
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Figure 6.4. Posterior distribution of γ for the full sample (a) and the sample
containing only the 100 most relevant banks (b).

shows that, generally, θ and γ are closely related in both datasets. This figure

highlights that larger banks tend to be more diversified and more attractive

simultaneously, and, vice versa, small banks often play a more peripheral

role in the network, usually as offsprings of some larger bank. A similar

observation of heavy-tailedness in degree distribution has also been reported

by Boss et al. (2004).

As concerns the uncertainty around the point estimates, Figure 6.6 com-

pares the posterior variances for all of the θs with those of the γs. We note

that there seems to be no explicit pattern and no apparent relation with the

relevance of the corresponding banks. We point out, however, that the two
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Figure 6.5. Posterior distribution of γ for the full sample (a) and the sample
containing only the 100 most relevant banks (b). In both plots, the size of
each circle represents the aggregated relevance of the corresponding bank.

plots are on two different scales on both axes, which is expected since much

more data is available for inference in the OeNB 800 dataset, hence yielding

more reliable estimates.

Finally, we also show the posterior densities for the variance parameters

1/τη, 1/τθ and 1/τγ in Figure 6.7. For both datasets, these plots suggest that

the drift parameter is rather stable over time, and that the diversification

and attractiveness are not particularly diverse across banks, overall.

7 Conclusion

This paper contributes to the literature on networks by proposing a brand

new framework to model the evolution of dynamic weighted interactions and
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Figure 6.6. Posterior variances of θ and γ for the full sample (a) and the
sample containing only the 100 most relevant banks (b). In both plots, the
size of each circle represents the aggregated relevance of the corresponding
bank.

to capture systematic parts of their development. Our application to the

Austrian interbank market gives a new perspective on the recent crises and

demonstrates how our model can be used as a means to measure exposure

diversification as one of the components of systemic risk. Differently from

Friel et al. (2016), our measure is not affected by banks entering or leaving the

system, since our dataset only contains banks which are active throughout

the whole period.

In our analysis we have shown that the Austrian market exhibited a sus-

tained increase in banks’ diversification, possibly as a reaction to the 2008

financial crisis. In particular, differently from a simple descriptive analysis,

our model was able to capture a distinct upward dynamic in network homo-
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Figure 6.7. Posterior distribution of variance parameters 1/τη, 1/τθ and
1/τγ for OeNB 800 (left) and OeNB 100 (right) datasets.
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geneity as a response to the sovereign debt crisis of 2011. These findings may

be of a particular use to regulators and central banks to assess and design

future policy measures.

Our results also showed that the roles played by the different banks can be

vastly different, particularly in the context of exposure diversification. Our

findings emphasize that larger banks, which are generally more susceptible

to systemic risk, tend to use more conservative strategies and to spread out

evenly their credit risks.

One limitation of our modeling framework is that it only focuses on the

relative exposures, hence discarding the real magnitudes of the claims. Future

extensions of this work may consider a joint modeling of the exposure values

and how they are diversified among neighbors.

Another possible extension of our framework would include a more sophis-

ticated prior structure on the model parameters. With further information

on bank fundamentals, one could easily resort to clustering, where different

clusters are characterized by different network homogeneity drifts µ.

Finally, we would like to remark that there are potentially other possible

specifications besides the Dirichlet likelihood. The flexibility of Dirichlet

distribution is known to be rather limited, as - for high levels of variance

- it tends to assign most of the probability density to the highest entropy

configurations. This does not necessarily reflect the features exhibited by the

data. However, we argue that in our application the Dirichlet assumption is

very reasonable, and, more importantly, it provides a convenient framework

34



with a straightforward interpretation of the model parameters.

References

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi, 2015, Systemic risk and

stability in financial networks, American Economic Review 105, 564–608.

Allen, F., and D. Gale, 2000, Financial contagion, Journal of political econ-

omy 108, 1–33.

Boss, M., H. Elsinger, M. Summer, and S. Thurner, 2004, Network topology

of the interbank market, Quantitative finance 4, 677–684.

Daudin, J.-J., F. Picard, and S. Robin, 2008, A mixture model for random

graphs, Statistics and computing 18, 173–183.

Elliott, M., B. Golub, and M. O. Jackson, 2014, Financial networks and

contagion, American Economic Review 104, 3115–53.

Elsinger, H., A. Lehar, and M. Summer, 2006, Risk assessment for banking

systems, Management science 52, 1301–1314.

Frey, R., and J. Hledik, 2018, Diversification and systemic risk: A financial

network perspective, Risks 6.

Friel, N., R. Rastelli, J. Wyse, and A. E Raftery, 2016, Interlocking direc-

torates in irish companies using a latent space model for bipartite networks,

Proceedings of the National Academy of Sciences 113, 6629–6634.

35



Gai, P., and S. Kapadia, 2010, Contagion in financial networks, in Proceedings

of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences , rspa20090410, The Royal Society.

Glasserman, P., and H. P. Young, 2016, Contagion in financial networks,

Journal of Economic Literature 54, 779–831.

Goncharenko, Roman, Juraj Hledik, and Roberto Pinto, 2018, The dark

side of stress tests: Negative effects of information disclosure, Journal of

Financial Stability 37, 49–59.

Hoff, P. D., A. E. Raftery, and M. S. Handcock, 2002, Latent space ap-

proaches to social network analysis, Journal of the American Statistical

Association 97, 1090–1098.

Hurd, T. R., 2016, Contagion! Systemic Risk in Financial Networks

(Springer).

Li, M., S. Guan, C. Wu, X. Gong, K. Li, J. Wu, Z. Di, and C. H. Lai, 2014,

From sparse to dense and from assortative to disassortative in online social

networks, Scientific reports 4, 4861.

Matias, C., and V. Miele, 2017, Statistical clustering of temporal networks

through a dynamic stochastic block model, Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 79, 1119–1141.

Matias, C., T. Rebafka, and F. Villers, 2018, A semiparametric extension

36



of the stochastic block model for longitudinal networks, Biometrika 105,

665–680.

Minka, T., 2000, Estimating a dirichlet distribution.

Nowicki, K., and T. A. B. Snijders, 2001, Estimation and prediction for

stochastic blockstructures, Journal of the American Statistical Association

96, 1077–1087.

Puhr, C., R. Seliger, and M. Sigmund, 2012, Contagiousness and vulner-

ability in the austrian interbank market, Oesterreichische Nationalbank

Financial Stability Report 24.

Rastelli, R., N. Friel, and A. E. Raftery, 2016, Properties of latent variable

network models, Network Science 4, 407–432.

Sarkar, P., and A. W. Moore, 2006, Dynamic social network analysis using la-

tent space models, in Advances in Neural Information Processing Systems ,

1145–1152.

Sewell, D. K., and Y. Chen, 2016, Latent space models for dynamic networks

with weighted edges, Social Networks 44, 105–116.

Upper, C., 2011, Simulation methods to assess the danger of contagion in

interbank markets, Journal of Financial Stability 7, 111–125.

van der Merwe, S., 2019, A method for bayesian regression modelling of

composition data, South African Statistical Journal 53, 55–64.

37



Watts, D. J., and S. H. Strogatz, 1998, Collective dynamics of ‘small-

world’networks, nature 393, 440.

Xu, K. S., and A. O. Hero, 2014, Dynamic stochastic blockmodels for time-

evolving social networks, IEEE Journal of Selected Topics in Signal Pro-

cessing 8, 552–562.

Yang, T., Y. Chi, S. Zhu, Y. Gong, and R. Jin, 2011, Detecting communities

and their evolutions in dynamic social networks – a bayesian approach,

Machine learning 82, 157–189.

Appendices

A Data Transformation

The source data from the Austrian National Bank is in the form of four

variables: a timestamp, an ID of a lender bank, an ID of a borrower, and

the relative exposure from one towards the other. We use the term relative

since the largest exposure in each time period is assumed to be of size 1, and

all other exposures in that time period are scaled accordingly to keep their

relative size unchanged. As a result, in each time-period, all exposures are

located in a (0, 1] interval with the highest exposure attaining a value of 1.

Formally, making use of Definition 3.2, the observable data in our sample
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can be viewed as a dynamic adjacency matrix D:

Definition A.1. A sequence of observable exposures D = {D(t)}t∈T on the

set of nodes V over the time span T is defined as follows:

d
(t)
ij

def
=

e
(t)
ij

maxk,l e
(t)
kl

∀i, j, k, l ∈ V ,∀t ∈ T (16)

It is not possible to make inter-temporal analysis of changes in expo-

sures by using the sequence D, because every exposure is scaled against the

highest exposure in its time period. In order to circumvent this issue and ob-

tain information which is comparable in time, we have devised the following

procedure.

We make an assumption about the stability of the Austrian market.

Namely, when looking at the change of a particular edge value between two

consecutive periods, say from d
(t)
ij to d

(t+1)
ij , the ratio

d
(t)
ij

d
(t+1)
ij

with highest likeli-

hood of occurrence in the sample corresponds to banks keeping the absolute

value of their exposures unchanged. Indeed, after examining this ratio in all

consecutive periods, we observe that the most frequent value is situated in

the middle of the sample and is always a clear outlier in terms of likelihood

of occurrence.4

4In most cases, this value is around 1 which suggests that the largest exposure in the
network is mostly stable. An exception arises between dates 2 and 3 which correspond to
the second and third quarter of 2008. As this is the exact time of the height of US subprime
mortgage crisis, we believe that the “big players” in our dataset have been influenced by
these events, resulting in the change of their exposures and subsequent substantial re-
scaling of the whole system. According to our methodology, the largest exposure in the
network has dropped to almost one third of its value in the span of two quarters, but it
returns gradually back to its former level eventually.
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It is straightforward to re-scale the whole dataset using this procedure.

Despite the fact that we still cannot observe the actual levels of exposures

between banks in our sample, we are now able to approximate these values

up to a proportionality constant. We denote the values that we obtain with

this procedure with X throughout the paper, and use these to calculate the

relevance of the banks. We point out that these values are not used in the

statistical model that we introduce.

To summarize, there are four different types of dynamic adjacency ma-

trices used in our paper: E corresponds to the true data with the actual

connection values (exact values not available), D represents the scaled data

where edge weights are normalized with respect to the highest value in each

period (exact values are available), X contains the scaled data where all edge

weights are normalizes with respect to the highest value in the first period

(available in approximate form), and Y contains the relative exposures of

banks (exact values are available) which are derived from X or equivalently

from D.
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